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ABSTRACT:

Construction progress documentation is currently of great interest for the AEC (Architecture, Engineering and Construction) branch
and BIM (Building Information Modeling). Subject of this work is the geometric accuracy assessment of image-based change
detection in indoor environments based on a BIM. Line features usually serve well as geodetic references in indoor scenes in order
to solve for camera orientation. However, building edges are never perfectly built as planned and often geometrically generalized for
BIM compliant representation. As a result, in this approach, line correspondences for image-to-model co-registration are considered
as statistically uncertain entities as this is essential for dealing with metric confidences in the field of civil engineering and BIM.
We present an estimation model for camera pose refinement which is based on the incidence condition between model edges and
corresponding image lines. Geometric accuracies are assigned to the model edges according to the Level of Accuracy (LOA)
specification for BIM. The approach is demonstrated in a series of tests using a synthetic image of an indoor BIM. The effects
of varying edge detection accuracies on the estimation are investigated as well as the effects of using model edges with different
geometric quality by adding Gaussian noise to the synthetic observations, each within 100 simulation runs. The results show that
the camera orientation can be improved with the presented estimation model as long as the BIM compliant references meet the
conditions of LOA 30 or higher (σ < 7.5mm).

1. INTRODUCTION

In the AEC (Architecture, Engineering and Construction) in-
dustry, there is a great demand for automated and accurate scene
capturing and surveying, mainly for the purpose of construction
progress monitoring in the context of BIM (Building Informa-
tion Modeling). With BIM, the construction project is based on
a so-called digital twin, which represents the planned state of
the object in its various phases of construction. In order for the
construction management to be able to react to possible devi-
ations from the planning at an early stage, a regular comparison
of the as-planned and as-built project status must be carried out.

Figure 1. Image oriented in the BIM system showing both
modeled BIM objects and those not included in the model.
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With the increasing development of BIM, the demand on its
geometric quality increases. This is especially true for the mod-
eling of detailed structures in building interiors, as they con-
tinue to be maintained beyond the construction phase as a cent-
ral database for many applications such as location based ser-
vices and the internet of things. Image based measurement
techniques can meet general requirements of accuracy and ef-
ficiency and therefore, are becoming more and more popular
in this field. A camera’s orientation is required in order to de-
termine the spatial correspondence between an image and a 3D
model (Fig. 1). However, the estimation of a camera’s pose
within a BIM’s reference system is indoors much more diffi-
cult than outdoors. The lack of direct geo-referencing (GNSS
denied environment) as well as occlusions and ambiguities due
to general indoor structures are challenging circumstances for
image based measurement techniques within a building’s in-
terior and related accuracy requirements.

measured
edge

modeled
edge

Figure 2. Discrepancy between measured edge (as-built) and
modeled edge ( as-planned)

Line features usually serve well as geodetic references in in-
door scenes in order to estimate the camera orientation. They
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are sufficiently available in man-made environments (and cor-
responding BIMs) and can be detected easily by common im-
age processing algorithms. However, building edges are never
perfectly built as planned and often geometrically generalized
for BIM-compliant representation (Fig. 2). As a result, line cor-
respondences for image-to-model co-registration must be con-
sidered as statistically uncertain entities as this is essential for
dealing with metric confidences in the field of civil engineering
and BIM. In this contribution, we present an estimation model
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Figure 3. Level of Accuracy (LOA) (USIBD, 2020)

for camera pose refinement based on line references, given a
coarse orientation (e.g. from IMU (Inertial Measurement Unit)
sensors and visual odometry). The stochastic model includes
the individual uncertainty information of BIM related objects
according to the Level of Accuracy (LOA) specification for
BIM (USIBD, 2020) (Fig. 3). The approach will support future
developments of image based change detection in indoor envir-
onments with available BIM. According to compliance check-
ing in BIM, we focus on structural and topological changes in
the geometry of BIM compliant 3D models.

1.1 Related Work

Our motivation comes from the need for image-based building
documentation and change detection that is, on the one hand,
specifically focused on the interior and, on the other hand, takes
into account BIM related accuracies and quality requirements.
Nevertheless, our approach is based on some related research
areas.

