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ABSTRACT:

In our daily lives, trees can be seen as the tallest and most noticeable representatives of the plant kingdom. Especially in urban areas,
the individual tree is of high significance and responsible for a manifold of positive effects on the environment and residents. In the
context of urban tree registers and thus monitoring of urban vegetation, we propose a general concept for the segmentation of trees
from 3D point clouds. Mobile Laser Scanning (MLS) is introduced as the preferred sensor. Based on an analysis of earlier work
in this field, we gather arguments and methods in order to involve segmentation in the bigger frame of a tree register workflow,
including detailed modeling and change detection. Our concept for segmentation is based on a voxel-structure. In a first step,
region growing approaches are used for ground removal and rough segmentation. Later, graph-based optimization will separate
neighboring trees. For now, only the general concept can be introduced—quantitative analysis and optimization of the steps will
follow in future work.

1. INTRODUCTION

In the view of increasing urbanization and enhanced environ-
mental consciousness, green spots and large trees are gaining
more and more importance in urban areas. Not only do they
improve the quality of air and living, they also contribute to
the well-being of all residents and serve as a habitat for anim-
als. Thus, it should be a primary concern for municipalities to
grow and maintain a healthy and diverse population of plants,
especially trees, inside cities. On the other hand, natural ob-
jects are far less predictable than man-made ones and—as they
are living beings—are changing significantly over time. To en-
sure general road safety and to avoid wild growth in populated
areas, especially trees have to be inspected regularly. Tree re-
gisters can be used to maintain a reliable monitoring of urban
trees (Tanhuanpää et al., 2014).

As manual and repeated inspection of all trees in one city is ex-
pensive both in cost and time, automated approaches for meas-
urement and processing should be considered. In order to de-
scribe the three-dimensional complexity of trees, we choose an
active sensor: LiDAR (Light Detection And Ranging) prom-
ises high structural detail and independence of illumination.
Furthermore, it can precisely reach and look through densely
branched regions. The street as main infrastructural element in
urban areas combined with aspects of mobility, cost and meas-
uring perspective speak for the use of Mobile Laser Scanning.
This acquisition method can cover the area of a city while still
retaining detailed measurements. More importantly, the view-
ing angle of a laser scanner mounted on a vehicle allows to
acquire data from stem, branches and crown, while Airborne
Laser Scanning is often limited to the surface of the crown and
the ground below. Only in the case of full waveform LiDAR
(Reitberger et al., 2009), a certain but—compared to MLS—
lower amount of points on stem and branches can be captured.
Moreover, largely built structures may lead to the obstruction
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of trees in case of an airborne acquisition. Mobile Laser Scan-
ning is limited by objects directly on the side of the street, like
parked vans or big hedges, but should still be able to see at least
the important upper part of urban trees.

The potential of the acquired data has to be exploited as thor-
oughly as possible. For administrative purposes, position and
certain parameters like the Diameter at Breast Height (DBH)
are mandatory to be identified. Therefore, a mere classification
of tree points is not sufficient. We need dedicated tree instances;
hence, we have to identify which point belongs to which indi-
vidual tree. But the dense and detailed point information from
MLS should not only be utilized for these rough measures—
even a detailed reconstruction for 3D city models is possible
and should be kept in mind. Having dug into the advantages of
spatial resolution, we have to consider temporal resolution, too.
At least yearly acquisitions via MLS are desirable. Our process
should hence also aim for temporal comparability, and provide
the basic capabilities for change detection. These requirements
will influence our decision on the methods to be used.

In this paper, we introduce a general concept for the segment-
ation of individual trees from dense 3D point clouds. We as-
sume data acquisition by Mobile Laser Scanning due to its sa-
lient characteristics in urban areas. This can be seen as the first
step for the establishment of a city-wide automated tree register
featuring regular update intervals and detection of significant
changes in the urban flora. After providing an overview of ex-
isting segmentation techniques, we will present our proposed
method in the view of the challenges provided by our require-
ments (Section 3). However, this concept still needs to be tested
and optimized in a few points. Quantitative analysis will follow
in future work. In section 4, we will give an insight on the bene-
fits of MLS by introducing our benchmark dataset. Correspond-
ingly, the behavior of trees in view of naive distance clustering
is analyzed (Section 4.2) and discussed with respect to our pro-
posed concept (Section 5). An outlook on further work in this
context will be presented in Section 6.
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2. RELATED WORK

The challenge of tree segmentation, especially instantiation of
single trees, has been discussed considerably over time. Whereas
early approaches mostly rely on sparse data from Airborne Laser
Scanning (ALS), a shift to Mobile Laser Scanning can be ob-
served in the context of urban trees. However, some of the con-
cepts from ALS data can still be adopted for MLS measure-
ments. In a first glance on methods in forestry, we will present
some of those. Sections 2.2 and 2.3 will then distinct the gen-
eral approaches of point- and voxel-based methods. After an
analysis of common concepts, we will draw the conclusion re-
garding our requirements in section 2.4.

