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Abstract

We tackle the problem of place recognition from point

cloud data and introduce a self-attention and orientation

encoding network (SOE-Net) that fully explores the rela-

tionship between points and incorporates long-range con-

text into point-wise local descriptors. Local information

of each point from eight orientations is captured in a

PointOE module, whereas long-range feature dependen-

cies among local descriptors are captured with a self-

attention unit. Moreover, we propose a novel loss func-

tion called Hard Positive Hard Negative quadruplet loss

(HPHN quadruplet), that achieves better performance than

the commonly used metric learning loss. Experiments on

various benchmark datasets demonstrate superior perfor-

mance of the proposed network over the current state-

of-the-art approaches. Our code is released publicly at

https://github.com/Yan-Xia/SOE-Net.

1. Introduction

Place recognition and scene localization in large-scale

and complex environments is a fundamental challenge with

applications ranging from autonomous driving [13, 14, 22]

and robot navigation [11, 29] to augmented reality [19].

Given a query image or a LiDAR scan, the aim is to re-

cover the closest match and its location by traversing a

pre-built database. In the past decade, a variety of image-

retrieval based solutions have shown promising perfor-

mance [18, 20, 21]. However, the performance of image-

based methods often degrades when facing drastic vari-

ations in illumination and appearance caused by weather

and seasonal changes [1]. As a possible remedy, 3D point

clouds acquired from LiDAR offer accurate and detailed

3D information that is inherently invariant to illumination

changes. As a consequence, place recognition from point

cloud data is becoming an increasingly attractive research

topic. Fig. 1 (Top) shows a typical pipeline for point cloud
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Figure 1. (Top) Place recognition from 3D point clouds: the street

scene of a route map (shown in blue line) is denoted by a set of

real-scan point clouds tagged with UTM coordinates. Given a

query scan, we retrieve the closest match in this map (shown in the

green box) to get the location of the query scan. (Bottom) Com-

paring the average recall at top 1 retrieval, SOE-Net significantly

outperforms all published methods on various datasets.

based place recognition: One first constructs a database

with LiDAR scans tagged with UTM coordinates acquired

from GPS/INS readings. Given a query LiDAR scan, we

then retrieve the closest match and its corresponding loca-

tion from the database.

The main challenge of point cloud based place recogni-

tion lies in how to find a robust and discriminative global
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descriptor for a local scene point cloud. While there ex-

ist abundant works on learning image descriptors, learning

from point cloud data is far less developed. To date, only

a few networks have been proposed for point cloud based

place recognition in large-scale scenarios. PointNetVLAD

[1] is a pioneering work, which first extracts the local fea-

tures from 3D point clouds using PointNet [31] and then

fuses them into global descriptors using the NetVLAD [2]

layer. PCAN [40] adapts the PointNet++ [32] architecture

to generate an attention map which re-weights each point

during the local descriptors aggregation stage. Both meth-

ods use PointNet [31] to extract local descriptors, which

ignores the geometric relationship among points. As of

late, the authors of DH3D [8] and DAGC [36] noticed this

shortcoming and designed advanced local feature descrip-

tion networks. While this results in better local descriptors,

both approaches simply aggregate these local descriptors

to a global descriptor using the PCAN or PointNetVLAD

fusion architecture, without considering the long-range de-

pendencies of different features.

Similar to these previous studies [8, 36], we also notice

the importance of better utilizing the neighborhood context

of each point when extracting its geometric representation.

To tackle this problem, we adopt a point orientation encod-

ing (PointOE) module to encode the neighborhood informa-

tion of various orientations. The orientation-encoding unit

is integrated with PointNet [31], taking its advantages in

feature representation learning provided by the multi-layer

perceptrons. Another observation is, when aggregated into

a global descriptor, different local descriptors should tac-

tically contribute unevenly. To achieve this, we develop

a self-attention unit to introduce long-range contextual de-

pendencies, encoding the spatial relationships of the local

descriptors for weighting. Combining the principals above,

we propose a novel network named SOE-Net (Self-attention

and Orientation Encoding Network). It is an end-to-end ar-

chitecture that explores the relationship among the raw 3D

points and the different importance of local descriptors for

large-scale point cloud based retrieval. Specifically, SOE-

Net combines local descriptor extraction and aggregation,

which enables one-stage training to generate a discrimina-

tive and compact global descriptor from a given 3D point

cloud. Additionally, we propose a novel “Hard Positive

Hard Negative quadruplet” (HPHN quadruplet) loss, which

addresses some of the limitations of the widely used lasy

quadruplet loss. To summarize, main contributions of this

work include:

• We propose a novel point orientation encoding

(PointOE) module to effectively extract local descrip-

tors from a given point cloud, considering the relation-

ship between each point and its neighboring points.