1.1.1 Image-based Construction Progress Documentation
for BIM BIM compliant construction progress documenta-
tion based on images and computer vision technologies has be-
come a researched topic in recent years. Most existing methods
consider outdoor observations. In Tuttas et al. (2017) the as-
built state of a construction site is detected by photogrammetric
outdoor surveys. Knowledge on the construction processes is
inferred from BIM objects and SfM (Structure from Motion)
methods enable 3D building elements to be located. Hoegner et
al. (2016) co-register image sequences with a BIM for the docu-
mentation of geometric and radiometric changes of a construc-
tion site. They use model information as fictitious observations
within the adjustment. An a priori sensor pose is given from
GNSS and IMU (outdoors). Other authors contribute valuable
approaches for image based indoor applications, however, they
do not consider BIM compliant accuracies or high requirements
on geometric quality. Han and Golparvar-Fard (2015) solve
camera orientation by manually selected tie points. Relevant

model elements are back projected into the images in order to
segment image regions for material classification and Kropp et
al. (2018) increase automation for inspections on interior con-
struction states by image sequences which are registered with a
BIM to derive rich information about single construction tasks.
In contrast, Brunn and Meyer (2016) showed that sub milli-
meter accuracies can be achieved with a multi camera system
in close range indoor applications using precise geodetic con-
trol points for proper camera calibration and pose estimation.

1.1.2 Model-to-Image Matching based on Lines Edge de-
tection is a basic task in image processing, which is why line
features are generally well suited to be matched to building
models. However, many approaches also mostly focus on out-
door applications. Li-Chee-Ming and Armenakis (2014) use
vertical lines from UAV-borne video streams in urban scenes,
that are matched to extracted line features from synthetic im-
ages of 3D building models. Iwaszczuk et al. (2017) present a
line based model-to-image matching for texturing 3D building
models with airborne oblique view thermal infrared images and
Verykokou and Ioannidis (2016) use vanishing point detection
techniques for the rough estimation of the exterior orientation
parameters of oblique aerial images.

1.1.3 Uncertainty of Matching Features Usually, image
features as well as geometric primitives from 3D models should
supposed to be statistically uncertain because of unavoidable in-
accuracies in measurement and modeling (generalization). There-
fore, these uncertainties have to be considered in the represent-
ation and estimation of such entities. For fitting parameterized
3D models to images Lowe (1991) presents general methods
that take account of inherent inaccuracies in the image measure-
ments. Heuel and Förstner (2001) combine protective geometry
and statistical methods by representing points, lines and planes
and their uncertainties in homogeneous vectors. They show
how errors in the construction of new elements are propagated.
Building up on that, Meidow et al. (2009) developed a gen-
eric estimation model for homogeneous entities and multiple
arbitrary constrains and Iwaszczuk and Stilla (2017) present a
similar approach for camera pose optimization for the purpose
of automated texture mapping, in which a line-based model-to-
image matching is developed. Although these techniques have
not been presented directly for the case of construction progress
documentation, they can be used for this purpose. These fairly
generic techniques can be adapted to the indoor case and exten-
ded with BIM specific accuracies resp. uncertainties.

1.2 Own Contribution and Paper Structure

In contrast to previous work, the main idea of this project is to
make use of any initial BIM compliant information and there-
fore, the edges of known BIM objects which are identified in
the images will be used for camera pose refinement. We focus
on interior scenes and pay particular attention to the individual
geometric quality of reference objects as metric tolerances have
to be met in construction. In our approach, the individual accur-
acy information of BIM objects and corresponding model rep-
resentations is taken into account. We investigate the accuracy
of sensor orientation prior to 3D reconstruction and change de-
tection. It is basic work for image based applications in building
interiors for BIM as it enables geometrically and semantically
correct image interpretation for subsequent processing steps.