2.1 Tree Segmentation in Forestry

The general idea of individual tree segmentation can be met in
the context of forestry, too. An overview of segmentation meth-
ods from ALS data is given in (Lu et al., 2014). In their listing
of earlier approaches, especially watershed, region growing and
normalized cut are often used. Considering the top-down view
of ALS data, watershed approaches are the most sensor specific
ones, as they mainly aim for the separation of tree crowns in
densely populated forests where trees are the only and highest
objects. Region growing and normalized cut, on the other hand,
could also be used in the context of MLS data. Lu et al. (2014)
themselves start with a clustering based on horizontal and ver-
tical distances. The complete tree is then derived in a growing
process based on the 3D distance. Due to a density of approxim-
ately 10 pts/m2, Lu et al. stay on point level for all processing
steps.

Different sensors can change the characteristics of the data sig-
nificantly: Full waveform LiDAR leads to more points along
the tree stem compared to first/last pulse LiDAR (Reitberger et
al., 2009). Rough initial tree locations are derived by a water-
shed algorithm. An efficient, grid-based Canopy Height Model
(CHM) is used in that context. The stems are found by a cluster-
ing using horizontal distances; the individual trees are identified
by applying a normalized cut method on the voxelized data. In
that context, Reitberger et al. (2009) propose several similar-
ity features: weighted horizontal and vertical distance, distance
to the assumed stem position, mean intensity and mean pulse
width for each voxel.

2.2 Point-Based Segmentation of Urban Trees

Concentrating on urban trees, ALS-oriented approaches like ad-
aptive mean shift with a tree shaped 3D kernel (Xiao et al.,
2016) may be feasible at lower point density, but not for dense
MLS data. Other researches perform change detection on ALS
data in urban areas, including trees, but do not have dedicated
segmentation steps. These are Xu et al. (2015) with an octree-
based change detection on buildings and trees in general, and
Tran et al. (2018) who apply a Random Forests classification
with a dedicated inter-epoch feature to achieve classification
and change detection in one step. Both these methods rely on
low point densities between 10 and 50 pts/m2.

Combining our requirements of an urban environment and dense
point clouds, we concentrate on segmentation approaches using
MLS data. Due to the large amount of data, the processing
of every single point comes expensive in storage and computa-
tional requirements. Assuming that the loss of detail through
voxelization is unacceptable, Weinmann et al. (2017) present a

point-based method that uses Random Forests (RF) and auto-
matically selected geometric features. The semantic segment-
ation only identifies the class tree. Thus, it is followed by a
mean shift segmentation on a downsampled 2D projection. In
that way, the individual trees are detected. These segments are
then refined by rule-based shape analysis. In another point-wise
classification method, Yao et al. (2017) underline the import-
ance of local topological relations. Thus, they propose a work-
flow that augments point-wise semantic segmentation (Random
Forests) by Conditional Random Fields (CRF). The authors con-
centrate on the efficient calculation of the contextual optimiza-
tion. However, the original data has been downsampled in this
approach by a voxel-grid.

It is equally feasible to first extract pole-like objects by slicing
the data into horizontal layers and then to classify these objects
into trees and others by local features (Fan et al., 2020). They
use Support Vector Machines (SVM) as classifier. In a prepro-
cessing step, data is reduced by filtering single points and large
planes. Mapping on horizontal layers is performed in (Mon-
nier et al., 2012), too. Dimensionality features and a cylindrical
descriptor are combined with a probabilistic relaxation model
in order to homogenize clusters. Monnier et al. then detect
the trunks by projecting the features on a horizontal accumu-
lator space while relying on a priori knowledge on the prop-
erties of trees compared to other objects. Similar to that, Hu-
sain and Chandra Vaishya (2020) use projection of their points
on a 2D grid at different height layers. Assuming flat terrain,
this leads to characteristic clusters in the projections on ground
level, trunk and crown height.

