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A B S T R A C T   

Semantic 3D building models are provided by public authorities and can be used in applications, such as urban 
planning, simulations, navigation, and many others. Since large-scale 3D models are typically derived from top- 
view digital surface models (DSM), they can have detailed roof structures but render planes for façade elements. 
Furthermore, buildings’ underpasses are often unmodeled, which impacts road space modeling and the build-
ing’s volume score. For refining semantic 3D building models, point clouds obtained from mobile laser scanning 
(MLS) seem to be suitable. In this paper, we present a method of underpass reconstruction by comparing building 
models’ façades with co-registered MLS measurements. As an alternative approach to from-scratch reconstruc-
tion, it exploits existing semantic 3D building models and street-level MLS point clouds to enhance models where 
required. The method considers the uncertainties of 3D models and measurements in a Bayesian network. 
Analyzed conflicts between the two representations resulting from ray tracing are used to delineate the under-
pass’s contours on a façade. Generalized contours are extruded to 3D solid geometries and subtracted from a raw 
3D building model, while the semantics is mapped to form an updated semantic 3D building model. The ex-
periments show that the method reaches an accuracy of 12 cm while testing on CityGML LoD2 building models 
and the open point cloud datasets TUM-MLS-2016 and TUM-FAÇADE representing the Technical University of 
Munich (TUM) city campus. The validation reveals differences between the reconstructed and updated models in 
both volumes (up to 18%) and surfaces (up to 20%). Such an extension of road corridors can improve 3D map 
usage for vehicle navigation and urban simulations.   

1. Introduction 

Building models are an important basis for numerous applications, 
such as calculating heat demand (Martirano et al., 2022), assessing flood 
damages (Apel et al., 2009), simulating wind flows (Montazeri and 
Blocken, 2013), analysing solar irradiation (Willenborg et al., 2018a,b), 
and testing automated driving functions (Wysocki et al., 2021a; Schwab 
and Kolbe, 2019), among others (Biljecki et al., 2015). 

Semantic 3D building models are frequently reconstructed from 2D 
footprints and photogrammetric observations, acquired using multi- 
view stereo (MVS) or airborne laser scanning (ALS) techniques. For 
example, more than eight million LoD2 building models in Bavaria, 
Germany, were created based on cadastral 2D building footprints and 
ALS measurements, supported by geodetic measurements and aerial- 
based digital surface models (Aringer and Roschlaub, 2014; Roschlaub 
and Batscheider, 2016). 

However, such LoD2 building models do not display any façade 

details, as can be seen in Fig. 1b. By comparing the red ellipse in the 
oblique image (Fig. 1a) with that in the 3D building model (Fig. 1b), we 
can observe that an underpass is absent in the 3D building model; this 
issue also occurs in other city models (Wysocki, 2022b). Since an un-
derpass (Fig. 2) is a part of a building at a ground level intended for vehicles 
to drive through. It is bounded by walls and a roof (Special Interest Group 
3D, 2020), its modeling seems essential for urban simulations and car 
navigation applications. 

Vehicle-mounted laser scanners, referred to as MLS, can capture 
dense, street-level point clouds that enable the mapping of road spaces 
and façade elements such as windows, doors, and underpasses (Xu and 
Stilla, 2021). 

As an alternative to from-scratch reconstruction and point cloud 
segmentation, we propose a 3D building refinement method that utilizes 
existing semantic 3D building models and MLS point clouds. To this end, 
we list our contributions as follows: 
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• A method of refining existing semantic 3D building models with 
reconstructed underpasses using MLS point clouds with a published 
code (Wysocki, 2022a).  

• An approach that addresses multimodal uncertainties of MLS point 
clouds, semantic 3D building models, and 2D vector road features.  

• A seamless comparison between multimodal datasets that considers 
different states of voxels in conjunction with a building model.  

• A CityGML-compliant method of underpass modeling, according to 
the definition by Gröger et al. (2012),Special Interest Group 3D 
(2020) and visualized in Fig. 2. 

2. Related work 

Comparisons between newly acquired and existing data generally 
involve detecting changes over time. In this work, we distinguish be-
tween changes detected in unimodal (i.e., point cloud to point cloud) 
and multimodal (i.e., point cloud to vector) datasets; related to multi-
modal conflicts independent of time. 

2.1. Change detection between point clouds 

A method of detecting changes in different terrestrial laser scanning 
(TLS) point clouds is presented by Zeibak and Filin (2008). To perform a 
point-wise comparison, they transform each scan into image panoramas. 
They define three possible states between point cloud epochs, such as 
change, no change, and occlusion. 