We further design a self-attention unit to differentiate

the importance of different local descriptors to a global

descriptor.

• We present a new loss function termed HPHN quadru-

plet loss that is more effective for large-scale point

cloud based retrieval. Comparing with previous loss

functions, it can achieve more versatile global descrip-

tors by relying on the maximum distance of positive

pairs and the minimum distance of negative pairs.

• We conduct experiments on four benchmark datasets,

including Oxford RobotCar [28] and three in-house

datasets to demonstrate the superiority of SOE-Net

over other state-of-the-art methods. Notably, the per-

formance on Oxford RobotCar reaches a recall of

89.37% at top 1 retrieval.

2. Related work

Usually, the implementation of place recognition based

on 3D point cloud retrieval is converted to a 3D feature

matching problem, in which the 3D descriptor has substan-

tial impact on the matching performance. Numerous meth-

ods for extracting 3D descriptors from point clouds have

been developed, which can be roughly grouped into two cat-

egories: local descriptors and global descriptors.

3D local descriptors. Encoding robust local geomet-

ric information has long been a core challenge in robotics

and 3D vision, with various attempts made. For exam-

ple, extracting local structural information as histograms

is representative. Spin Image (SI) [16] deploys the spin

image representation to match 3D points. Geometry His-

togram [10] proposes a novel regional shape context de-

scriptor to improve the 3D object recognition rate on noisy

data. Point Feature Histograms (PFH) [35] and Fast Point

Feature Histograms (FPFH) [34] seek to calculate the an-

gular features and surface normals to represent the rela-

tionship between a 3D point and its neighbors. However,

these handcrafted descriptors are unsuitable for large-scale

scenarios due to the computational cost, at the mean time

which are also sensitive to noisy and incomplete data ac-

quired by sensors. Recently, learning-based methods for

3D local descriptor extraction have gained significant de-

velopments boosted by large-scale 3D datasets. 3DMatch

[38] converts 3D points to voxels and then uses a 3D con-

volution network for segment matching. PPFNet [7] and

PPF-FoldNet [6] directly use the raw 3D points as input and

learn point pair features from points and normals of local

patches. Fully Convolutional Geometric Features (FCGF)

[5] proposes a compact geometric feature computed by a

3D fully-convolutional network. 3DFeatNet [37] designs a

weakly supervised network to learn both the 3D feature de-

tector and descriptor. Furthermore, ASLFeat [27] focuses

on mitigating limitations in the joint learning of 3D feature

detectors and descriptors. 3DSmoothNet [12] and Deep-

VCP [26] learn compact and rotation invariant 3D descrip-
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tors relying on 3D CNNs. RSKDD-Net [25] introduces ran-

dom sampling concept to efficiently learn keypoint detector

and descriptor. Some methods explore to compress the di-

mensions of handcrafted 3D local descriptors utilizing deep

learning, such as Compact Geometric Features (CGF) [17]

and LORAX [9].

