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ABSTRACT:

Completing the 3D shape of vehicles from real scan data, which aims to estimate the complete geometry of vehicles from partial
inputs, acts as a role in the field of remote sensing and autonomous driving. With the recent popularity of deep learning, plenty of
data-driven methods have been proposed. However, most of them usually require additional information as prior knowledge for the
input, for example, semantic labels and symmetry assumptions. In this paper, we design a novel and end-to-end network, termed as
S2U-Net, to achieve the completion of 3D shapes of vehicles from the partial and sparse point clouds. Our network includes two
modules of the encoder and the generator. The encoder is designed to extract the global feature of the incomplete and sparse point
cloud while the generator is designed to produce fine-grained and dense completion. Specially, we adopt an upsampling strategy
to output a more uniform point cloud. Experimental results in the KITTI dataset illustrate our method achieves better performance
than the state-of-arts in terms of distribution uniformity and completion quality. Specifically, we improve the translation accuracy
by 50.8% and rotation accuracy by 40.6% evaluating completed results with a point cloud registration task.

1. INTRODUCTION

Recently, 3D shape completion for vehicles from real scanned
data is regarded as a fundamental and intriguing area in the
fields of remote sensing, computer vision, and robotics. Es-
pecially, with the development of the autonomous driving field,
more and more companies and research institutes adopt differ-
ent sensors (i.e., mobile laser scanning systems or depth cam-
eras) to collect 3D point clouds in urban scenarios. However,
acquired point clouds of the real world from these sensors are
usually incomplete and noisy. For example, as shown in Fig-
ure 1 (Top), illustrated point clouds of cars from the KITTI data-
set (Geiger et al., 2013) are sparse and incomplete, even some
of them have a very few numbers of points, which is counter-
productive to the further recognition task. To tackle this prob-
lem, the completion of low-quality point clouds via recovering
geometric surfaces from sparse and partial points could be a
practical but challenging solution. In case the point clouds of
vehicles can be completed, it would be beneficial for the recog-
nition algorithm in the autonomous driving field and provides a
solid foundation for the perception tasks (Wen et al., 2019).

Giving a partial and sparse point cloud of vehicles, the shape
completion aims to recover the missing points and output a uni-
form and dense point cloud with complete geometry. With the
recent popularity of deep learning-based methods and the emer-
gence of the synthetic datasets of 3D CAD models, such as
Pix3D (Sun et al., 2018), ObjectNet3D (Xiang et al., 2016),
and ShapeNet (Chang et al., 2015), using a data-driven strategy
with neural networks to accomplish this mission has proved
to be feasible and realistic. For example, network structures,
like 3D-EPN (Dai et al., 2017) and SSCNet (Song et al., 2017),
have revealed the excellent performance of inferring 3D shape
∗ Corresponding author

information through leaning on the synthetic datasets. How-
ever, these methods usually adopt a voxelization representation
to organize dataset, which limits the output resolution since 3D
voxel grids are actually a down-sampling. To some extent, these
voxel-based methods are difficult to achieve fine-grained com-
pletions as well, because they are an artifact of artificial discret-
ization.

To this end, more and more researchers choose to directly op-
erate on raw point clouds. Compared with 3D voxelization rep-
resentation, point clouds based representation can boost the per-
formance of completion in terms of fine-grained details of ob-
jects. Recently, the Point Completion Network (PCN) (Yuan et
al., 2018) was proposed to produce a dense and complete geo-
metric shape from a partial 3D point cloud. However, points
in its output are particularly non-uniform, which often over-
concentrated in areas like the wheels of vehicles. Inspired by
this work, in this paper, we propose an innovative 3D shape
completion network, termed S2U-Net, and the main contribu-
tions of this paper are as follows:

• We design a novel network S2U-Net, which operates on
a partial point cloud directly for 3D shape completion.
By applying an upsampling strategy, S2U-Net can recover
a uniform, dense, and complete point cloud for vehicles
from real scan data.

• Experimental results show the improved performance of
the S2U-Net over the state-of-arts, and the completed res-
ults can significantly help for the point cloud registration
task.

We train the proposed S2U-Net on the class of vehicles from
the synthetic dataset ShapeNet (Chang et al., 2015) and test it
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Figure 1. (Top) Real scan data collected from KITTI (Geiger et al., 2013) dataset. (Middle) Completion resutls generated by
PCN (Yuan et al., 2018). (Bottom) Completion results by our proposed S2U-Net.

on two real-scanned datasets KITTI (Geiger et al., 2013) and
TUM dataset (Gehrung et al., 2017). Furthermore, we also
investigate the completed performance based on the results of
point cloud registration. Experimental results demonstrate that
our method has a better performance than the state-of-arts in
respect of distribution uniformity and complete quality.

