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ABSTRACT:

Point clouds are widely regarded as one of the best dataset types for urban mapping purposes. Hence, point cloud datasets are commonly
investigated as benchmark types for various urban interpretation methods. Yet, few researchers have addressed the use of point cloud
benchmarks for façade segmentation. Robust façade segmentation is becoming a key factor in various applications ranging from
simulating autonomous driving functions to preserving cultural heritage. In this work, we present a method of enriching existing
point cloud datasets with façade-related classes that have been designed to facilitate façade segmentation testing. We propose how to
efficiently extend existing datasets and comprehensively assess their potential for façade segmentation. We use the method to create the
TUM-FAÇADE dataset, which extends the capabilities of TUM-MLS-2016. Not only can TUM-FAÇADE facilitate the development
of point-cloud-based façade segmentation tasks, but our procedure can also be applied to enrich further datasets.

1. INTRODUCTION

Buildings are one of the most fundamental elements of a city,
which is why digital building reconstruction has become such a
pivotal issue for the majority of urban studies. Every building
possesses a number of façades, so digital building reconstruc-
tion inevitably involves façade reconstruction, too. This issue has
long been regarded as a challenge within the photogrammetry and
computer vision communities (Musialski et al., 2013).

Although state-of-the-art, semantic 3D building models are
widely available, they have generalized extruded façades, chiefly
owing to their top-view source datasets (Haala and Kada, 2010).
This generalized level has been largely regarded as plausible for
various applications (Biljecki et al., 2015).

However, recent developments have led to growing demand for
detailed façade reconstruction in a wide variety of applications,
including calculating heating demand (Nouvel et al., 2013), pre-
serving cultural heritage (Grilli and Remondino, 2019), assess-
ing flood damage (Apel et al., 2009), simulating wind flow
(Montazeri and Blocken, 2013), analysing solar potential (Wil-
lenborg et al., 2018), and testing automated driving functions
(Wysocki et al., 2021a, Schwab and Kolbe, 2019).

Central factors hampering the development of façade reconstruc-
tion methods are a lack of generic, façade-grade datasets and
shortage of methods that can accommodate a range of architec-
tural façade styles. While the former can be aided by mobile laser
scanning (MLS) vehicles, which have recently begun delivering
dense, street-level point clouds on an unprecedented scale, the
latter requires various benchmark datasets for testing façade seg-
mentation and reconstruction methods. However, this process is
cumbersome and involves costly measurement campaigns as well
as laborious, manual work to provide reference objects.

Despite this, recent years have witnessed a significant growth
in urban point cloud benchmark dataset (Griffiths and Boehm,
2019a), but few of them have addressed the issue of façades seg-
mentation, albeit they frequently include buildings.

In this paper, we present a method that reduces the need for cre-
ating new point cloud benchmark datasets by enriching existing

Figure 1. TUM-FAÇADE as a blueprint for enriching existing
point cloud benchmarks: a) raw dataset, b) potential assessment,

c) extended benchmark by façade classes.

benchmarks with façade-related semantics. To this end, our con-
tributions are as follows:

• We review the terrestrial, outdoor point cloud benchmark
datasets, with a focus on façade segmentation.

• We identify terrestrial, outdoor point cloud benchmark data-
sets that can potentially be used as testing datasets for façade
segmentation.

• We present a method and classes that can enrich existing
point cloud benchmark datasets for façade segmentation
methods testing.

• We introduce TUM-FAÇADE1 (Wysocki et al., 2021c),
which enriches the TUM-MLS-2016 (Zhu et al., 2020) point
cloud benchmark dataset with façade-related classes.

2. RELATED WORK

As they have a rich history in the domains of computer vision,
photogrammetry, and remote sensing communities, there is a con-
siderable amount of literature on benchmark datasets. Despite
this level of interest, to the best of our knowledge, nobody has
ever published a comprehensive review of point cloud benchmark
datasets suitable for façade segmentation.

1 https://github.com/OloOcki/tum-facade
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Table 1. Our proposed classes for point cloud benchmark datasets to facilitate testing of façade segmentation methods.