In the following sections, we present an estimation model for
camera pose refinement based on line references, given a coarse
orientation (e.g. from IMU sensors and visual odometry). The
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approach is based on the incidence condition between model
edges and corresponding image lines in the projective space.
This relation serves as a constraint in a Gauss-Helmert model.
Our functional model is designed reflecting the mutual relation
between the observations, using the homogeneous Plücker mat-
rix for 3D line representation and the unknown parameters of
the projection matrix. Furthermore, the stochastic model in-
cludes the individual uncertainty information of BIM related
objects and facilities according to the LOA specification for
BIM. The optimization approach is demonstrated in a series of
tests using a synthetic image of an indoor BIM. The effects of
varying edge detection accuracies on the estimation are invest-
igated as well as the effects of using model edges with different
geometric qualities by adding Gaussian noise to the synthetic
observations, each within 100 simulation runs.

1.3 Method Overview

For the change detection application, a stereo camera system
with an IMU will be used to easily obtain the relative orienta-
tion, the scale and an image based 3D point cloud by SfM and
MVS (Multi View Stereo). Indoor environments can be char-
acterized by their large number of straight edges e.g. on win-
dows, doors, walls and furniture. 3D lines as geometric primit-
ives can be used to describe the building interior in an abstract
way. This brings advantages over unstructured 3D point clouds
in terms of matching and co-registration with a corresponding
3D model. Therefore, the approach of Hofer et al. (2015) will
be integrated in the process in order to generate an abstract 3D
line model. With the results of a semantic image segmentation,
those 3D line segments will be further extended with semantic
information, similar to what is described by Iwaszczuk et al.
(2017). The coarse absolute orientation of an image sequence
in the BIM’s reference system will be determined from match-
ing corresponding semantic 3D line segments (Fig. 4).
3D scene reconstruction will also be supported by the avail-
able BIM information in an object based approach. Finally the
change detection can be realized by the comparison with the
last version of the BIM before it is updated with the new in-
formation. Altogether, this will result in a positive feedback
loop because the higher the quality of the initial BIM, the faster
and more precisely it can be updated again. The overall concept
is depicted in figure 5.

Figure 4. Assignment of semantic 3D line segments to
corresponding model edges.

1.4 Projection of homogeneous Points and Lines

A two dimensional straight line can be represented in the homo-
geneous form ax+ by + c = 0 with the homogeneous vector:

l = [a, b, c]T = [cos(θ), sin(θ),−d]T (1)

where θ and d are the parameters of the Hessian normal form.
A 3D point with Euclidean coordinates X ,Y and Z has the ho-
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BIM

INPUT
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Rel. orientation, scale
and 3D point cloud

Semantic
segmentation

Semantic 3D line segments [Fig. 4]

3D line segments

Coarse camera orientation by matching
correspointding 3D line segments [Fig. 4]

Camera pose optimization:

- Line detection and correspondance analysis
[Simulation Sec. 3]

- Prameter estimation [Sec. 2.2]

Reconstruction and change detection

Update BIM

Figure 5. Method overview

mogeneous coordinates:

X = [TX, TY, TZ, T ]T = [U, V,W, T ]T (2)

A 3D line can be represented by the homogeneous Plücker mat-
rix in the projective space:

Γ(L) = X YT − Y XT (3)

where X and Y represent the endpoints of the line.

Mapping an object point X to an image point x with a pin hole
camera is achieved by multiplication with the projection matrix
P:

x = P X (4)

with calibration matrix K, rotation matrix R, identity matrix I
and the 3D coordinates of the projection center X0, P results
from:

P = K R [I| −X0] with K =

cx s x0
0 cy y0
0 0 1

 (5)

2. METHODOLOGY

2.1 Camera Pose Optimization in the BIM’s Reference Sys-
tem

The exterior orientation parameters of a camera (X0, Y0, Z0,
ω, φ, κ) are implicitly available in the projection matrix P. The
approximate projection matrix gets optimized in the BIM’s ref-
erence system thru the observation of straight lines in the im-
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age (li) and corresponding 3D model edges (Li). The incid-
ence condition of corresponding line features is used as input
for the formulation of a functional model within a generic es-
timation model for homogeneous entities according to Meidow
et al. (2009).