2. PREVIOUS WORK

2.1 Geometry-based Shape Completion

According to geometric cues (e.g., continuity of local surfaces
or volumetric smoothness) of incomplete inputs, geometry-
based approaches (Kazhdan et al., 2006, Tagliasacchi et al.,
2011, Wu et al., 2015a) can successfully retouch small holes on
surfaces of point clouds. When recovering significant missing
regions, hand-designed heuristics are applied to complete the
3D shape of objects. For example, (Schnabel et al., 2009) em-
ployed a series combination of planes and cylinders to guide the
3D shape completion for the partial point cloud. Furthermore,

(Li et al., 2011) proposed an innovative method to learn global
relations between these primitives. Considering that man-made
objects usually have structural regularity, some studies (Pauly
et al., 2008, Zheng et al., 2010) proposed approaches to find
regular or periodic structures in geometric models and then use
them to complete missing surfaces. However, these methods
heavily rely on the assumption that the partial point cloud as
input is of moderate degrees of completion already.

2.2 Template-based Shape Completion

Apart from the geometry-based completion, another common
shape completion strategy is to retrieve the most semble shape
or templates from a large-scale database as a reference, then
to deform or reconstruct the input shape according to the re-
trieved reference. (Pauly et al., 2005) produced a complete 3D
shape using geometric priors for missing regions from a given
3D shape database, but it requires manual interaction to limit
categories of objects. Similarly, (Rock et al., 2015) explored a
method to complete a 3D model of any class automatically from
one depth image. However, these methods strongly depend on
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Figure 2. A pipeline of the proposed S2U-Net, in which the global feature is extracted by an encoder network. Then, a coarse-to-fine
strategy is applied for the following generator.

the capacity of the 3D shape database. To avoid the high de-
pendency of large databases, (Shen et al., 2012) conducted an
assembly approach of geometric primitives to recover 3D struc-
tures with a small-scale shape dataset. (Sung et al., 2015) ap-
plied a method to predict the geometric information of an input
model and then used a global optimization to reconstruct the
entire underlying surface. However, these methods still suffer
from several limitations. Firstly, the optimization schemes are
usually too expensive in computational cost for the online ap-
plication. Secondly, each shape in the pre-prepared 3D shape
database requires to be labeled and segmented manually. Last
but not least, they are always sensitive to noise.

2.3 Learning-based Shape Completion

Recently, deep learning-based methods for 3D shape comple-
tion has become a popular topic. Most of them provided
outputs completing shapes directly from a partial input using
an end-to-end artificial neural network. (Wu et al., 2015b)
constructed a large-scale synthetic object dataset named Mod-
elNet and proposed a Convolutional Deep Belief Networks
(CDBNs) to learn shape distributions for completing point
clouds. (Thanh Nguyen et al., 2016) integrated CDBNs and
Markov Random Fields (MRFs) to recover incomplete shapes.
(Sharma et al., 2016, Varley et al., 2017) implied an Encoder-
Decoder Network for shape completion. However, these meth-
ods all selected voxelization as 3D data representation since it
can be applied in the 3D convolution. (Dai et al., 2017) ex-
plored a 3D Encoder-Predictor Network (EPN) for estimating a
sparse but complete shape, then refined this shape through the
nearest-neighbor-based volumetric post-processing. One recent
work, (Yuan et al., 2018) proposed to directly operate on point
clouds for 3D shape recovery, which is most related to our de-
mand. Nevertheless, this manner exits two limitations. One is
that the shape completed using this approach is not uniform,
with most of the regions are over-concentrated. While another
is that output point clouds always lose some detailed informa-
tion.

3. METHOD

3.1 Overview

We convert the completion of point clouds into a set problem:
given a partial sparse point cloud set X obtained from the ob-
served surfaces, we aim to predict a dense and uniform point
cloud set Y, which uniformly sampled from the complete sur-
faces of the object. Notably, Y is not necessarily a superset of
X. They are sampled from the object surfaces independently.