Index Class CityGML Description
building-related class

1 wall WallSurface Walls excluding any decorative elements
2 window Window Windows excluding any decorative elements
3 door Door Including garage doors
4 balcony BuildingInstallation Excluding pillars and other supportive structures
5 molding BuildingInstallation Decorative static elements adhering to a building (e.g., cornices)
6 deco BuildingInstallation Decorative elements mounted to a building (e.g., flags, gargoyles, lights)
7 column BuildingInstallation Excluding cornices (cornice → molding class)
8 arch BuildingInstallation Only surfaces oriented downwards
9 drainpipe BuildingInstallation Pipes and rain gutters of a building
10 stairs BuildingInstallation Stairs excluding support structures (e.g., poles)
11 ground surface GroundSurface Any other ground surfaces inside a building envelope
12 terrain - Any other ground surfaces outside a building envelope (e.g., sidewalks)
13 roof RoofSurface Any surfaces relating to a roof structure (incl. dormers)
14 blinds BuildingInstallation Window closures open or closed
15 outer ceiling surface OuterCeilingSurface Ceilings within a building
16 interior - Measurements that reflect in a building
17 other - Any other elements

Research has tended to focus on overviews of available point
cloud datasets rather than comprehensively reviewing them and
focusing on the task of façade segmentation. For instance, Grif-
fiths and Boehm provide a detailed review of deep learning tech-
niques for 3D datasets, including a chapter concerning bench-
mark datasets (Griffiths and Boehm, 2019a). Not only do they
present benchmark datasets for RGB-D, indoor, and outdoor
scenes, but they also provide an overview of selected bench-
marks. Zhu et al. provide an extensive list of outdoor MLS
benchmark datasets, as well as presenting the TUM-MLS-2016
benchmark dataset (Zhu et al., 2020). Li et al. identify such char-
acteristics as the format of the datasets or the number of available
classes, albeit only with reference to a few selected benchmark
datasets (Li et al., 2020). The work of Matrone et al. elaborates
on the lack of 3D heritage datasets and bridges this gap by intro-
ducing the ArCH dataset (Matrone et al., 2020).

Façade segmentation methods have been widely studied (Musial-
ski et al., 2013). Much is known about methods using images (Te-
boul et al., 2012, Mathias et al., 2016, Müller et al., 2007), largely
facilitated by rich façade image datasets benchmarks, such as
those by (Riemenschneider et al., 2012) or (Tyleček and Šára,
2013). However, as the images are 2D, they have to be processed
to facilitate subsequent semantic 3D reconstruction. On the other
hand, 3D point clouds are deemed among the best data sources for
urban mapping purposes, as they yield an immediate 3D repres-
entation (Xu and Stilla, 2021). Of the particular interest are point
clouds acquired by MLS vehicles thanks to their, high temporal
resolution, and the density of the street-level point clouds (Wyso-
cki et al., 2021a). This has led to a recent growth in interest in
developing methods of parsing façades using point clouds (Mar-
tinovic et al., 2015, Fan et al., 2021, Zolanvari and Laefer, 2016),
especially using machine learning methods (Matrone et al., 2020,
Liu et al., 2020).

However, only a few studies have focused on releasing point
cloud façade segmentation benchmark datasets (Matrone et al.,
2020). In the literature, there are a few examples of methods
that enrich existing datasets by adding new semantic informa-
tion. One of these is the SemanticKITTI benchmark (Behley et
al., 2021), which builds upon the KITTI Vision Benchmark (Gei-
ger et al., 2013). Alternatively, the dataset can be enriched by
conducting a repeated measurement campaign to provide another
epoch, which is done chiefly for change detection purposes, as in
the work by (Zhu et al., 2020).

To sum up, most of the existing benchmarks were not created
for the purpose of façade segmentation. Moreover, publications
either overlook some benchmarks or provide only sparse statist-
ics, which hampers any detailed comparison of their potential for
façade segmentation using point clouds. Although some methods
of enriching existing benchmark datasets have been implemented,
they are scarce, especially in the filed of façade segmentation.

3. DEVELOPED METHODOLOGY

3.1 Assessing existing benchmark datasets

As the majority of the point cloud benchmarks were not created
for the purpose of façade segmentation, the benchmark datasets
we consider comply with several requirements: They must rep-
resent an open-dataset, outdoor scene, depict buildings or at least
façades, and consist of point clouds. We therefore exclude 2D im-
age benchmark datasets such as (Tyleček and Šára, 2013, Gadde
et al., 2016, Riemenschneider et al., 2012). Furthermore, as a
façade represents a front of a building, it implies that indoor-
oriented benchmarks, such as (Armeni et al., 2017), are out of
scope, too. Due to the limited coverage of façade details, we dis-
regard aerial benchmark datasets, such as (Varney et al., 2020) as
well as automotive datasets that primarily focus on road objects,
such as (Geiger et al., 2013).