In conclusion, point-based segmentation of dense MLS point
clouds is possible, as long as efficient strategies are used. Pre-
processing steps—especially if the only goal is to segment trees—
and dimensionality reduction by 2D projection are essential (Yao
et al., 2017; Fan et al., 2020; Monnier et al., 2012; Husain and
Chandra Vaishya, 2020). For (semantic) segmentation, local
features as presented in (Weinmann et al., 2015) are useful,
but need a defined neighborhood. In the case of dense MLS
data, a spherical neighborhood is to be preferred (Weinmann et
al., 2017). To avoid isolated points, the context must be taken
into consideration, either by probabilistic modeling (Yao et al.,
2017; Monnier et al., 2012), or by further clustering algorithms
(Weinmann et al., 2017).

2.3 Voxel-Based Segmentation of Urban Trees

Dense data can be handled by inspecting cubes containing sev-
eral of the original points. In this context, we understand voxel-
based methods as approaches relying on the voxel as semantic
element with dedicated features based on its points, not as a
mere filtering concept to reduce data size. This regular struc-
ture of semantically enriched elements is then used as a basis
for a graph model (Yao and Fan, 2013; Guan et al., 2019; Chen
et al., 2019; Xu et al., 2018).

Before transitioning into voxel space, Yao and Fan (2013) ex-
clude man-made objects, especially facades, exploiting their re-
spective properties when projected to horizontal accumulator
spaces at different heights above ground. This idea is similar
to (Husain and Chandra Vaishya, 2020), but only used as a pre-
filtering step here to remove man-made objects. Inspired by the
normalized cut approach of Reitberger et al. (2009) with ALS
data, Yao and Fan apply the same idea to the 3D voxel space
of MLS data. The weights are influenced by vertical and ho-
rizontal Euclidean distance, and the distance in intensity. In
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that way, the graph optimization will ensure separability of ad-
jacent crowns. However, the authors state that additional steps
are needed to identify pole-like objects by shape analysis.

A similar workflow of pre-filtering, clustering and graph cut is
adapted by Guan et al. (2019). In contrast to the aforementioned
approach, the octree-based voxel structure is the key element
in every step: Growing upwards from the bottom-most voxels
to their respective 9 upper neighbors is used to filter ground
voxels. The remaining data is first clustered by means of Eu-
clidean distance. These clusters are refined by a voxel-based
normalized cut. The graph weights in that case are horizontal,
vertical and shortest Euclidean distance between nodes. Like-
wise, upward-growing for terrain filtering can be seen in (Qin et
al., 2018) and (Chen et al., 2019). Chen et al. augment the pro-
cess of clustering and normalized cut by a refinement process
using further properties like reflectance and point distribution.

The general idea of octree-based region growing is presented in
(Vo et al., 2015) for building segmentation. The features con-
sidered in growing are the normal vectors and the mean resid-
ual value to an approximated plane. This leads to segmenta-
tion of rather planar areas. These features are computed for
each voxel, so computationally expensive neighborhood search
can be avoided. In the same context, Xu et al. (2017) intro-
duce graph-based segmentation using voxels and supervoxels.
Their applied grouping laws hold true for any 3D scene, but
seem to be optimized for man-made structures due to the em-
phasis on cutting at sharp edges and discontinuities. This might
contradict the natural, partly rough structure of trees. Hence,
in the context of natural objects, Xu et al. (2018) first apply
a supervoxel-based semantic segmentation and then use graph-
based regularization and segmentation to achieve homogeneous
and distinctive segments. However, the exact division of over-
lapping tree crowns remains critical.

The aforementioned methods use an octree-like structure to gen-
erate a voxel grid or to manage their data and search procedures.
An efficient generation of such a structure leading to distinctly
addressable voxels is presented by Huang et al. (2019).

From the introduced approaches, we can clearly identify graph-
based optimization as one of the mostly used methods. The
primary element voxel or supervoxel leads to a significant re-
duction of nodes and already defines the neighborhood for the
computation of features for each voxel. However, it becomes
clear that in any case certain preprocessing steps are needed.
Planar elements, especially the ground (Qin et al., 2018; Chen
et al., 2019) or man-made objects in general (Yao and Fan,
2013) should be removed in a first step. This is followed by
a simple clustering method, in case of (Guan et al., 2015; Chen
et al., 2019) Euclidean clustering. Optional to these two steps,
a general semantic segmentation can be performed in a first
step, which is then optimized by graph-based methods (Xu et
al., 2018).