3D global descriptors. Different from 3D local descrip-

tors, 3D global descriptors encapsulate comprehensive and

global information of the entire scene. Most handcrafted

global descriptors describe places with global statistics of

LIDAR scans. [33] proposes a fast method of describing

places through histograms of point elevation. DELIGHT

[30] designs a novel global descriptor by leveraging inten-

sity information of LiDAR data. [3] converts 3D points

to 2D images and then extracts ORB features from these

images for scene correspondence. With breakthroughs of

learning based image retrieval methods, deep learning on

3D global descriptors for retrieval tasks has drawn growing

attention. PointNetVlad [1] first tackles 3D place recog-

nition in an end-to-end way, which combines PointNet

[31] and NetVlad [2] to extract global descriptors from 3D

points. Following this, PCAN [40] proposes an attention

mechanism for local features aggregation, discriminating

local features that contribute positively. However, these two

methods employ PointNet architecture for extracting local

features, which does not particularly concern the local ge-

ometry. LPD-Net [23] extracts the local contextual relation-

ships but relies on handcrafted features . DH3D [8] designs

a deep hierarchical network to produce more discrimina-

tive descriptors. DAGC [36] introduces a graph convolution

module to encode local neighborhood information. How-

ever, it does not count the spatial relationship between local

descriptors. Compared with previous studies, our network

combines the strengthens of their designs, facilitating dis-

criminative and versatile global descriptors.

3. Problem Statement

Let Mref be a pre-built reference map of 3D point

clouds defined with respect to a fixed reference frame,

which is divided into a set of submaps such that

Mref = {mi : i = 1, ...,M}. The submap coverages are

kept approximately the same. Each submap is tagged with a

UTM coordinate at its centroid using GPS/INS. Let Q be a

query point cloud with the same coverage with respect to a

submap in Mref . We define the place recognition problem

as retrieving a submap m∗ from Mref that is structurally

closest to Q. Note that under this formulation, Q is not

a subset of Mref , since they are independently scanned at

different times.

To tackle this problem, we design a neural network to

learn a function f(·) that embeds a local point cloud to a

3D global descriptor of pre-defined size. The goal is to find

a submap m∗ ∈ Mref such that the distance between global

descriptors f(m∗) and f(Q) is minimized:

m∗ = argmin
mi∈Mref

d(f(Q), f(mi)), (1)

where d(·) is a distance metric (e.g., Euclidean distance).

In practical implementation, a global descriptor dictionary

is built offline for all 3D submaps. When a query scan ap-

pears, the nearest submap is obtained efficiently by com-

paring the global descriptor extracted online from the query

scan with stored global descriptors.

4. SOE-Net

Fig. 2 shows the overall network architecture of our

SOE-Net, where the local descriptor extraction part pro-

duces local descriptors from the 3D query scan, and the de-

scriptor aggregation part aims to generate a distinct global

descriptor.

Given the input as a query point cloud with coordinates

denoted as Q = {p1, · · · , pN} ∈ R
N×3, we first use

the designed PointOE module to extract point-wise local

descriptors. Unlike previous studies, it extracts relevant

local information from eight directions to enhance point-

wise feature representation, with details described in Sec-

tion 4.1.1. Then we propose a self-attention unit in the de-

scriptor aggregation part to encode the spatial relationship

among point-wise local descriptors, which is explained in

Section 4.2.1. Afterwards, the NetVLAD layer is adopted

to fuse enhanced local descriptors in Section 4.2.2. The

training strategy with the proposed HPHN quadruplet loss

is presented in Section 4.3.

4.1. Local descriptor extraction

4.1.1 PointOE Module

The successes of many non-learning based image retrieval

methods are owing to the design of great local image de-

scriptors (e.g., SIFT [24]). Orientation-encoding (OE) is

one of SIFT’s most shining highlights, which is also con-

sidered to benefit 3D feature description. Inspired by

PointSIFT [15], we introduce the OE unit to the proposed

SOE-Net. Specifically, we integrate it into PointNet to im-

prove the point-wise feature representation ability. Fig. 3

shows the detailed architecture of the PointOE module. To

the best of our knowledge, no prior work has explored it

for large-scale place recognition and its effectiveness for re-

trieval has not been verified.

The inputs to our PointOE module are the 3D coordi-

nates of N points. Following [31], multi-layer perceptrons

(MLP) are adapted to encode the input 3D coordinates into

features of [64, 128, 256, 1024] dimensions. We insert the

OE unit in front of each MLP to improve the representa-

tion ability. Local descriptors FL are generated from this

module.
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Figure 2. Overview of the SOE-Net architecture. The network takes a query scan with N points as input and employs the PointOE module

to extract point-wise local descriptors FL. During descriptor aggregation, a self-attention unit is applied on the local descriptors and

followed by the NetVLAD layer. Finally, a fully connected (FC) layer is adopted to compress the output descriptor vector, follow by the

L2 normalization to produce a global descriptor.
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Figure 4. Illustration of OE unit.