We establish that features crucial to the comparison of datasets
for façade segmentation tasks should include the following data:
(1) year, (2) sensor type, (3) scalar fields relevant to segmentation
(i.e., point position (XYZ), color (RGB), intensity (I), or normals
(N)), (4) world (i.e., real or synthetic), (5) total number of points,
(6) whether a dataset is georeferenced, (7) in what region it was
acquired, (8) number of available classes, (9) whether a building
class is available, (10) whether classes relating to façade details
are available, and (11) whether the scene is urban or rural.

3.2 Creating an extended benchmark dataset

We propose 17 classes for façade segmentation, following the ap-
proach of Matrone et al., which is based on CityGML, Industry
Foundation Classes (IFC), and Art and Architecture Thesaurus
(AAT) (Matrone et al., 2020). We increase the number of classes
introduced by Matrone et al., while maintaining consistency and
backwards compatibility (i.e., it is possible to merge classes for
testing on the same datasets). To facilitate both segmentation and
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reconstruction tasks, our classes are also consistent with the mod-
eling guidelines for CityGML level of detail (LoD)3 building
models (Gröger et al., 2012, Special Interest Group 3D, 2020).
We present the classes in Table 1, with their names and indices,
a respective building-related CityGML class, and a brief descrip-
tion.

Extending point cloud benchmark datasets by adding new
ground-truth classes inevitably necessitates manual work to be
performed by trained annotators. To minimize the effort involved,
supporting algorithms can be used to pre-cluster point clouds, as
in (Zhu et al., 2020). In our case, the central aspect is to first
cluster objects that belong to the façade and its immediate vi-
cinity and neglect all other objects. Hence, we propose using
point clouds that are georeferenced to clip-out buildings. Using
the position obtained from the global coordinate reference sys-
tem (CRS), we obtain point clouds superimposed on geographic
information systems (GIS) datasets. This, in turn, allows us to
create buffers around building footprints extracted from vector
GIS datasets (e.g., CityGML building models or OpenStreetMap
(OSM) buildings). This ensures to reject a significant propor-
tion of the point clouds and cluster the building-related points
per building object, while addressing global point positioning in-
accuracies (Wysocki et al., 2021b). Alternatively, when point
clouds are not georeferenced or GIS datasets are unavailable, ex-
isting benchmark points, annotated as buildings, can be used as a
pre-cluster for façade-related points. If the aforementioned cases
are not satisfied, the façades must be extracted manually, or else
clustering algorithms must be used, similar to (Zhu et al., 2020).

4. RESULTS

4.1 Potential of existing point cloud benchmarks for façade
segmentation

We analyzed 18 point cloud benchmark datasets (i.e., 17 exist-
ing ones plus our dataset), the results of which are presented in
Table 2. As expected, most of the datasets were not created for
façade segmentation tasks, with only TUM-FAÇADE (Wysocki
et al., 2021c) and ArCH (Matrone et al., 2020) being designed
specifically for this task. However, the rest of the set revealed
significant extension potential for façade segmentation testing.

Figure 2. Ratio of annotated semantic classes in the
TUM-MLS-2016 benchmark dataset.

Remarkably, we noticed an increase in the number of datasets
released in recent years. The earliest benchmark in our set is from
2009 (Munoz et al., 2009), and was the only one to be published
that year. In contrast, in the last three years (i.e., 2020-2022) as
many as eight were published, which was almost 50% of our set.
It is worth noting that no acquisition date is given for the Robotic
3D Scan Repository, either because it is absent in some of the
repository’s point clouds or varies between them (Nüchter and
Lingemann, 2016).

The analyzed list was dominated by MLS platforms, ranging
from an early-type scanner mounted on a car to map a campus in

Oakland, Canada (Munoz et al., 2009), through a backpack map-
ping unit in the city center of Basel, Switzerland (Blaser et al.,
2021), to a mixture of dense mapping and simulated point clouds
in Paris, France (Deschaud et al., 2021). Despite this, we in-
cluded four terrestrial laser scanning (TLS) point cloud datasets,
as well as the ArCH dataset that combines measurements from
TLS, MLS, an unmanned aerial vehicle (UAV), and terrestrial
photogrammetry (TP) measurements (Matrone et al., 2020).

As expected, each point cloud dataset consisted of points with
their respective XYZ positions. However, additional scalar fields
varied across the benchmarks. The intensity values were dom-
inant, being present in 12 datasets of the set. On the other hand,
RGB values occurred in eight datasets, while normals in only two
datasets.