Hebel et al. (2013) introduce a voxel grid for change detection. The 
uncertainty is modeled using Dempster–Shafer theory (DST). Based on 
ray tracing, they distinguish between three states: occupied, empty, and 
unknown, subsequently deriving the states: consistent, disappeared, and 
appeared. Hirt et al. (2021) pursue this idea using MLS point clouds to 
identify changes of urban trees. 

The works by Hebel et al. (2013) and Hirt et al. (2021) differ in the 
role of the voxel grid and the choice of the voxel size. While Hebel et al. 
(2013) choose a coarse voxel size to accelerate the search for conflicts 
and to conduct post-processing to identify changes, Hirt et al. (2021) 
employ a fine voxel size to directly determine conflicts and changes. 

In the work by Gehrung et al. (2017) a Bayesian approach is favored 
for a fusion of MLS single sensor measurements. They present a method 
of removing dynamic objects in scenes by accumulating probabilities of 
voxel occupancy, which decrease when the voxel is traversed by a laser 
ray. The work is incorporated in the probabilistic OctoMap framework 
(Hornung et al., 2013) using an efficient octree structure for 
calculations. 

2.2. Multimodal change detection 

Tuttas et al. (2015) propose a probability-based method of progress 
monitoring in construction sites to compare an as-planned state derived 
from a building information modeling (BIM) model to an as-built state 
represented by a photogrammetric point cloud. They also elaborate on 
the challenges they encountered in such multimodal comparisons. 

However, BIM models are distinct from semantic 3D city models, 
especially concerning the geometrical representation; while BIM com-
ponents are typically generated using volumetric geometries, semantic 
3D city models are frequently represented by outer-observable surfaces 
(Kolbe and Donaubauer, 2021). 

In our previous work (Wysocki et al., 2021b), we explore Bayesian 
network (BayNet) possibilities and introduce confidence interval (CI) for 
fusion of MLS point clouds and semantic 3D city models. We focus on a 
combination of both to identify possible façade surface enhancements 
while considering uncertainties. Yet, we approach the issue without 
information on MLS sensor origin, which limits possibilities of 
comprehensive change detection for features such as windows, doors, or 
underpasses, among others. 

2.3. Refinement of 3D building models 

Substantial research effort has been devoted to detecting and 
reconstructing façade elements (Musialski et al., 2013). Methods typi-
cally focus on such façade elements as windows (Tuttas and Stilla, 2013; 
Aijazi, 2014; Becker, 2011; Iwaszczuk et al., 2011), windows and doors 
(Ripperda, 2010; Riemenschneider et al., 2012), balconies (Fan et al., 
2021), and general surface details (Wysocki et al., 2021a). To the best of 
our knowledge, no research to date has considered refining buildings 
with underpasses, although they significantly impact the representation 
of façades and road spaces. 

Fig. 1. Comparison of an oblique image and a 3D city model, both with a red- 
circled underpass, in Munich, Germany. a) Oblique image (Google Earth, 2022), 
b) 3D building models at level of detail (LoD)2 (BayernAtlas, 2022). 

Fig. 2. Visualization of the presented underpass definition.  
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Work relating to underpasses has been undertaken by Gargoum et al. 
(2018), where they assess the vertical clearance of overhead assets such 
as bridges. Their solution is based on light detection and ranging 
(LiDAR) point clouds acquired in MLS campaigns on highways. The 
method first detects overhang objects as possible candidates and clas-
sifies them into either bridge or non-bridge structures. The selection is 
based on the assumptions that a point measured above a vehicle tra-
jectory suggests an existing overhang asset; a bridge represents a denser 
region than a non-bridge asset. Testing was performed on three high-
ways with a total of 38 bridges and 124 other vertical assets. The method 
was successful in classifying overhead structures into bridges and non- 
bridges, with an accuracy level of approximately 96%. 

In the method of González-Jorge et al. (2013) a bridge structure 
detection is proposed. They employ automatic segmentation of road 
overpasses to detect mortar efflorescence. 

Tunnel structures are addressed in the work by Puente et al. (2016), 
which presents a solution for inspecting a vertical clearance space along 
tunnels. The assumption is made that no global navigation satellite 
system (GNSS) signal is available and relative orientation to road lanes 
has to be established. 

Despite the similarities, an underpass is a part of a building that 
distinguishes it from alike structures, such as bridges or tunnels; these 
are perceived as single entities within the road space, whereas the un-
derpass is indissolubly linked to a building within the road space. 