2.1.1 Functional Model The estimation is based on a Gauss
Helmert model with constraints. The corrected observations
(ŷ = y + v̂) and the estimated unknown parameters (β̂) have
to fulfill certain conditions. The G-conditions g(ŷ, β̂) = 0 de-
scribe the relation between the observations and the paramet-
ers. The H-restrictions h(β̂) = 0 concern only the paramet-
ers and the C-constraints c(ŷ) = 0 are imposed on the obser-
vations alone. The incidence condition of a 3D model edge,
which is projected into the image with an observed correspond-
ing straight line in the image serves as G-condition. It repres-
ents two independent constraints (Förstner and Wrobel, 2016):

Γ(L) PT l = 0 (6)

where 0 is a 4 x 1 zero vector.

For the handling of singular covariance matrices, the homo-
geneous observation entities as well as the parameters must be
spherically normalized (normalized to 1). Therefore, the H-
restrictions for the parameters is:

pTp− 1 = 0 (7)

where p = vec(P), a column vector with the reshaped elements
of P.

Respectively the C-constraints for the observations result in:

lTj lj − 1 = 0 XTi Xi − 1 = 0 YTi Yi − 1 = 0 (8)

The optimal solution for β is given by the minimum of the
weighted squared residuals subject to the given constraints. This
is achieved by minimizing the Lagrange function with the Lag-
rangian vectors λ,µ and ν:

L =
1

2
v̂T Σ+

yy v̂ + λT g(y + v̂, β̂) + µTh(β̂)

+νT1 c1(y + v̂) + νT2 c2(y + v̂) + νT3 c3(y + v̂)
(9)

The corrections for the observations and parameters are cal-
culated in an iterative procedure according to Meidow et al.
(2009). In every iteration, the Jacobians are calculated:

A =
∂g(y,β)

∂β
,BT =

∂g(y,β)

∂y
,CT =

∂c(y)

∂y
,HT =

∂h(β)

∂β

Additionally, in every iteration (τ ) the residuals of the con-
straints and the auxiliary variable a:

gτ = g(y(τ),β(τ)), hτ = h(β(τ)), cτ = c(c(τ))

a = BTC(CTC)−1(CT (y− y(τ)) + cτ )− BT (y− y(τ))− gτ

The normal equation system is solved by using a and matrix
LU decomposition in order to receive the corrections for the
estimated parameters:[

ATΣ−1
gg A H

HT 0

] [
∆̂β
µ

]
=

[
ATΣ−1

gg a
−hτ

]
(10)

With the covariance matrix of the contradictions: Σgg = BTΣyyB.
Finally, the residuals:

v̂(τ) = −ΣyyBλ− C(CTC)−1(CT (y− y(τ)) + cτ ) (11)

with:
λ = Σ−1

gg (A∆̂β − a) (12)

2.1.2 Stochastic Model The limited accuracy of the refer-
ence lines such as the inherent uncertainty of straight line detec-
tion have to be considered in the estimation. The homogeneous
representations of 2D and 3D lines are therefore extended with
individual stochastic information using covariance matrices.
A 3D point with Euclidean coordinatesX = [X,Y, Z]T has the
Euclidean covariance matrix:

ΣXX =

 σ2
X σXY σXZ

σXY σ2
Y σY Z

σXZ σY Z σ2
Z

 (13)

The homogeneous representation of a 3D point X → X is:

X = [XE , Xh]T = [U, V,W, T ]T = [λX, λY, λZ, λ]T (14)

where XE = [U, V,W ]T is the Euclidean and Xh = T is
the homogeneous part. It follows the homogeneous covariance
matrix ΣXX:

ΣXX = λ2


σ2
X σXY σXZ 0

σXY σ2
Y σY Z 0

σXZ σY Z σ2
Z 0

0 0 0 0

 = λ2

[
ΣXX 0
0T 0

]
(15)

For converting a homogeneous vector back in a Euclidean rep-
resentation X → Xe , the Jacobian Je at X is needed, as the
normalization is a non-linear function:

Xe =
X
Xh

=

[
X
1

]
(16)

Je(X) =
1

Xh

[
I3 − 1

Xh
XE

0T 0

]
(17)

ΣXeXe = Je(X) ΣXX J
e(X)T (18)

A two dimensional straight line with the homogeneous vector
l = [a, b, c]T has the homogeneous covariance matrix Σll:

Σll =

 σ2
a σab σac

σab σ2
b σbc

σac σbc σ2
c

 (19)

If an uncertain straight line is given by its homogeneous para-
meters, the parameters of the Hessian form can be derived form:
((l,Σll)→ ([θ, r],Σhh))

[
θ
r

]
=

[
arctan2(b, a)
− c√

a2+b2

]
(20)

The Jacobian Jlh is needed at l:

Jlh(l) =
1

s3

[
−bs as 0
ac bc −s2

]
with s =

√
a2 + b2 (21)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2021-105-2021 | © Author(s) 2021. CC BY 4.0 License.

 
108



The covariance matrix Σhh results from:

Σhh = Jhl(l) Σll Jhl(l)T (22)

2.2 Parameter Estimation

For each pair of corresponding lines, the vector with the obser-
vations is y = [li,Xi,Yi, ...]T and the related covariances re-
spectively Σyy = Diag[Σlili ,ΣXiXi

,ΣYiYi
, ...]. The elements

of P are as p in β.

2.2.1 Conditioning As the homogeneous entities relate to
Euclidean BIM objects, their coordinates are expressed with re-
spect to the BIM’s reference coordinate system. A big differ-
ence between the Euclidean and the homogeneous part causes
the calculation to be numerical instable, which is why condi-
tioning as proposed by Förstner and Wrobel (2016) is applied:

xc = T2D x and yc = T2D y (23)

For 2D points T2D is composed with the centroid coordinates
µx and µy and the maximum distance to the centroid smax:

T2D =

1 0 −µx
0 1 −µy
0 0 smax

 (24)

The procedure is analogous to 3D points.
Straight lines are conditioned and re-conditioned using:

lc = L2D l, l = L−1
2D lc with L2D = (T−1

2D)T (25)

Conditioning is applied on the observations. For the projection
matrix results:

Pc = T2D P T−1
3D (26)

2.2.2 Spherical Normalization According to (7) and (8) the
observations and initial parameters have to be spherically nor-
malized prior to the adjustment: lsc := lc/|lc| and Σll = Jc Σll JTc .
With the Jacobian Jc:

Jc(l) =
1

|lc|

(
I3 −

lc lTc
lTc lc

)
(27)

In the same way it is done for the parameters and 3D model
points: Xsc := Xc/|Xc| with ΣXX = Jc ΣXX JTc and psc :=
pc/|pc|.

In the following sections we assume the homogeneous coordin-
ates to be conditioned and spherically normalized and omit the
indices c and s.

2.2.3 Jacobians The A-Matrix includes the first derivatives
of the G-constraints according to the unknown parameters of p.
As eq. 6 corresponds to 4 constraints of which 2 are chosen, the
matrix has as twice as many rows as observed line correspond-
ences and the number of columns corresponds to the number of
parameters:

A =

[(
x1i 0
0 x2i

) (
l1i YTi l2i YT l3i YT
l1i YTi l2i YT l3i YT

)
−
(

y1i 0
0 y2i

) (
l1i XTi l2i XT l3i XT
l1i XTi l2i XT l3i XT

)
, ...

]T (28)

The B-Matrix includes the first derivatives of the G-constraints
(6) according to the observations li, Xi and Yi. It is a diagonal
matrix where each main diagonal element has 2 rows (2 con-
straints in (6) and 11 columns (11 elements in the homogeneous
vectors l, X and Y).

B = diag
[(

(Xi YTi − Yi XTi ) PT ,YTi PT li I− Yi lTi P,

Xi lTi P− XTi PT li I
)
, ...
] (29)

The C-Matrix includes the first derivatives of the C-constraints
(7) according to the observations li, Xi and Yi. The derivatives
for each observation triple form diagonal sub matrices of di-
mension (3,11), which in turn are written to the main diagonal
matrix.