Orientation-encoding Unit. Consider a N × C matrix

as an input which describes a point cloud of size N with a

C-dimensional feature for each point, OE unit will output a

feature map with the same dimension N×C. Every point is

assigned to a new C-dimensional feature, which integrates

the local information from eight orientations. As shown in

Fig. 4, the OE unit first adopts the Stacked 8-neighborhood

Search (S8N) to find the nearest neighbors for point P in

each of the eight octants [15]. Furthermore, we extract fea-

tures using three-stage convolutions from those neighbors,

which lie in a 2 × 2 × 2 cube along the x−, y−, z− axis.

Formally, these three-stage convolutions are defined as:

OEx = ReLU(Conv(wx, V, bx)),

OExy = ReLU(Conv(wy, OEx, by)),

OExyz = ReLU(Conv(wz, OExy, bz)),

(2)

where V ∈ R
2×2×2×C are the feature vectors of neigh-

boring points. wx ∈ R
2×1×1×C , wy ∈ R

1×2×1×C and

wz ∈ R
1×1×2×C are weights of the three-stage convolu-

tions, bx, by, bz are the biases of convolution operators. By

this way, the OE unit captures the local geometric structure

from eight spatial orientations.

4.2. Feature Aggregation

4.2.1 Self-attention Unit

To introduce long-range context dependencies after extract-

ing local descriptors, we design a self-attention unit [39]

before fusing them into the NetVLAD layer. The self-

attention unit can encode meaningful spatial relationships

between local descriptors. Fig. 5 presents its architecture.

Given local descriptors FL ∈ R
N×C , where N is the num-

ber of points and C is the number of channels, we feed FL

into two MLPs respectively and generate the new feature

maps X ∈ R
N×C , Y ∈ R

N×C . Then the attention map W

is calculated, defined as follows:

Wj,i =
exp(Yj ·X

T
i )

∑N
i,j=1

exp(Yj ·XT
i )

, (3)

where Wj,i indicates that the ith local descriptor impacts

on jth local descriptor, with the shape of N × N . Here,

it deems as the component that learns the long-range de-

pendency relationship among point-wise local descriptors.

More important local descriptors will contribute more to the

representation of the target global descriptor. On the other

!" MLP

MLP

MLP #

$

%

×

Transpose

×

Softmax

!"
&

+

'

Figure 5. Illustration of the self-attention unit.

hand, FL is fed into another MLP to output a new feature

map Z ∈ R
N×C . Afterwards, we multiply it with the trans-

pose of W to generate the result AP ∈ R
N×C . Finally, we

add a scale parameter α on it and add back FL, which can

be defined as follows:

F
′

L = µAp + FL = µWTZ + FL, (4)
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where µ is initialized as zero and gradually assigned more

weights with the progress of learning. The final output has

a global context view compared with the original local de-

scriptors. This enhances feature integration by combining

geometrical and contextual information.

4.2.2 NetVLAD Layer

In this module, we aim to aggregate the local descrip-

tors to a discriminative and compact global one. Fol-

lowing the configuration in [1], we adopt a NetVLAD

layer to fuse features. The NetVLAD layer learns K vi-

sual words, denoted as
{

v1, · · · , vK |vk ∈ R
C
}

, and gener-

ates a (C × K)-dimensional VLAD descriptor FV LAD =
{

F 1
vlad, · · · , F

K
vlad

}

. However, the VLAD descriptor is

time-consuming for nearest neighbor search, thus we apply

a fully connected layer to generate a more compact global

descriptor with an L2 normalization.

4.3. Loss function

Before going to the details of our proposed HPHN-

quadruplet loss, we give a short review on the quadruplet

loss [4] and its improvement. To compute the quadruplet

loss, each batch of the training data includes T quadru-

plets. Each quadruplet is denoted as Γq = (δa, δp, δn, δ
∗
n),

where δa is a anchor point cloud, δp a positive point cloud

(structurally similar to the query), δn a negative point cloud

(structurally dissimilar to the query), δ∗n a randomly sam-

pled point cloud that is different with δa, δp, δn. The

quadruplet loss is formulated as:

Lq=
1

T

T
∑

[

||f(δa)−f(δp)||
2
2−||f(δa)−f(δn)||

2
2+α

]

+

+
1

T

T
∑

[

||f(δa)−f(δp)||
2
2−||f(δ∗n)−f(δn)||

2
2+β

]

+
,

(5)

where [· · · ]
+

denotes the hinge loss, α and β are the con-

stant margins. The first term is a triplet loss which fo-

cuses on maximizing the feature distance between the an-

chor point cloud and the negative point cloud. The second

term focuses on maximizing the feature distance between

the negative point cloud and the additional point cloud δ∗n.