An alternative identification method is proposed by Dukai et al. 
(2020), where a topology of a cadastral vector map is used to detect 
multi-level buildings. Such a map-based approach of underpasses iden-
tification can be also pursued by conversion of BIM models to semantic 
city model formats Kolbe and Donaubauer (2021). 

In the BIM context, too, reconstruction of objects without a solidi-
fication process has been undertaken (Krijnen and Beetz, 2017). How-
ever, semantic point cloud embedding in the large-scale city models is 
currently limited (Beil et al., 2021). 

3. Proposed methods 

In contrast to the previous work that examines façade surface 
refinement (Wysocki et al., 2021b; Wysocki et al., 2021a), this paper 
focuses on refining semantic 3D building models with underpasses 
detected using MLS point clouds. 

The workflow (Fig. 3) starts with an evaluation of input dataset 
uncertainties (Section 3.1). A ray casting process identifies states (la-
bels) for voxels of MLS point clouds (Section 3.2). The 3D model’s faces 
are compared with labels of the voxels to identify changes between 
existing building models and new MLS measurements. If conflicts are 
found between the 3D model and labeled voxels (Section 3.3), the pro-
cess continues to Probabilistic classification; otherwise, it selects another 
3D building model from a database. The Probabilistic classification step 
classifies the detected conflicts (Section 3.5). Collateral information is 
derived from vector road features (Section 3.4) to detect underpasses. If 
an underpass feature is found, a shape extraction step is performed 
(Section 3.6.1), followed by a contour generalization step (Section 
3.6.2); otherwise, another respective module is started. The underpass’s 
contours are used to extrude an underpass to a 3D entity, which is 
subtracted from the solid geometry of an input 3D building (Section 
3.6.3). This process generates a refined 3D building solid geometry. 
Ultimately, the unchanged and the updated semantics of the 3D building 
model are assigned to the respective parts of the geometry (Section 
3.6.4). 

3.1. Datasets with inherited uncertainties 

Addressing uncertainties is especially challenging when concerning 
multimodal datasets. Vector objects and laser measurements have 
various uncertainties, which can stem from acquisition techniques, data 
processing, or imprecisely described metadata, among others. For 

example, horizontal features have different uncertainties from vertical 
ones. 

The proposed uncertainty assignment method investigates two 3D 
spatial object classes, namely façades and roads, each of which is 
addressed differently. The addressing of façades concerns the global 
positioning accuracy of point clouds and building models, while for 
roads it is the uncertainty of location, buffering, and 3D extrusion of 
vector road features. Confidence intervals (CI) are introduced to quan-
tify these multimodal uncertainties. The CI is estimated based on the 
confidence level (CL), with its associated z value (z), standard deviation 
(σ), and mean (μ). 

The CI for façades is estimated using σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
1 + σ2

2

√

. Assuming 
Gaussian distribution and operating in the L1 norm, the maximum upper 
and lower bounds are given by [μi − 2σi, μi +2σi] (Suveg and Vosselman, 
2000). σ1 describes the location uncertainty of MLS point clouds, while 
σ2 addresses the uncertainty of semantic 3D building walls. The as-
sumptions are made for the point cloud global registration error e1 and 
for the global location error of building model walls e2. The operator’s 
belief regarding the deviation from the true value is quantified using the 
confidence levels CL1 and CL2 for point clouds and building model walls, 
respectively. Both confidence levels CLi are bound to the respective zi 

Fig. 3. Overview of the presented workflow.  
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value, while μi divided by zi is an estimate of the standard deviation σi 
value (Hazra, 2017). 

The CI for roads can be derived from numerous studies of 2D vector 
road map uncertainties (Neis et al., 2012; Haklay, 2010; Minghini et al., 
2018). Based on derived standard deviations and identified beliefs, a 
road’s linear position in 2D is quantified using the same formulas as for 
façades. Width buffering and height extrusion are then performed on the 
basis of road span norms (Fiutak et al., 2018; FGSV, 1996; Chacon, 
2020) and clearance space norms (Chacon, 2020; U.S. Department of 
Transportation, 2014; Holst and Holst, 2004). 

3.2. Ray casting 

Automatic visibility analysis is conducted to identify missing se-
mantic model elements. An occupancy grid is introduced to analyze the 
multimodal data of the semantic 3D building models and the MLS ob-
servations. The grid is an octree structure encompassing a volume of 
interest, in which 3D voxels are the octree’s leaves. The 3D voxels are 
used to search for conflicts between the semantic 3D building models 
and the MLS measurements, where the voxels’ size vs is chosen ac-
cording to the expected uncertainties of the 3D building model and the 
MLS point cloud. 