C = diag
[
diag[2 lTi , 2 XTi , 2 YTi ], ...

]
(30)

The H-Matrix includes the first derivatives of the H-constraints
according to p. It has one row and 12 columns.

H = [2 pT ] (31)

2.3 Euclidean Interpretation

The initial projection matrix is optimized during the adjustment.
The homogeneous matrix, as well as the uncertain observations
in the form of 3D points and 2D straight lines, are thereby con-
ditioned and spherically normalized. For the application of the
results in engineering practice, the output data should be inter-
preted Euclidean.

2.3.1 Projection Matrix After the adjustment, an estimated
projection matrix (P̂sc) is available, which is also conditioned
and normalized. It is reconditioned with (26).

From the estimated projection matrix, the improved parameters
of the exterior orientation can be derived by decomposing the
matrix: P = [A|a] = [K R| − K RX0] (Förstner and Wrobel,
2016).

The projection center X0 is obtained from: X0 = −A−1 a.
Factorizing A by QR decomposition, which expresses a matrix
A as multiplication of an orthogonal matrix Q and an upper
triangular matrix R, results in the rotation matrix R. A should
have a positive determinant: Ā = sign(|A|) A. The inverse Ā
is decomposed: [R̄T , K̄−1] = qr(Ā−1).

The sign s (here: s = +1) of principal distance needs to be
specified for the calculation of the diagonal matrix D:

D = diag(sign(diag(K)))diag([s, s,+1])

Finally, the rotation matrix R results from: R = D R̄.

2.3.2 Corrected Observations After the adjustment, Euc-
lidean interpretation of uncertain, homogeneous, conditioned
and spherically normalized 3D points and 2D lines is achieved
through Euclidean normalization and re-conditioning (table 1).

3. EXPERIMENTS

The estimation model presented in the previous section for the
optimization of an approximately known camera pose was tested
with synthetic data as ground truth for accuracy assessment.
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3D point 2D line
State after adjustment Xsc,ΣXs

cXs
c

lsc,Σlsc lsc
1. Euclidean normalization Xc,ΣXcXc with Je(Xsc) lec,Σlclc with Je(lsc)
2. Re-conditioning X,ΣXX with T3D l,Σll with L2D

3. Euclidean interpretation Xe,ΣXeXe with Je(X) [θ, r]T , Σhh with Jhl(l)

Table 1. Euclidean interpretation of uncertain 3D points and 2D lines

Figure 6. Floor plan of the test environment

Figure 7. BIM compliant indoor model of the test environment

The basis is a real test environment. In the following, the refer-
ence model as well as the test setup and the obtained results are
presented.

3.1 Test Environment and Reference Model

A laboratory for measurements with geodetic reference network
is used as test environment (Fig. 6). It has a local coordin-
ate system whose main axes are aligned with the walls of the
building. The network is realized by permanently installed mini
prisms and enables the stationing of tacheometers in the lower
millimeter range. The laboratory serves as a test environment
for validating image measurement techniques and achievable
accuracies with respect to the detection of typical objects and
component classes inside buildings.
To obtain precise geodetic survey data, the laboratory was cap-
tured by a 3D laser scanner in a high resolution. The registra-
tion of the single scans was done by control points. The global,
absolute measurement accuracy in the reference system is 1.5
millimeters and standard deviation of the relative orientation of
the individual scans is in the sub millimeter range when cloud-
to-cloud adjustment is performed. The resulting point cloud
served as the basis for BIM compliant modeling. The modeling
accuracy depends on the respective object class and is based on
the recommendations according to the LOA specification. For
example, interior doors and windows are assigned to accuracy
level 30 or 40.