To make the positive and negative samples in the quadru-

plet more effective, the quadruplet loss is extended to the

lazy quadruplet loss [1] by introducing hard sample mining.

The quadruplets now become Γlq = (δa, {δp} , {δn} , δ
∗
n),

where {δp} is a collection of φ positive point clouds and

{δn} is a collection of ϕ negative point clouds. The loss is

modified accordingly to

Llq=max
i = 1...φ

j = 1...ϕ

(
[

||f(δa)−f(δip)||
2
2−||f(δa)−f(δjn)||

2
2+α

]

+
)

+max
i = 1...φ

j = 1...ϕ

(
[

||f(δa)−f(δip)||
2
2−||f(δ∗n)−f(δjn)||

2
2+β

]

+
).

(6)

In practice, a common strategy is to set β to be smaller

than α (e.g., α = 0.5, β = 0.2) to make the second term in

Eq. 6 a relatively weaker constraint. However, we find this

practice is less justified, especially in the scenario of metric

learning for large-scale place recognition. In this work, we

propose the Hard Positive Hard Negative quadruplet loss

(HPHN quadruplet), which unifies the margin selection for

δa and δ∗n, and meanwhile rely on the hardest positive and

the hardest negative samples in the batch to compute the

learning signal. In our case, the hardest positive point cloud

δhp is the least structurally similar to the anchor point cloud,

which is defined as:

δhp = argmax
δip∈{δp}

||f(δa)− f(δip)||
2
2, (7)

The hardest negative point cloud is the most structurally dis-

similar to the anchor point cloud. Here, we first find the hard

negative point cloud δhn in {δn}, which is defined as:

δhn = argmin
δ
j
n∈{δn}

||f(δa)− f(δjn)||
2
2. (8)

Additionaly, we consider the feature distance from δ∗n to δn:

δ
′

hn = argmin
δ
j
n∈{δn}

||f(δ∗n)− f(δjn)||
2
2. (9)

Finally, we select one of them as the hardest negative train-

ing data, which has the minimum distance dhn:

dhn = min(||f(δa)− f(δhn)||
2
2, ||f(δ

∗
n)− f(δ

′

hn)||
2
2). (10)

In conclusion, the HPHN quadruplet loss can be formu-

lated as:

LHPHN =
[

||f(δa)− f(δhp)||
2
2 − dhn + γ

]

+
, (11)

where γ is the unified margin. The first term in Eq. 11 is

the upper bound of the feature distance of all the positive

point cloud pairs, and the second term is the lower bound of

the feature distance of all the negative point cloud pairs in a

batch.

Although having a form similar to the triplet loss, our

loss is still a quadruplet loss that is computed from the sam-

pled quadruplet. Compared with the lazy quadruplet loss,

the proposed HPHN quadruplet loss picks the harder term

between Eq. 8 and Eq. 9, instead of using both in the loss

computation. Moreover, the same margin is used when ei-

ther of the both is selected. Despite this simple modifica-

tion, our experimental results in Section 6.1 demonstrate

that our HPHN quadruplet loss significantly outperforms

the lazy quadruplet loss.
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4.4. Implements Details

The proposed network is implemented in the Tensorflow

framework and trained on a single Nvidia Titan Xp GPU

with 12G memory. The size of the input points is 4096. The

margins γ for the HPHN quadruplet loss are set to 0.5. Sim-

ilar to all previous methods, we set the number of clusters K

in the NetVLAD layer to 64. In the training stage, we set the

batch size to 1 in each training iteration. Adam optimizer

is used in the models for epoch 20. Same as PCAN, we

choose 2 positive point clouds and 9 negative point clouds

(including 1 other negative point cloud) in caculating loss

functions. The initial learning rate is set to 0.0005. It is

decayed by 0.7 after every 200K steps.