2.4 Assessment of Existing Methods

Table 1 gives an overview of the presented methods. We see
clear advantages in using voxels: The immediate neighborhood
for feature computation can be defined by the voxel, and these
neighboring points can easily be addressed by their parent voxel.
In this process we assume that the voxel still contains a list of
the original points inside of it. Efficient structuring and address-
ing can be realized by octrees (Huang et al., 2019). One draw-
back is the in-homogeneous character of MLS data: the further

away on object is from the sensor, the sparser are its points. This
is contradicted by a fixed voxel size—in the worst case, dimen-
sionality features cannot be computed for a voxel as it contains
only one point, although the larger neighborhood of this point
still describes an identifiable object. Yet, voxels open the way
for any kind of graph-based optimization. Graph cut on voxels
(Reitberger et al., 2009; Yao and Fan, 2013; Guan et al., 2015;
Chen et al., 2019; Xu et al., 2018) has been used extensively in
the recent years. One key element will be to find appropriate
weights that accomplish correct cuts along the boundaries of a
tree’s foliage.

We can identify approaches for pre-processing and actual seg-
mentation. The first step—data reduction—removes at least the
planar elements and the ground from the point cloud. It is de-
sirable to use the same basic data structure as in the follow-on
steps (Guan et al., 2019), which again is leading to an octree.
Voxel-based upward-growing generally is used in the phase of
ground removal (Guan et al., 2019; Qin et al., 2018; Chen et
al., 2019). This can be extended to using an upward-growing
approach for the tree clustering, too. Starting from literal seed
points, a region growing in general upward direction can lead
to initial tree clusters. A fine segmentation at areas where two
segments would grow into each other can then be optimized by
normalized cut.

In a final step, the derived segments have to be identified as
trees. Weinmann et al. (2015) propose shape analysis in that
context. Likewise, a priori knowledge (Monnier et al., 2012)
on e.g. the difference between trees and man-made objects can
already be included in the growing phase.

3. PROPOSED METHOD

The analysis of existing literature and our own requirements
lead us to a concept for tree segmentation. Having defined our
assumptions on the data (Section 3.1), we will outline the in-
dividual steps of our approach. An overview of this process is
depicted in Figure 1. Finally, we will give a recommendation
for handling spatially in-homogeneous MLS data (Section 3.4).

3.1 Assumptions and Preconditions

First, we have to define certain assumptions on our scene. In
general, most methods are optimized for trees growing in more
or less vertical direction, especially if an upward-growing method
is used. Some old trees or certain species might not fulfill this
criterion. The direction of growth is also influenced by the
surrounding landscape—on steep cliffs or embankments, partly
vertical growth especially in the lower part of a trunk can be
observed. On the other hand, the urban areas we focus on will
most likely contain little of such rough terrain. In that context,
we also have to assume that there is a considerable volume filled
with points above the ground position of the stem. That means,
the main part of the crown must be approximately vertically
above the trunk. Another requirement for some of the exist-
ing methods is flat terrain (Husain and Chandra Vaishya, 2020),
meaning a ground surface lying in the XY-plane. Our approach
aims to be more flexible. This can be achieved by using height
values relative to an existing or computed Digital Terrain Model
(DTM). However, a certain continuity of the terrain should im-
prove the behavior of any ground extraction method in general.
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Authors Data acquisition Algorithm
Point-based

Lu et al. (2014) ALS Region growing (based on distance)
Xiao et al. (2016) ALS Adaptive mean shift

Weinmann et al. (2017) MLS RF classification, mean shift and shape analysis
Yao et al. (2017) MLS RF + CRF
Fan et al. (2020) MLS Pole-like objects extraction, tree classification by SVM
Monnier et al. (2012) MLS Dimensionality features, horizontal accumulator planes
Husain and Chandra Vaishya (2020) MLS 2D projection at different heights, circular growing

Voxel-based
Reitberger et al. (2009) ALS Clustering followed by normalized cut

Yao and Fan (2013) MLS Horizontal accumulator planes, voxel-based normalized cut
Guan et al. (2019) MLS Voxel-based upward-growing, Euclidean clustering, normalized cut
Qin et al. (2018) MLS Ground removal by voxel-based upward-growing
Chen et al. (2019) MLS Voxel-based upward-growing, Euclidean clustering, normalized cut
Xu et al. (2018) MLS Graph-based segmentation using pre-classified supervoxels

Vo et al. (2015) general Octree-based region growing

Table 1. Existing algorithms on segmentation of individual trees.