A measurement by the laser scanner is emitted from the position of 
the sensor si, oriented by the vector ri, and pointing toward the reflective 
position pi = si +ri (Fig. 4). These variables can be extracted from the 
MLS set up (Zhu et al., 2020). Voxels that cover pi are labeled as occupied 
(blue), those between si and ri as empty (pink), and those behind pi and 
traversed by the elongated ray as unknown (gray). 

Repeated voxels’ observations are considered in a probabilistic 
fashion, as shown by Moravec and Elfes (1985). Probabilities are 
assigned using log-odds notation and clamping policy, following the 
concept of Hornung et al. (2013), Tuttas et al. (2015). The values of lmin 
and lmax are used to define the clamping thresholds of the log odd-values 
L(n): 

L(n|z1:i) = max(min(L(n|z1:i− 1)+ L(n|zi), lmax), lmin) (1)  

where 

L(n) = log[
Pn

1 − P(n)
] (2) 

Faces are inserted into the occupancy grid (brown in Fig. 4)) to 
enable a comparison between the point cloud and vector model. Each 
inserted face has an uncertainty given by the estimated upper bound of 

the CI and the associated CL. The upper CI defines a range of façade 
position deviations, while the CL indicates its associated belief. Finally, 
each voxel is represented by the position, size, and probabilities relating 
to the model and measurements. 

3.3. Comparison of point cloud to building model 

The façades are subjected to a piece-wise comparison by analyzing 
the state of the voxels (Fig. 5): Voxels determined by laser observations 
as having the state occupied and that are occupied by the intersection of 
façades are labeled as confirmed (green); while voxels labeled as empty 
by the laser observations and which intersect with façades are labeled as 
conflicted (red). 

A texture map is defined for each façade of the building model. It has 
a cell spacing cs, following the projection of the voxel grid to the plane. 
Each pixel in the texture map is labeled in relation to the voxel’s state as 
confirmed or conflicted. Consequently, the areas of the façade uncovered 
by the MLS observations are labeled as unknown (grey). 

The next processing step depends on the ratio rc ∈ [0, 1] of the 
number of pixels with the state conflicted a1 to the total surface area of 
façade a2, including unknown and confirmed parts. 

rc =
a1

a2
(3)  

If rc is smaller than rcmin , we deem the modeled façade to be correct, 
which means that any refinement is superfluous. If rc is greater than rcmax , 
we assume that the modeled façade is significantly erroneous and a 
refinement is unviable. The modeled façade is therefore only considered 

Fig. 4. Ray casting on a 3D octree grid from the sensor position si to the reflection point pi: The voxels encompassing the pi points are deemed as occupied (blue), 
traversed voxels as empty (pink), and others as unknown (grey). The voxels are confirmed (green) when the façade’s face intersects with occupied voxels and are 
conflicted if the façade’s face intersects with empty voxels. 

Fig. 5. Example of a texture map showing the states confirmed, conflicted, and 
unknown, for the building shown in Fig. 1. 
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for the refinement when its ratio rc is: rc ∈ [rcmin , rcmax ]

3.4. Comparison of map to building model 

Underpasses are classified considering the state of the texture map, 
state uncertainties, and additional road information. Since the road data 
are assumed to represent 2D lines, they are 2D-buffered and then 
vertically extruded to the probable 3D clearance space using CI, as 
discussed in Section 3.1. Such 3D vector volume is intersected with the 
façade in question. The intersection area displays map conflict on the 
second layer of the texture map (shown in purple in Fig. 6). 

3.5. Probabilistic classification: the Bayesian approach 

Underpasses are classified using input textures in BayNet (Fig. 6). 
Our BayNet comprises of one target (red) and two input nodes (yellow). 
The causal relationship between the X and the Y nodes is expressed by 
directed links. Each node is a variable with two categorical, mutually- 
exclusive states. The target state is calculated based on the joint prob-
ability distribution P(X,Y) and the conditional probability table (CPT), 
which prescribe the probabilities of each node and each combination of 
parent node states. The probability that the node Y (Underpass space) is 
in the state y (underpass) is estimated using the so-called marginalization 
process (Stritih et al., 2020), which sums conditional probabilities of the 
states x (i.e., map conflict, confirmed, conflicted, or unknown) belonging to 
the parent nodes X (i.e., Map comparison and Point cloud comparison). 