5. Experiments

5.1. Benchmark Datasets

We evaluate the proposed method on benchmark datasets

proposed in [1]. It includes four open-source datasets for

different scenes: Oxford RobotCar [28] dataset and three

in-house datasets of a university sector (U.S.), a residential

area (R.A.), and a business district (B.D.). These datasets

are all collected by a LiDAR sensor mounted on a car

that travels around the regions repeatedly at different times.

Based on the LiDAR scans, a database of submaps is built

and each submap is tagged with a UTM coordinate. To

better learn geometric features, the non-informative ground

planes of all reference submaps are removed. The size of

each submap is downsampled to 4096 points. In training,

point clouds are regarded as correct matches if they are at

maximum 10 m apart and wrong matches if they are at least

50 m apart. In testing, we regard the retrieved point cloud

as a correct match if the distance is within 25 m between the

retrieved point cloud and the query scan. Following the ex-

perimental settings in [1, 40, 36], we first train our method

using only the Oxford RobotCar training dataset. We will

henceforth refer to this as our Baseline Network. To im-

prove the generalizability of the network, we further add

the U.S. and R.A. training datasets into training data as our

Refinement Network.

5.2. Results

5.2.1 Baseline Network

We compare our baseline network with PointNetVLAD

(PN VLAD) [1] as a baseline and the state-of-the-art meth-

ods PCAN [40], LPD-Net [23], DH3D [8], and DAGC [36].

For a fair comparison, we use the same evaluation metrics,

including the Average Recall at Top N and Average Recall

at Top 1%. The final global descriptors of all networks are

256-dim. Table 1 shows the top 1% recall of each network

on the four datasets. We refer to the recall values reported

in [8, 36, 23, 40, 1]. The recall values of DH3D for U.S.,

R.A. and B.D. are not reported in [8].

N – Number of top retrievals
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Figure 6. Average recall of SOE-Net tested on Oxford RobotCar.

(a) shows the average recall when SOE-Net is only trained on Ox-

ford RobotCar. (b) shows the average recall when SOE-Net is

trained on Oxford RobotCar, U.S. and R.A. DH3D is not trained

on this dataset in [8].

SOE DAGC DH3D LPD PCAN PN VLAD

Oxford 96.40 87.49 84.26 94.92 83.81 80.31

U.S. 93.17 83.49 - 96.00 79.05 72.63

R.A. 91.47 75.68 - 90.46 71.18 69.75

B.D. 88.45 71.21 - 89.14 66.82 65.30

Table 1. The average recall (%) at top 1% for each network.

The results show that the proposed baseline network out-

performs others significantly on Oxford RobotCar dataset.

The best performance on Oxford RobotCar reaches the re-

call of 96.40 % at top 1%, exceeding the recall of current

state-of-the-art method LPD-Net by 1.52 %. Furthermore,

SOE-Net achieves the recall of 93.17%, 91.47%, 88.45% on

the unseen datasets respectively, which is similar or slightly

weaker than LPD-Net. However, both of them improve the

performance by a large margin compared with other meth-

ods. Notably, LPD-Net relies on ten handcrafted features,

which has complex network architecture and high compu-

tational cost. Fig. 6 (a) shows the recall curves of Point-

NetVLAD, PCAN, DAGC, and SOE-Net for the top 25

retrieval results. Notably, the recall at top 1 of SOE-Net

reaches a recall of 89.37%, indicating the proposed net-

work effectively captures the task-relevant local informa-

tion and generate more discriminative global descriptors.

More qualitative results are given in Section 5.4.

5.3. Refinement Network

To improve the generalizability of the network on the un-

seen scenarios, [40, 1, 36] further add U.S. and R.A. to the

training data. We follow the same training sets to train our

refinement network. As illustrated in Table 2, SOE-Net still

significantly outperforms the state-of-the-art method DAGC

on all datasets. By comparing Table 1 and Table 2, it be-

comes clear that adding more data from different scenar-

ios improves the performance of SOE-Net on the unseen

dataset B.D.. In other words, given more publicly accessi-

ble datasets of real scans, SOE-Net has huge potential for
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LiDAR based localization. In Fig. 6 (b) we plot the re-

call curves of the refinement network of PointNetVLAD,

PCAN, DAGC, and SOE-Net for the top 25 retrieval re-

sults. It demonstrates that the global descriptors generated

by SOE-Net are more discriminative and generalizable than

all previously tested state-of-the-art methods.