Dense point cloud

Voxel structure

Ground removal

Voxel pillar
height

Above
threshold?

Filter
ground

Keep points

DTM / Possible
tree positions

Region growing
from tree seeds

Clusters
merging?

Graph cut Tree segment
candidates

Yes

No

Yes

No

Figure 1. Overview of the processing from input point cloud to
segments of possible trees.

3.2 Preprocessing and Ground Removal

At the beginning of the process, data reduction is the key ele-
ment. This can be reached by data filtering and removal of non-
tree objects, especially points from streets and natural ground.

3.2.1 Efficient Octree. For computational efficiency in the
following processes, a noise filtering should be applied in the
beginning to remove single blunder points. This can be done
by radius filtering. In the next step, the point cloud is voxelized
using the octree structure proposed by Huang et al. (2019). A
binary address can be computed from the coordinates of each
point and the desired voxel size. By this address, every point is
assigned to a voxel whilst the address represents the position in
an underlying octree. Adjacent voxels can be found easily by

increasing or decreasing certain positions in the binary address
by 1.

3.2.2 DTM and Continuous Pillar Model. With this data
structure as basis, growing approaches can easily be implemen-
ted. To start an upward-growing process for ground removal,
seeds are needed. We start at our lowermost voxel layer and
check for every voxel whether it is populated. If not, we step
up one layer until a populated voxel is reached. Its lowest point
height can be stored as pixel value in a corresponding DTM.
Due to possible obstructions or blunders, empty cells in the
DTM have to be filled by an adaptive median filtering only ef-
fective on data gaps. Outliers can be removed by smoothing.

Starting with this first populated voxel in one stack or pillar of
voxels, we proceed to check the voxels above. This process is
outlined in the dashed sub-process box of Figure 1 and further
illustrated in Figure 2 for one slice of voxel space. As soon as
the voxels above contain no more points, growing stops. The
Z-coordinate of the highest point compared to the terrain height
leads to the height of this voxel pillar. In that way, we auto-
matically include non-planar terrain by measuring the actual
elevation model. At the end of that process, we have derived
the DTM including the lowest point heights per voxel and a
pillar-top model including the maximum z-coordinates of each
continuous pillar. The difference between these layers can be
designated as continuous pillar height and stored as 2D raster
image, too. Each raster value can then be used to assign a voxel
pillar to ground or non-ground. This computation of actual pil-
lar height can be implemented by a 2D-image difference (Fig-
ure 2b), the filtering process as simple threshold application.

In case of an object in a certain height above ground, e.g. a tree
crown, this approach will only identify the lowest point layer as
ground and—as long as the height difference is bigger than one
voxel—ignore the overlapping crown points. This raster-based
approach can easily be parallelized by multiple threads.

3.3 Segmentation of Tree Candidates

After having removed all voxels marked as ground, we can start
the tree segmentation at the DTM cells beneath high voxel pil-
lars. Our general approach is to first cluster the objects by re-
gion growing from the lowermost points. These clusters grow
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(a)

(b)

Figure 2. Computation of the continuous pillar heights for
ground filtering. Only one slice of the voxel space (a) and the
corresponding rows in the raster images (b) are shown. The
color intensity represents the relative value per raster cell.

upwards and will—in case of isolated objects—already describe
the single tree or some other compact, high-rising object.

If trees are very close to each other and their crowns are overlap-
ping, points on the border can be claimed by two clusters from
two original trees. In that case, these clusters will merge into
one object, which then will be flagged. As a correct division
cannot be found by simple clustering, an optimization based on
normalized cut will be used to separate them at an ideal border
(Section 3.3.3).

3.3.1 Feature Computation. For any graph-based or grow-
ing approach, we need to assign certain features to each voxel
on which we can base our decisions. In the context of trees,
other features are descriptive than e.g. in planar segmentation
(Huang et al., 2019; Vo et al., 2015). The normal vector com-
puted from the included points can be useful to ensure smooth-
ness, however the influence on complex tree structures has to
be examined. Likewise, the center of gravity (centroid) of the
points of each voxel is computed. In order to avoid the strong
influence of few foreign points at the edge of the crown, medoid
computation should be considered, too. The medoid of a voxel

is the exact data point with the minimal average distance to all
the other points.