When the network is compiled, datasets are added as evidence for 
updating the joint probability distribution. In our case, it is soft evidence 
as the datasets comprise texture layers with inherited uncertainties, due 
to the CI measure. The update is performed by an inference process, 
which estimates the posterior probability distribution (PPD) yielding the 
most likely node states (Stritih et al., 2020). 

It is assumed that the co-occurrence of the pixel states conflicted and 
map conflict leads to a high probability estimation for underpasses. The 
decision node (blue in Fig. 6) steers the procedure based on the proba-
bility score P of each pixel in the resulting texture: If any pixel score P is 
greater than Phigh, then an Unmodeled underpass is present within a 
texture and should be modeled; pixels with a Plow score represent Other 
objects. An example of such a probability texture is given in Fig. 7, where 

green pixels represent a Phigh score for unmodeled underpasses, while the 
other pixels represent a Plow score for other objects. 

3.6. Modeling of underpasses 

Section 3.6.1 shows the underpass modeling process, in which a 
detected underpass space is first delineated by vector polygons on a 
façade. Section 3.6.2 then describes how to minimize the noise 
impacting the underpass’s shape. The generalized shape is used to create 
a 3D representation of the underpass space. An underpass in a building is 
modeled using the constructive solid geometry (CSG) difference opera-
tion, in which the reconstructed space is subtracted from a raw 3D 
building geometry, as shown in Section 3.6.3. The final step, presented 
in Section 3.6.4, shows semantic modeling in a CityGML-compliant way. 

3.6.1. Extracting shape of underpasses 
The shape of an underpass is extracted using the probability texture, 

discussed in Section 3.5 and shown in Fig. 7. The Phigh threshold is used 
to segment pixels depicting the underpass’s shape: If the P score is 
greater than Phigh, the pixels are regarded as underpass candidates; 
otherwise, they are rejected. The candidates are clustered if they have a 
neighbor in any of the eight directions of a pixel. This process merges 
single, adjacent pixels into clusters, now serving as blobs. 

In this stage, noisy blobs are rejected if they are smaller than or equal 
to the chosen area threshold value bs. Any blobs larger than threshold bs 
constitute the underpass shape candidates. At the end of the process, the 
contour of each blob is transformed into a vector polygon. An example of 
extracted shapes is illustrated in Fig. 8a. 

3.6.2. Generalizing shape of underpasses 
As shown in Fig. 8a, the contour lines of the extracted blobs can 

display noise, spikes, and inclusions. The generalization process 
removes inclusive polygons on the basis of topological relations. It then 
approximates the outer shapes using the modified Douglas-Peucker al-
gorithm, which considers parameters related to distances d1, d2, and 
angles a1 (Douglas and Peucker, 1973). Any blobs that are not connected 
to the ground, are extended toward the ground surface to overcome the 
so-called border effect, visible in Fig. 8a. The final, generalized shapes 
are shown in Fig. 8b. 

3.6.3. Reconstructing underpasses using CSG 
A 3D underpass is reconstructed based on the generalized shapes that 

are extruded in a perpendicular direction and at the length measured 
from the investigated façade to the corresponding back-façade. This 
leads to the formation of prismatic objects (Fig. 9), which represent the 
input solids for a CSG tree (Fig. 10). It should be noted that the prismatic 
objects do not represent tangible objects but rather a free space. They are 
therefore first aggregated (∪) and then subtracted (–) from a solid 
building geometry, as shown in Fig. 10 (Wyvill and Kunii, 1985). The 
subtraction remodels intersected polygons and closes inner-building 
gaps using face-intersecting vertices of the underpass space, thereby 
partitioning the polygons into smaller parts and closing gaps with 

Fig. 6. The designed BayNet: Input nodes (yellow) estimate the underpass 
space probability (red) quantified by CPT resulting in the decision node (blue), 
which determines whether a façade has any unmodeled underpasses or if 
conflicts are caused by other objects (green). 

Fig. 7. Probability texture: BayNet estimates the probability for each pixel for 
the target node state underpass. 
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polygon triangles. 