Ave recall @1% Ave recall @1

SOE DAGC PCAN SOE DAGC PCAN

Oxford 96.43 87.78 86.40 89.28 71.39 70.72

U.S. 97.67 94.29 94.07 91.75 86.34 83.69

R.A. 95.90 93.36 92.27 90.19 82.78 82.26

B.D. 92.59 88.51 87.00 88.96 81.29 80.11

Table 2. Average recall (%) at top 1% (@1%) and top 1 (@1) for

each of the models trained on Oxford RobotCar, U.S. and R.A..

5.4. Results visualization

In addition to quantitative results, we select and show

qualitative results of some correctly retrieved matches in

Fig. 7. A full traversal is chosen randomly as the refer-

ence map on four benchmark datasets, respectively. Then

we choose four query point clouds from other randomly se-

lected traversals on their respective datasets, with each rep-

resenting one sample submap from individual testing areas.

For each instance, the query point cloud and the top 3 re-

trieved matches are shown on the left. It becomes clear that

the best match has a very similar scene as the query point

cloud. Besides, we display the location of each point cloud

in the reference map on the right. For each query, the loca-

tion of the top 1 result (indicated by the blue circle) is cor-

rectly overlapped with the query location (represented by

the red cross). It shows that the proposed network indeed

has the ability to recognize places.

6. Discussion

6.1. Ablation study

Ablation studies evaluate the effectiveness of different

proposed components in our network, including both the

PointOE module and self-attention unit. We also analyze

the performance of the proposed HPHN quadruplet loss. All

experiments are conducted on Oxford RobotCar.

PointOE module and self-attention unit. We test the

effectiveness of the proposed PointOE module and the self-

attention unit, using PointNetVLAD and PCAN as base-

lines (PN VLAD, PCAN). We first just integrate either

PointOE module or self-attention unit into PointNetVLAD,

referred as PN VLAD-OE and PN VLAD-S. We then com-

bine both two components into PointNetVLAD, denoted as

PN VLAD-SOE. Besides, we replace PointNet by Point-

Net++ [32] in the local descriptor extraction stage, referred

to as PN++ VLAD. All networks are trained with lazy

quadruplet loss, with results shown in Table 3.

query

top 2

Oxford

0 1

top 1

query

top 2

top 3

top 3

top 1

query

top 2

U.S.

top 1

query

top 2

top 3

top 3

top 1

query

top 2

R.A.

top 1

query

top 2

top 3

top 3

top 1

query

top 2

B.D.

top 1

query

top 2

top 3

top 3

top 1

Figure 7. Visualizations of example retrieval results of SOE-Net

on four benchmark datasets. For each retrieval, the query point

cloud and the top 3 retrieved results are displayed. Locations of

these point cloud is also indicated in the associated reference map.

Colors in these point clouds represents heights above the ground.

Comparing with PointNetVLAD, PN VLAD-S sees an

improvement of 5.7% and 10.27% on the average recall

at top 1% and top 1, respectively. The performance of

PN VLAD-S also exceeds the recall of PCAN by 2.9% and

3.98%, respectively, indicating the proposed self-attention

unit is more effective than the attention strategy used in

PCAN. This is due to the context information has a sig-

nificant effect on aggregating local descriptors into a global

one, and our self-attention unit can learn long-range spatial

relationships between local descriptors. With the proposed

PointOE module, our model brings significant improve-

ments on the average recall by 11.19% and 19.45%, re-

spectively, when compared with PointNetVLAD. Besides,
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PointNet++ enhances PointNet features with a hierarchical

encoding pipeline, but still does not explicitly encode ori-

entation. The comparison with PN++ VLAD demonstrates

the superiority of OE for 3D descriptor learning for place

recognition. Combining both modules can improve the per-

formance by 12.40% and 21.44% on average recall, respec-

tively. The ablation studies demonstrate the significant role

of each module in SOE-Net.