Due to the trees’ complex geometry, it cannot yet be decided
whether eigenvalue-based features as in (Weinmann et al., 2017)
are of significant use in clustering, as the different parts of a tree
have different characteristics in dimensionality and point distri-
bution. Further investigations shall identify the most promising
candidates for the specific application of region growing and
graph cut.

3.3.2 Potential Tree Clusters by Region Growing. To get
initial clusters of potential high-rising objects, we start at the
voxels on DTM level that were not filtered in the step before.
The most robust way is to initiate region growing to the direct
26 neighbors of each voxel, as we cannot be sure that all parts of
the tree will always grow into vertical direction. Because of the
same reason, we compute 3D Euclidean distance as well as the
distance in XY-direction between two neighboring centroids.
The lesser of both has to be below a defined threshold in order
for the two voxels to be clustered together. In that way, we
favor exact vertical growing as it will happen at the main stem,
but also consider other more general growing directions. The
normal vector is not used at the moment as it might lead to
problems at locations where branches leave the main stem—
sharp angles are to be expected there.

Another approach would be to perform exact Euclidean clus-
tering point by point. In that way, we might derive more con-
tinuous clusters by the cost of higher computational effort. In
addition, we have to get back on voxel level for the normal-
ized cut approach. First investigations in that direction will be
presented and analyzed in Section 4.2.

In any case, if two clusters meet, they will be merged into one
and flagged for further processing with graph cut.

3.3.3 Separation of Merged Clusters by Normalized Cut.
The simple clustering approach presented before is based on
a hard thresholding decision and thus cannot account for the
overall optimization of one certain segment. Hence, we apply
graph-based optimization to clusters that most likely include
two separate objects, but have grown together in the cluster-
ing step. A graph is built with the voxels as nodes, and edges
between two adjacent voxels. Each voxel is hence connected to
its 26 neighbors, if they exist. These edges will need weights.

We use some of the features presented in Section 3.3.1. We
define weight components between the nodes i and j as

ωfi,j =
||fi − fj ||2

σ2
f

, (1)

where the numerator is the squared Euclidean distance in the re-
spective feature between both voxels. This holds true independ-
ently of the features being vectors or scalars. σ2

f can be used
to assign different individual weightings to the single compon-
ents. The overall weight is defined by the 3D and 2D distances,
either between centroids or, if significant improvement can be
observed, between medoids. Moreover, we add a condition to
focus on a vertical cylinder with radius rXY (inspired by Reit-
berger et al. (2009)) around the respective centroid. In that way,
we favor vertical growth and allow horizontal dissection in case
two points are horizontally too far away from each other.
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Thus, the edge weight between two nodes is

wij =

{
exp(−ωD3D

i,j
)) · exp(−ωDXY

i,j
) ifDXY

ij < rXY

0 otherwise
.

(2)
Further features can be appended by adding the respective ver-
sion of Equation 1 to the product of exponentials. The ideal
combination and individual weighting will be subject to future
work.

Normalized cut will then split the current segment into two by
minimizing the cost function

NCut(A,B) =
Cut(A,B)

Assoc(A, V )
+

Cut(A,B)

Assoc(B, V )
(3)

between the target segments A and B.

Cut(A,B) =
∑

i∈A,j∈B wij is the sum of weights between
these segments and Assoc(A, V ) =

∑
i∈A,j∈V wij is the asso-

ciation of one segment; that is the sum of weights of all edges
which end in segment A—analogously for Assoc(B, V ). The
initial tree positions and hence estimation of the number of trees
will also contribute to tree separation.

3.4 Approaching In-homogeneous Data

One major flaw of MLS data is the in-homogeneous distribution
of points. The distance to the sensor can be seen as the main cri-
terion for average neighboring point distance. If the position of
the vehicle is known, as e.g. its trajectory has been recorded
and included in the point cloud, we can adapt the voxel size to
the distance to the sensor. To keep this feasible, the voxel side
length could be doubled as soon as the average point density
is expected to be halved. Of course, this is only a rough ap-
proximation. The implementation, on the other hand, can be
realized by stepping up one layer in the octree—this gives the
parent node containing eight of the original voxels, and thus an
increased volume adapted to the alleged point density.