3.6.4. Modeling of 3D semantics 
By this stage of the workflow, the geometry of the building in 

question is refined, as illustrated in Fig. 12. Now, the task is to embed the 
refined geometric and semantic information in the refined 3D model. 
First, new inner walls and ceiling surfaces obtain a unique identifier (ID) 
and are defined as constituents of the single underpass entity, which 
obtains a unique ID, too. Since the underpass semantically belongs to the 
BuildingInstallation class and as such links by a parent ID to the solid 
building entity, it is modeled accordingly following Special Interest 
Group 3D (2020). Furthermore, the reserved for underpasses function 
1002 of the BuildingInstallation class in the CityGML standard (Special 
Interest Group 3D, 2020) is assigned to the underpass entity. Note that 
although it is possible to model the underpass at LoD2, we opt for its 
representation at LoD3 (LoD3.2). This is due to the fact that we identify 
the underpass as a large (i.e., exceeding 1 m2) façade opening (Gröger 
et al., 2012; Biljecki et al., 2016; Special Interest Group 3D, 2020). 

Moreover, generic attributes are created that extend the plain 
description of added geometries, namely, maxClearance and refine-
mentDate. The semantic enrichment is illustrated in Fig. 11, where red 
edges mark the underpass entity, and the respective semantic is visual-
ized in the attribute table. 

4. Experiments and results 

4.1. Datasets for the TUM Campus test site 

We selected the TUM Main Campus in Munich, Germany, as a test 
area and acquired CityGML LoD2 building models, OpenStreetMap 
(OSM) roads, and MLS point clouds, as shown in Fig. 13. 

The CityGML LoD2 building models represented governmental data 
created on a basis of cadastre and aerial measurements (Roschlaub and 
Batscheider, 2016; Aringer and Roschlaub, 2014). The building models 

Fig. 8. Shape extraction process. a) Identified underpass blobs, b) generalization of extracted shapes.  

Fig. 9. Prismatic 3D volumes of an underpass.  

Fig. 10. CSG tree: Union of the underpass volumes (∪) and its difference (–) to 
the solid volume of the building results in a refined building model. 

Fig. 11. The semantically modeled underpass structure as a BuildingInstallation 
with the respective CityGML function: 1002. 
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are shown in Fig. 13a, taken from the 3DCityDB-Web-Map-Client service 
(TUM Geoinformatics, 2022). 

The OSM road features were acquired from Geofabrik resources 
(Geofabrik, 2020). Thoroughfares unsuitable for driving were subse-
quently rejected by discarding the classes: footway, pedestrian, bridle-
way, cycleway, path, steps, and unknown (Ramm, 2021). Driveable 
roads (blue) are shown in Fig. 13b. 

The MLS point clouds were extracted from the open TUM-MLS-2016 
dataset (Fig. 13c) introduced by Zhu et al. (2020). We used the raw point 
clouds with sensor positions transformed to the global coordinate 
reference system (CRS). Additionally, we used TUM-FAÇADE’s anno-
tated point clouds (Wysocki et al., 2021c) and enriched them for vali-
dation with manually labeled point clouds representing underpasses. 

4.2. Parameter settings for uncertainties 

The uncertainty of a façade’s global position was incorporated using 
input parameters for MLS point clouds and CityGML models. For the 
MLS point cloud global registration error we set e1 = 0.3 m, μ = 0.15 m, 
CL1 = 90%, and z1 = 1.64, while for CityGML building model global 
positioning accuracy error we set e2 = 0.03 m, μ = 0.015 m, CL2 =

90%, and z1 = 1.64. This resulted in an estimate for the façades’ upper 
CI of 0.2 m. 

Based on the studies by Haklay (2010), we set the location error for 
roads to e3 = 5.83 m, at CL3 = 75%, and z3 = 1.15. The 2D upper CI of 

the roads were multiplied by a factor that varied depending on the road 
type: 1.5 for a service road and 6 for a secondary road, following the 3D- 
DLM project (Fiutak et al., 2018). This resulted in 2D buffers equaling 
6.6 m and 11.1 m for service and secondary roads, respectively. The 
roads were then vertically extruded based on a top minimum clearance 
space height study (Chacon, 2020) and estimated at 6.5 m. Extrusion 
was performed for roads intersecting with a CityGML building model or 
that had an overlapping OSM feature indicated by a value T for the 
attribute tunnel (Ramm, 2021). 

4.3. Parameter settings for ray casting 

We used an octree voxel grid with the leaf size set to vs = 0.1 m, to 
find fine deviations and simultaneously suppress noise. Each voxel was 
initialized with a uniform prior probability of P = 0.5. Following Hor-
nung et al. (2013) and Tuttas et al. (2015), we decided to use log-odds 
values of locc = 0.85 for occupied and lemp = − 0.4 for empty, corre-
sponding to Pocc = 0.7 and Pemp = 0.4, respectively. Each untraversed 
space was labeled as unknown. The clamping thresholds were set to 
lmin = − 2 and lmax = 3.5, corresponding to Pmin = 0.12 and Pmax = 0.97, 
respectively. 