Ave recall @1% Ave recall @1

PN VLAD 81.01 62.76

PN++ VLAD 89.10 76.23

PCAN 83.81 69.05

PN VALD-S 86.71 73.03

PN VALD-OE 92.20 82.21

PN VALD-SOE 93.41 84.20

Table 3. Ablation studies of self-attetnion unit and PointOE mod-

ule on Oxford RobotCar. The results show the average recall (%)

at top 1% (@1%) and at top 1 (@1) for each model.

HPHN quadruplet loss. To evaluate the proposed

HPHN quadruplet loss, we compare the performance of the

proposed SOE-Net trained with different losses. As shown

in Table 4, the network performance is better when trained

on the proposed HPHN quadruplet loss. The performance

on Oxford RobotCar reaches 96.40% recall at top 1% and

89.47% recall at top 1, exceeding the same model trained

with the lazy quadruplet loss by 2.99% and 5.17%, respec-

tively, demonstrating the superiority of the proposed HPHN

quadruplet loss.

Ave recall @1% Ave recall @1

Lazy quadruplet 93.41 84.20

HPHN quadruplet 96.40 89.37

Table 4. Results of the average recall (%) at top 1% and at top 1 of

SOE-Net trained with different losses on Oxford RobotCar.

SOE-Net DAGC

D=128 D=256 D=512 D=128 D=256 D=512

Oxford 95.30 96.40 96.70 84.43 87.49 85.72

U.S. 91.24 93.17 94.47 81.17 83.49 83.02

R.A. 90.53 91.47 91.00 72.39 75.68 74.46

B.D. 85.88 88.45 89.29 69.57 71.21 68.74

Table 5. Results of the average recall (%) at top 1% of different

global descriptor dimensions on Oxford RobotCar. D is the output

dimension of global descriptors.

6.2. Output dimension analysis

In this section, we analyze the performance of the global

descriptor with different output dimensions. The results

of average recall at top 1% for the global descriptor pro-

duced by SOE-Net and DAGC are shown in Table 5. We

can draw two conclusions from this table: (1) our method

outperform DAGC, even if the generated global descrip-

tor has a smaller dimension; (2) when the output dimen-

sion decreases from 256 to 128, the performance of SOE-

Net only declines by around 1%-3% on each benchmark.

When the dimension expands to 512, the performance only

changes by about 0.3%-1%. This implies the robustness of

our method against different output dimensions.

6.3. Values of margin analysis

In this section, we explore the network performance with

different margins in the HPHN quadruplet loss using Ox-

ford RobotCar. Table 6 shows results of average recall at

top 1% and top 1 with different margins for the SOE-Net

architecture. Seen from the table, SOE-Net achieves the

best performance with a margin value of 0.5. When the val-

ues expand to 0.7, the performance steadily degrades. This

implies the distance between positive and negative pairs is

sufficient with lower values of margin. On the other hand,

when the value is set to 0.4, the performance decreases. So,

we set the fixed value of margin as 0.5 in our network.

Margin Ave recall @1% Ave recall @1

0.4 95.87 88.84

0.5 96.40 89.37

0.6 96.23 89.30

0.7 95.63 88.46

Table 6. Margin analysis in the HPHN quadruplet loss. We choose

SOE-Net as a baseline and evaluate it on Oxford RobotCar.

7. Conclusion

In this paper, we propose a novel end-to-end network

SOE-Net for point cloud based retrieval. We design a

PointOE module and a self-attention unit, using informa-

tion from neighboring points and long-range context de-

pendency to enhance the feature representation ability. In

addition, we propose a novel HPHN quadruplet loss that

achieves more discriminative and generalizable global de-

scriptors. Experiments show that our SOE-Net improves the

retrieval performance over state-of-the-art methods signifi-

cantly. According to discussions on experimental results,

especially ablation studies, we can discover that PointOE

module contributes most to the performance of the SOE-

Net. There is also one notable limitation of the SOE-Net,

which regards that the margin in the HPHN quadruplet loss

needs to be set beforehand. In the future, we will explore

adaptive margins that can better distinguish positive and

negative pairs.
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