4. EXPERIMENTS

4.1 Dataset

First tests of the presented methods have been be conducted
on the benchmark dataset TUM-MLS-2018 (Fraunhofer IOSB,
2018). In connection with the earlier TUM-MLS-2016 dataset
(Gehrung et al., 2017; Zhu et al., 2020) and potential future
measurement campaigns, experiments on change detection will
be possible, too. Point clouds were captured by two Velodyne
HDL-64E LiDAR sensors oriented oblique to each other. They
are mounted on the right and left front corner of the vehicle
roof and rotated by 25° to the horizontal and 45° outwards. This
leads to a considerable overlap especially in front of the vehicle.
As each sensor scans with 64 scan lines, point density is varying
strongly depending on the motion of the vehicle and the location
relative to it. The data of 2018 was captured in December under
leaf-off conditions.

The sensors also record the echo amplitude (intensity) of the re-
turned laser pulse. However, this value is of limited use in con-
nection with trees as it varies strongly along the tree stem and
branches. Thus, our approach restricts itself to pure geometric
information and analysis. In that way, we gain independence
from the specific sensor as long as a point cloud is produced.
Figure 3 shows a patch of the observed area.

4.2 Euclidean Clustering: Insights on Data Behavior

In order to analyze the data properties and clustering behavior
of trees, some first experiments have been conducted with a
straightforward approach. First, outlier points where removed
by radius filtering (so that one point must have at least 50 neigh-
bors in a radius of 0.5m). The ground removal from section 3.2
has been applied as described. Then, we used point-wise Euc-
lidean clustering to derive initial segments. We took the seed
points from the ground removal step as in 3.2. The maximum
point distance was set to 15 cm.

5. INTERMEDIATE RESULTS

From the first experiments on general clustering behavior we
derived the side-views presented in Figure 4. We can observe
some well delineated trees. At other trees, the trunk and foliage
have been assigned to different clusters (Figure 4b). Of course,
there are still some objects like facades and poles left. These
will have to be removed beforehand or at the end of the process,
likely by the analysis of their shape compared to what can be
expected from trees.

All gray points have not been assigned to any cluster because
they were isolated: more than 15 cm away from any cluster
starting at a seed point. These non-clustered points can be found
mainly at the outermost areas of tree crowns. This is due to
the comparatively lower point density and the more scattered
positioning of the fine branches there. Details like that will
be missed as long as clustering with a hard threshold in max-
imum distance is applied. On the other hand, Figure 5 shows
large segments containing multiple crowns. The view from atop
clearly illustrates that phenomenon. Again, this happens due
the strict threshold—in some regions, two tree crowns are so
close that their respective points have a distance below clus-
tering threshold, thus merging both trees. These are the major
effects and drawbacks generated by naive Euclidean clustering
in our case.

6. CONCLUSION AND OUTLOOK

From the preliminary investigations taken in Section 4.2, we
can draw the main conclusion that clustering in principle does
work well on tree point clouds. But, as missed detailed struc-
tures show as well as merging crowns, it has to be refined by
a more flexible optimization approach. This leads to the ideas
outlined in this paper.

We presented a concept for tree segmentation from dense point
clouds. Starting with voxel-based ground removal by introdu-
cing the idea of voxel pillars, we proposed the combination of
region growing from the very bottoms of the trees with optim-
ization by normalized cut. We aim for clearly separable tree
crowns especially in dense settings while preserving the de-
tailed structures of even the outermost branches. In this con-
text, we introduced an easily addressable voxel structure while
keeping the original data points. This will be the basis for fu-
ture research: Instance segmentation of urban trees can be seen
as the first step in implementing a tree register. Further work
will concentrate on the extraction of important parameters like
Diameter at Breast Height, detailed tree modeling for 3D city
models and change detection between several epochs of data
acquisition. Quantitative analysis of the presented concept and
beyond will follow. We aim at a methodological framework
which will allow the realization of all these three steps on a
mutual basis in a highly automatized workflow.
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(a) (b)

Figure 3. Test area in TUM-MLS-2018 (north of the Alte Pinakothek, Munich) including tightly planted deciduous trees, viewed from
the North (a) and West (b), respectively. Gray values correspond to measured intensity.

(a) (b)

Figure 4. Results of Euclidean clustering with a maximum point distance of 15 cm. The ground has been removed according to
section 3.2. Gray points are not clustered.Views from the North (a) and West (b).

Figure 5. Results of Euclidean clustering, view from above.
Connected crowns are clearly visible. Missed points of the outer

foliage structure (gray) can be seen, too.
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