3.2 Virtual Camera and Data Input

A virtual view of the interior model was rendered with 36 mm
sensor width, 1600 x 1200 pixels and 30 mm focal length. The
projection center is located at position X̃0 = [43.907, 28.847,
8.053]T in the reference system and the camera system is ro-
tated by angles ω̃ = −67.318◦, φ̃ = 1.8◦ and κ̃ = 29.498◦

with respect to the BIM system. The true projection matrix (P̃)

was derived from the parameters of the distortion-free virtual
camera according to (5).
In the next step, 36 model points (Xi) were projected with P̃
and (4) into the synthetic image in order to obtain x̃i. For the
simulation of inaccuracies in the detection of edges in the im-
age, Gaussian noise of varying magnitude is added to the Eu-
clidean part of the true pixels (x̃i) in the further course. Noisy
pixels (xi) result with the normally distributed random num-
ber N : xi = x̃i + σxi N . Then, the uncertain image points
(xi,Σxixi ) were joined to lines by join operation and variance
propagation to obtain the uncertain image lines corresponding
to the model edges (li,Σlili ) as observations. A standard devi-
ation in translation of 0.15m and in rotation of 1◦ was then set
for the external orientation of the camera for artificial degrad-
ation (σcam). This resulted in the initial projection matrix P
which is used in the adjustment as approximate initial solution.
Figure 8 a) shows the synthetic image with the model edges
projected into it using P̃ (green) and P (red).

The estimation of the projection matrix is to be done several
times with different imprecise model reference. For this pur-
pose, Gaussian noise is also added to the model points (Xi) in
several simulations. The determination of the standard devi-
ation is based on the LOA specification: Xi = Xi + σXi

N .
The LOA are: 2σ = 15 cm (LOA 10), 2σ = 5 cm (LOA 20),
2σ = 15mm (LOA 30), 2σ = 5mm (LOA 40), 2σ = 1mm
(LOA 50) (USIBD, 2020).

4. RESULTS

P is put in the estimation model as initial value. The actual ac-
curacy of the reference model does not matter here when using
synthetic data. For LOA 10 to LOA 50, 100 simulations each
were calculated with image lines of varying degrees of noise
(σl = 0.0, σl = 0.5, σl = 1.0, σl = 1.5 and σl = 3.0 pixel).
After the adjustment, the parameters of the exterior orientation
are only implicitly available in the vector with the estimated
parameters (β̂). β̂ relates to p̂ - the spherically normalized
column vector containing the conditioned elements of P̂. In or-
der to derive the exterior orientation parameters, p̂ is reshaped
to the homogeneous 3x4 matrix P̂ and re-conditioned with (26).
Decomposition results in the coordinates of the projection cen-
ter (X0) and the rotation matrix R (with the rotation angles ω,
φ and κ). The detailed results are shown in table 2.

5. DISCUSSION

The results show that the exterior orientation of the camera is
optimized, provided the reference model has sufficient geomet-
ric quality. In the presented example using synthetic data, the
camera pose is improved as long as the reference model can be
assigned to at least LOA 30 (σ < 7.5mm) and the standard
deviation of the image points (for image line construction) for
this camera is less than 3 pixels. While very good solutions
are achieved with LOA 50 model accuracy, practically this de-
manding level of accuracy is very rarely achieved in real pro-
jects. In practical applications, however, it can be assumed that

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2021-105-2021 | © Author(s) 2021. CC BY 4.0 License.

 
110



(a) (b)

(c) (d)

Figure 8. Synthetic image with projected 3D edges using a) P̃ (green) and P (red) b) P̂, σl = 1.0 and LOA 50 model c) P̂, σl = 1.0
and LOA 30 model d) P̂, σl = 1.0 and LOA 10 model

LOA 50 (σ = 0.5mm)
Orientation
parameter σcam

Empirical standard deviation (s) from n=100 simulations
σl=0.0 [px] σl=0.5 [px] σl=1.0 [px] σl=1.5 [px] σl=3.0 [px]

X0 [m] 0.15 0.003 0.015 0.026 0.045 0.086
Y0 [m] 0.15 0.002 0.010 0.020 0.030 0.072
Z0 [m] 0.15 0.002 0.007 0.014 0.023 0.045
ω [°] 1 0.031 0.137 0.251 0.464 0.901
φ [°] 1 0.015 0.060 0.123 0.183 0.366
κ [°] 1 0.026 0.105 0.222 0.319 0.667