Interestingly, our set consisted not only of real-world point clouds
but also included synthetic-world point clouds. This was the case
with both SynthCity (Griffiths and Boehm, 2019b) and Paris-
CARLA-3D (Deschaud et al., 2021). The former presented a
completely simulated MLS point cloud based on a vector model
and covering a combination of European mainland cities and New
York, USA (Griffiths and Boehm, 2019b). The latter combined
acquired point clouds with simulated ones using the CARLA en-
vironment (Deschaud et al., 2021).

One distinct advantage of synthetic point clouds was that they
can easily outnumber the real ones: 700 M to 60 M in the case
of Paris-CARLA-3D (Deschaud et al., 2021). Still, even simu-
lated total points numbers were lower than the ones of TLS data-
sets: the semantic3D.net TLS dataset consisted of 4 BN points
(Hackel et al., 2017). On the other hand, the KITTI-360 MLS
dataset featured 1 BN points, with 73.7 km of roads being meas-
ured in Karlsruhe, Germany (Liao et al., 2021). It was thus
clear that quantity of points was directly linked to the pace of
acquisition (e.g., MLS is intuitively faster than TLS) and the total
covered area. The latter is particularly difficult to acquire and
compare, since the various datasets have different ways of quan-
tifing this measure, namely: as a number of scenes, the length
of road driven, approximate area extent, or else it is unpub-
lished. Moreover, three obtained datasets (Nüchter and Linge-
mann, 2016, Lande, 2012, De Deuge et al., 2013) did not reveal
their total number of points, thereby this statistic is omitted in
these cases.

Regarding point clouds georeferencing, ou analysis showed that
the set was equally divided between those published in a local
CRS and in those in a global CRS, both had a score of eight data-
sets. It should be noted that semantic3D.net (Hackel et al., 2017),
and ArCH (Matrone et al., 2020), provided a description of an
acquisition place albeit they were in a local CRS. Thus, it should
be possible to obtain a rough georeference of the point clouds.

Curiously, the majority of the datasets were located in Europe,
while two were from North America (Munoz et al., 2009, Tan et
al., 2020), and there was only one representative both from Asia
(Dong et al., 2020) and Australia (De Deuge et al., 2013). It
should be noted that the SynthCity dataset represented a mixture
of virtual models from New York, USA, and mainland Europe
and thus represented the simulated environment of North Amer-
ica and Europe (Griffiths and Boehm, 2019b).

The most remarkable result to emerge from the analysis is that
buildings represent the majority of points in the datasets. For ex-
ample, as we show in Figure 2, ratio of points per building class
in the three TUM-MLS-2016 dataset areas outnumbered other
classes with scores of 37%, 57%, and 74% (Zhu et al., 2020).
On the other hand, along with the rising classes number, the ratio
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of points per class vanished. On average, the number of classes
equaled 16.5, with a maximum of 50 and a minimum of 0. For
instance, the Paris-Lille-3D dataset distinguished between 50 dif-
ferent classes, which resulted in classes such as table or mobile
scooter, represented by only 576 and 131 points, respectively
(Roynard et al., 2018). As anticipated, the datasets that focused
on the registration of point clouds (Dong et al., 2020, Nüchter
and Lingemann, 2016, Blaser et al., 2021, Lande, 2012) excluded
semantic classes.

However, even though the buildings were often annotated, most
of the façade-level classes were still absent. Apart from our
TUM-FAÇADE, only the Oakland 3D, Paris-rue-Madame, and
ArCH datasets had incorporated façade-level classes in their re-
positories (Munoz et al., 2009, Serna et al., 2014, Matrone et al.,
2020). Yet, although Oakland 3D had a list of several façade-level
classes, they were underrepresented; for example, there were 500
and 100 points per stairs and gate classes, respectively (Munoz
et al., 2009). The Paris-rue-Madame dataset had a few classes
with façades details limited to wall lights, wall signs, and bal-
cony plants (Serna et al., 2014). On the other hand, the ArCH
dataset, which was designed for façade segmentation purposes,
had a rich set of façade-related classes (Matrone et al., 2020).

As we had stipulated that our set had to include point clouds en-
compassing buildings, most of the datasets’ scenes are urban.
Some, such as A2D2 (Geyer et al., 2020), included rural areas,
too. It is worth mentioning that in our set we rejected point
clouds from Whu-TLS (Dong et al., 2020), Robotic 3D Scan Re-
pository (Nüchter and Lingemann, 2016), and ETH PRS (Lande,
2012), that were indoor or building-unrelated.