We assessed the plausible CI for a 3D building model face, which 
scored 0.2 m with CL = 90%, as discussed in Section 4.2. 

Fig. 12. Semantic 3D building model refined by the addition of an underpass using MLS point clouds. a) Raw city model, b) point cloud, c) refined building model.  

Fig. 13. The TUM Campus dataset and selected underpasses (red). a) CityGML LoD2 building models (TUM Geoinformatics, 2022), b) OSM roads (OpenStreetMap 
contributors, 2021), c) MLS point clouds (Zhu et al., 2020). 
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4.4. Parameter settings for point cloud to model comparison 

For each façade, a texture layer was created with rows and columns 
corresponding to the rows and columns projected to the façade’s face. 
Using the analysis presented in Section 3.3, we identified and projected 
to the texture three states: conflicted, confirmed, and unknown. 

We then set the threshold ratio of rcmin = 0.1 and rcmax = 0.6 between 
the conflicted pixels area a1 and the total surface area a2. In most cases, 
however, the façades qualified to the classification step, as the ratio rc 
was within the permitted interval of conflict areas per face, where rc ∈

[0.1,0.6]. 

4.5. Detection and classification of underpasses 

The designed BayNet requires two inputs: the point cloud compari-
son layer (Section 3.3) and the map comparison layer (Section 3.4). 
Therefore, the inputs comprised two items of soft evidence with 
geometrical representations and inherited beliefs. According to the 
estimated CI, the input beliefs resulted in 75% and 90% evidence for the 
map comparison layer and the point cloud comparison layer, respec-
tively. The probability threshold defining Unmodeled underpass and 
Other objects was set to Phigh > 0.7 >= Plow. 

All four underpasses indicated in Fig. 13 were correctly identified. 
Reconstructed underpasses are shown for building A in Fig. 12 and for 
buildings B, C, D in Fig. 14. 

4.6. Extracting shape of underpasses 

We defined the threshold as bs = 1.5 m2 to suppress irrelevant blobs. 

The shapes were then generalized by a modified Douglas-Peucker al-
gorithm with the parameters set to d1 = 0.1,d2 = 0.3, and a1 = 45◦. 

4.7. Validation of underpass refinement 

The validation was conducted using the ground-truth point clouds, 
which represented the underpasses, while volume and surface changes 
were compared using refined building models (LoD3) and raw building 
models (LoD2). The results of the validation are shown in Table 1 and 
Fig. 15, while Table 2 and Table 3 present surface and volume changes, 
respectively. 

The most remarkable result to emerge from the experiments was that 
deviations in automatically modeled underpasses ranged from 1 cm to 
23 cm and had a mean mode score of 12 cm, as shown in Table 1. As 
hypothesized, the experiments showed that underpasses contribute 
significantly to a building’s envelope surface; the mean score for the 
surface difference was 13%, reaching up to 20%. Note that the score for 
underpass B was 4% since the building model is vast and thus has a large 

Fig. 14. Refinement results for the buildings B, C, and D. a) Raw city model, b) point cloud, c) refined city model.  

Table 1 
Validation of automatically modeled underpasses compared to the ground truth 
point clouds.  

Building Median [m] Mode [m] RMS [m] 

A 0.18 0.01 0.29 
B 0.19 0.07 0.38 
C 0.25 0.06 0.52 
D 0.28 0.23 0.45 
μ 0.22 0.12 0.41  
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surface area. We present all surface-related comparisons in Table 2. The 
mean score for volume deduction was 11%, reaching up to 18%, as 
shown in Table 3. 

5. Discussion 

The experiments demonstrated promising results for the method of 
refining 3D building models by underpasses, after successfully applying 
to four underpasses in the TUM campus area. 

There are two possible reasons for the deviations shown in Table 1: 
Underpasses’ shapes are generalized and inevitably indicate a degree of 
deviation (e.g., building D in Fig. 14); underpasses’ shapes are hori-
zontally extruded to form prismatic 3D entities and as such neglect 
inner-space discontinuities (e.g., the step-like ceiling in building B 
shown in Fig. 14b and in Fig. 15). 

Experiments incorporating the CI are in accordance with OSM and 
vertical clearance space studies. The set of parameters chosen to trans-
form 2D road features to 3D spaces represents a satisfactory agreement 
between the under- and over-estimation of underpass shapes. 