LOA 30 (σ = 7.5mm)
Orientation
parameter σcam

Empirical standard deviation (s) from n=100 simulations
σl=0.0 [px] σl=0.5 [px] σl=1.0 [px] σl=1.5 [px] σl=3.0 [px]

X0 [m] 0.15 0.052 0.054 0.058 0.070 0.113
Y0 [m] 0.15 0.041 0.040 0.048 0.053 0.066
Z0 [m] 0.15 0.026 0.030 0.033 0.041 0.060
α [°] 1 0.398 0.473 0.571 0.588 0.980
β [°] 1 0.203 0.241 0.284 0.310 0.452
γ [°] 1 0.372 0.442 0.506 0.487 0.767

LOA 10 (σ = 7.5 cm)
Orientation
parameter σcam

Empirical standard deviation (s) from n=100 simulations
σl=0.0 [px] σl=0.5 [px] σl=1.0 [px] σl=1.5 [px] σl=3.0 [px]

X0 [m] 0.15 0.607 0.970 0.959 0.820 0.653
Y0 [m] 0.15 0.441 1.048 0.591 0.530 0.516
Z0 [m] 0.15 0.489 0.604 0.716 0.747 0.434
α [°] 1 5.353 6.636 4.863 5.087 5.138
β [°] 1 3.201 3.778 4.986 4.691 3.346
γ [°] 1 4.718 5.551 6.650 4.940 4.778

Table 2. Results on pose estimation with different image line quality and different LOA from 100 simulations each
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essential interior elements such as doors, windows and walls
are modeled at least LOA 30 compliant and are thus suitable as
geometric references. In addition to the results shown, simula-
tions were also calculated for LOD 20 and LOD 40, which also
confirm this conclusion. While realtime matching is not our
primary purpose, we focous on camera pose optimization. For
maximum accuracy requirements (in the range of millimeters),
relative rather than absolute accuracy could be used for para-
meter estimation. In this way, local changes would be precisely
detectable in specially defined subsystems within the overall
BIM. The GeoPose (OGC) standard will support this approach
by its concept of frame transform chains for any real or digital
object’s pose. It encapsulates sufficient information to trans-
form pose geometry in any other frame in its associated frame
chain. The uncertainty in the geographic position can be integ-
rated.

6. CONCLUSION AND OUTLOOK

We have shown that a coarse camera orientation can be im-
proved to be accurate enough to reveal statements about relev-
ant changes between the model and the actual state. BIM com-
pliant indoor models with usual geometric quality are generally
sufficient and useful as geodetic reference for change detection
applications and construction progress documentation.
The presented estimation model will be used in further exper-
iments in the test environment with real data from different
camera sensors and varying geometric conditions (e.g. spa-
tial distribution of line references). In addition, further tests
regarding feature matching and pose estimation in other envir-
onments are planned to investigate whether difficult conditions
such as high architectural symmetry could effect the results. In
real-world use, it can be assumed that the BIM compliant ref-
erence model is faulty, regardless of the LOA definition. The
as-planned state will likely not fully match the as-built state.
Since outliers, miss-matches and deviations are to be detected
in order to update the digital twin properly, a robust estimation
has to be realized including an option for re-weighting observa-
tions. Additionally, vanishing point detection will be integrated
to further support the process of camera orientation indoors.
Image based 3D reconstruction and change detection in the con-
text of BIM is aimed. Therefore, the next step is to further val-
idate the image measurement and reconstruction accuracy with
optimized camera orientation. Also, the effect of the available
image resolution on the method will be investigated.
In this context, also investigating state of the art sensors and
technologies for visual localization within the interior of build-
ings for single images and image sequences in a visual-BIM-
based SLAM approach is planned. These include the Iphone
12 Pro (Apple) with LiDAR sensor (if applicable with indoor
localization infrastructures using beacons), the Intel RealSense
depth camera including an IMU and stereo SLAM technology
and Microsoft’s HoloLens2.
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