Moreover, we identified several drawbacks in the currently avail-
able point cloud benchmark datasets that hinder effective testing
of façade segmentation methods, namely:

• Lack of façade-level classes: As we present in the façade-
level classes? column in Table 2, most of the benchmarks
do not have any façade-grade classes, which hampers any
comparison of methods conducted at such a fine granularity.

• Lack of standardization in façade-level classes: The classes
are inconsistently named and annotated between the data-
sets and so the meanings of the objects can be confusing,
which hinders methods comparison. This is exacerbated by
the significant variation in the numbers of classes, too, as
can be seen in the # Classes? column in Table 2.

• Low variability of façades: The datasets are limited in a
number of façades, with often similar architectural styles.
This phenomenon can bias algorithms towards overfitting to
a particular architectural style and thus limit their generaliz-
ation. It can also limit distinction capabilities between im-
portant classes such as doors and windows (Matrone et al.,
2020). For instance, although the TerraMobilita/iQmulus
dataset yields high density point clouds, it is limited to a
200 m long survey covering merely a few façades (Vallet et
al., 2015).

• Low ratio of façade-level points per class: Even when
façade-grade classes are available, the number of points per
class is low. This means that the algorithms can be biased
towards highly represented classes (e.g., walls) and neglect
the underrepresented ones (e.g., doors). We illustrate this
drawback in Figure 3, by analyzing the Oakland 3D point
cloud dataset (Munoz et al., 2009), which is a perfect ex-
ample of the identified trend.

• Lack of georeferencing: Many benchmarks do not contain
information about the position with reference to the global
CRS; They are often provided in a local CRS, as shown in
Table 2. This excludes or at best hinders a comparison of
methods using multimodal sources, such as point clouds in
conjunction with 2D or 3D GIS datasets, such as in (Murtiy-
oso and Grussenmeyer, 2019) or (Wysocki et al., 2021a).

• Lack of 3D reference building models at LoD3: Point cloud
semantic segmentation algorithms can only be validated
against ground-truth labels in point clouds. This means that
it is impossible to perform a second-tier validation (e.g., for
methods addressing occlusions in point clouds). The applic-
ation of open semantic volumetric- or surface-based models
compliant with at LoD3, should enable this process, how-
ever. With such models, the benchmarks could be used for
both segmentation and 3D reconstruction purposes.

Figure 3. Ratio of annotated façade points per class and low
façade classes variability, based on the example of the Oakland

3D point cloud dataset.

4.2 The TUM-FAÇADE benchmark

In this paper, we present TUM-FAÇADE: a point cloud bench-
mark dataset that aims to facilitate the development of façade
segmentation methods (Wysocki et al., 2021c). Not only does
it consists of 17 detailed ground-truth classes but it is based on
the challenging MLS point cloud dataset, too. We created TUM-
FAÇADE on the basis of the TUM-MLS-2016 benchmark dataset
(Zhu et al., 2020), as it featured a challenging, urban environ-
ment, with realistic, dense, and georeferenced MLS point clouds.
TUM-FAÇADE consists of five annotated and five non-annotated
buildings replicating 14 and 15 façades, respectively. There are
17 annotated classes that range from features such as windows to
drainpipes, as we show in Figure 4 and Table 3. We incorpor-
ated local and georeferenced XYZ positions in the scalar fields,
together with the respective labels. Optionally, the dataset can be
enhanced by adding intensity values from TUM-MLS-2016, too.

To create this dataset, we transformed raw TUM-MLS-2016 point
clouds (i.e., 1.7 BN points) to global CRS using the transforma-
tion matrix included in the TUM-MLS-2016 benchmark repos-
itory (Zhu et al., 2020). Having models aligned in global CRS
(EPSG: 25832) allowed us to encircle selected building entities
with a 3 m buffer, using accurate, cm-grade footprints of gov-
ernmental CityGML LoD2 models2. To facilitate the annotation
process, each of the selected building point cloud clusters was
then shifted to a local CRS with an origin in the building’s center.