In the ray casting process (Section 3.2), we elaborate on an 

appropriate 3D voxel size vs. Here, for the underpasses reconstruction, 
we select 0.1 m as the appropriate value. For this voxel size, the co- 
registration accuracy of the MLS point clouds and the semantic 3D 
city models must be in the cm domain. Deviations in co-registration can 
lead to the effect that façades cannot be correctly confirmed with this 
method. 

It is worth mentioning that our solution of semantic modeling is 
based on the CityGML standard (Gröger et al., 2012). However, the 
method can be seamlessly adjusted to other 3D building model standards 
and be applied in various encodings, for example CityJSON (Ledoux 
et al., 2019). 

Furthermore, we use the standard CityGML 2.0 data model for 
assigning semantics of underpasses. For incorporating further details, 
this approach could be enhanced in future work by developing an 
application domain extension (ADE), which customizes capabilities of 
the default CityGML data model to a specific scenario (Gröger et al., 
2012; Biljecki et al., 2021). 

6. Conclusion 

Our work has led us to the conclusion that the refinement of existing 
models, instead of from-scratch reconstruction, is a promising strategy; 
it minimizes possible planarity issues and maintains the consistency of 
city models while reducing the complexity of reconstruction by focusing 
solely on the model’s required changes. 

The current refinement method pursues a data-driven strategy. As an 
alternative, a model-driven approach could use predefined libraries of 
underpasses and parameters to fit the geometries into classified point 
clouds. 

The validation shows that the achievable accuracy lies within a range 
of 1 cm to 23 cm. This accuracy can be acceptable when refining models 
in high definition (HD) maps used for autonomous driving purposes 
(Wong et al., 2020), extended solar potential analyses based on façades 
(Willenborg et al., 2018a), or energy demand estimations (Martirano 
et al., 2022), among other applications (Biljecki et al., 2015). However, 
the achieved accuracy could limit the method’s usability in cultural 
heritage preservation applications (Grilli and Remondino, 2019). 

Evidence from this study suggests that the method may be of 
particular importance in applications significantly exploiting buildings’ 
surfaces and volumes; surface differences in the context of underpasses 
may be as high as 20% between an original and a refined building, which 
can significantly impact estimating solar potential (Willenborg et al., 
2018a), analysing urban farming potential (Palliwal et al., 2021), 
evaluating urban walkability (Zhu et al., 2019) and bikeability (Ito and 
Biljecki, 2021), and the HD map-based positioning of automated cars 
(Wong et al., 2020). Furthermore, underpass-related volume differ-
ences, reaching up to 18%, can significantly impact energy demand 
estimations (Martirano et al., 2022). 

The proposed, widespread vector data and an unprecedented growth 
of MLS point clouds stack (Wysocki et al., 2022) promise replicability of 
the method. Remarkably, even in case of absent 3D building models, 
they can be generated using OSM footprints, as in the example of 
Singapore, where underpass-related issues are encountered, too (Pal-
liwal et al., 2021; Wysocki, 2022b). Moreover, the experiments 
corroborate that the method is applicable for underpasses with a dis-
aggregated profile (i.e., by columns), insignificant discontinuities (i.e., 
step-like ceilings), and continuous geometry (i.e., elongated profiles). 
Yet, the method could have limited accuracy for underpasses with inner- 
vertical intrusions, such as inner domes and inner arches. 

Although the four underpasses tested here presented challenging 
geometries, the small size of the testing sample implies that caution must 
be exercised. To further our research, we plan to test our solution on a 
larger number of buildings with underpasses. 

Fig. 15. Histogram and visualization of projected Hausdorff distances to a 
ground-truth point cloud for underpass B, given in meters. 

Table 2 
Surface refinements for refined models (LoD3) compared to raw (LoD2) building 
walls and ground surfaces.  

Building Surf. Surf. Diff. Diff.  
LoD2 [m2] LoD3 [m2] [m2] [%] 

A 2,724 2,448 276 10 
B 10,132 9,716 416 4 
C 1,918 1,534 384 20 
D 1,058 874 184 17      

μ   315 13  

Table 3 
Volume refinements for refined models (LoD3) compared to raw building 
models (LoD2).  

Building Vol. Vol. Diff. Diff.  
LoD2 [m3] LoD3 [m3] [m3] [%] 

A 11,994 11,116 878 7 
B 70,110 68,962 1,148 2 
C 6,434 5,403 1,031 16 
D 2,898 2,380 518 18 
μ   894 11  
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