To manually annotate five of these point cloud entities, we used
the Semantic Segmentation Editor3 software by the Hitachi Auto-
2 https://www.ldbv.bayern.de/produkte/3dprodukte/3d.

html
3 https://github.com/Hitachi-Automotive-And-Industry-Lab/

semantic-segmentation-editor
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Figure 4. One of the TUM-FAÇADE buildings showing the color-coded points classes.

motive And Industry Laboratory. We extended its capabilities
to enable it to accommodate our classes, presented in Table 1.
The respective instructions and a configuration file are available
under our repository (Wysocki et al., 2021c). We divided the
building point clouds into smaller groups of 4 M points to ad-
dress software, hardware capabilities, and the operator’s ability
to distinguish between different façade’s features. Depending on
the complexity of an object, labeling took between seven to 23
hours per building, with an estimated total of 83 hours for five
buildings or approximately six hours per façade. It should be

Table 3. Annotated classes and points distribution in the
TUM-FAÇADE dataset

# Class # points

1 wall 55,554,783
2 window 9,799,964
3 door 979,958
4 balcony 0
5 molding 13,497,145
6 deco 1,104,554
7 column 1,393,392
8 arch 220,774
9 drainpipe 29,398

10 stairs 419,409
11 ground surface 7,534,665
12 terrain 7,918,790
13 roof 74,035
14 blinds 547,288
15 outer ceiling surface 3,797,046
16 interior 9,477,868
17 other 5,347,086

Total 117,696,155

mentioned that the operator had little prior experience in working
with the software. The second-tier, semi-automatic check was
then performed to identify and correct any missing or false an-
notations. Once the validity check was completed, the previously
used center-shift re-aligned the building to the global CRS, and
HEX colors were added to the classes as appropiate, as shown in
Figure 4. Another set of five non-annotated buildings for testing,
as well as shift and HEX values, are published in our repository
(Wysocki et al., 2021c).

5. CONCLUSIONS

In this work, we present a comprehensive review of currently
available point cloud benchmark datasets with the potential to be

used for testing façade segmentation methods. We also name po-
tential areas to be addressed in current and future benchmarks. To
encourage further research and to maximize datasets’ potential,
we present TUM-FAÇADE, our façade-grade benchmark dataset
(Wysocki et al., 2021c). It enriches the TUM-MLS-2016 bench-
mark dataset (Zhu et al., 2020), thereby we show that existing
point cloud benchmark datasets can be seamlessly extended by
adding façade-grade labels to widen the spectrum of benchmark
dataset applications.

We anticipate that the segmentation façade classes we propose,
will also facilitate the semantic 3D façade reconstruction pro-
cess; the classes are derived from the established CityGML mod-
eling standard (Gröger et al., 2012). As such, the classes can be
used to identify semantic point cloud clusters and for semantic
3D façade reconstruction. This facilitates assigning CityGML
city model functions, too. For example, the class stairs corres-
ponds to the CityGML class BuildingInstallation and function
stairs 1013 (Special Interest Group 3D, 2020). This enables mod-
eling of CityGML models at LoD3 (Gröger et al., 2012), or at
so-called hybrid LoD with a façade at LoD3 and a roof structure
at LoD2 (Biljecki et al., 2016). Moreover, this feature can also be
used for linking the segmented point clouds to existing building
models without explicit reconstruction, as demonstrated by (Beil
et al., 2021).

Remarkably, our studies revealed that most of the available point
cloud benchmarks not only include a building class but that this
class also represents a majority of annotated ground-truth points
in the datasets, as we show in Figure 2 and Table 2. Hence, we
conclude that most of the existing point cloud benchmarks, al-
though not specifically intended for façade segmentation testing,
can be seamlessly extended to serve that purpose.

Moreover, our semantic statistics corroborate that typical MLS
point clouds can capture fine façade details. However, they signi-
ficantly omit roof structures (e.g., only 6% of points cover roofs
in the TUM-FAÇADE benchmark), as we show in Table 3. Thus,
as anticipated, MLS point clouds are inappropriate for roof seg-
mentation testing purposes.

Nevertheless, we observe that some classes among the various
benchmark datasets are inconsistent. This hampers the develop-
ment of generic methods that can be tested on various datasets.
Therefore, to facilitate such developments, we present 17 classes
for façade-related annotations. We believe that they can be used
as a set of blueprint classes for further research.

It remains the case that the outstanding challenge of having
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overlying ground-truth information of surface- or volumetric-
based 3D models with terrestrial point clouds, has not yet been
solved (Xu and Stilla, 2021). It is worth noting that for sev-
eral cities and regions city models have been released as open
data4. Yet, they barely overlap with terrestrial point cloud bench-
marks, as in the Ingolstadt’s LoD3 building models5 case. One
of the exceptions is the BIMAGE dataset (Blaser et al., 2021)
acquired in Basel, Switzerland, which can be superimposed on
open, country-wide, semantic building models. However, these
models are limited in their façades representation, as they con-
sist of LoD2 and not LoD3 building models. We believe that this
challenge will be the subject of future research.
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