Our proposed S2U-Net consists of two modules of the encoder
and the generator. The former is designed for extracting the
global feature map of the partial input, while the latter one
contributes to producing a dense, complete, and uniform point
cloud from the latent space. Besides, we utilize a coarse-to-
fine training approach in the generator: firstly predicts a sparse
point cloud with complete geometry, then refines it with local
regions using an upsampling procedure. For a better under-
standing, the network architecture of the S2U-Net is shown in
Figure 2, which includes two components: (1) To robustly ex-
tract the global features of the partial inputs, two stacked Point-
Net (Qi et al., 2017a) layers are employed in the encoder. (2)
To generate the dense, uniform, and complete point cloud, the
S2U-Net network uses the coarse-to-fine strategy in the gen-
erator. The coarse network estimates the complete but sparse
point cloud. Then, the fine network upsamples the sparse point
cloud by combining local information and global structure. The
detailed information of network architecture is introduced as
the following sub-sections.

3.2 Encoder

Our encoder is based on the recently advanced feature extrac-
tion network PointNet (Qi et al., 2017a), which directly oper-
ates on the point clouds. Besides, its extension PointNet++ (Qi
et al., 2017b) applied the PointNet layers as a local feature ex-
traction unit to learn point cloud features more efficient and ro-
bust. Inspired by this, the encoder, as illustrated in top of Fig-
ure 2, adopts two stacked PointNet layers to extract the geomet-
ric information for the input point cloud. Each PointNet layer
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comprises of one shared multiple layer perception (MLP) and
one max-pooling layer as a basic module. In the first PointNet
layer, we learn a point-wise feature P1 from N input points of
N×3 through MLP, where 3 is the three dimensions coordinates
of each point. Afterwards, a max-pooling layer is employed on
P1 to output a 1024-dimensions global feature vector F1. In the
second PointNet layer, we firstly concatenate the global latent
space with per independent point feature by feeding F1 back
to the point-wise features P1. The final global feature F2 is
extracted build with the aggregated point features.

3.3 Coarse-to-fine Generator

After obtaining the final global feature F2, the generator, as
shown on the bottom of Figure 2, aims to predict 3D coordinates
of the output point cloud. We explore a coarse-to-fine training
approach for generating the complete point cloud. Firstly, in-
spired by 3D object reconstruction network RealPoint3D (Xia
et al., 2019), fully-connected layers work well for estimating
a sparse set of points which have the complete geometric in-
formation of the object. Therefore, the feature F2 is fed to the
following three fully connected layers in the shape of 3072, and
then we reshape the vector to a coarse point cloud with a size
of 1024× 3.

However, since the regression of points using fully connected
layers is not restrictive on the local density, a large number of
points will be over-concentrated when we only employing fully
connected layers to output the dense point cloud. Thus, in the
second step, we apply a feature expansion strategy (Li et al.,
2019) to enhance the distribution uniformity and completeness
of output point cloud, where an up-down-up expansion unit is
used. The up-down-up expansion unit consists of the up-feature
operator and down-feature operator, which have been proven
to enhance the feature variations effectively. Last, we add the
farthest sampling step to retain 16384 points in the output point
cloud.

3.4 Loss Function

For the generated result and the ground truth, we expect their
topological distance to be the smallest. The distance function
must be highly efficient and invariant to permutations of the
points. Furthermore, it needs to be robust to outliers in the sets
because each point cloud is all unordered point sets with under-
lying noise. Inspired by (Fan et al., 2017), we explore Chamfer
distance (CD) and Earth Mover’s Distance (EMD) to optimize
the S2U-Net network.

CD is defined as follows:

CD(Q1, Q2) =
∑
p∈Q1

min
q∈Q2

‖ p− q ‖22 +
∑
p∈Q2

min
q∈Q1

‖ p− q ‖22

(1)
where Q1, Q2 ⊆ R3, Q1 and Q2 are the generated point cloud
and the ground truth, respectively. Notably, the size of Q1 and
Q2 can be different.

EMD is defined as follows:

EMD(Q1, Q2) = min
φ:Q1→Q2

∑
p∈Q1

‖ p− φ(p) ‖2 (2)

where Q1, Q2 ⊆ R3, φ : Q1 → Q2 is a bijection. Unlike CD,
the size of Q1 and Q2 must be same.

In this work, the loss function involved with two terms since we
imply a coarse-to-fine training method, which introduced by as
follows:

L(Pcoarse, Pfine, Pgt) = EMD(Pcoarse, P̃gt)

+ γCD(Pfine, Pgt)
(3)

where Pcoarse is the sparse point clouds generated by the first
step in the generator, P̃gt is the sub-sampled ground truth point
cloud with the equal size as Pcoarse. The second term is the
Chamfer distance between the final predicted point cloud Pfine
and the full ground truth point cloud Pgt, in which γ is a hyper
parameter to balance the relationship of them.

4. EXPERIMENTS

For evaluating the effectiveness of our S2U-Net, experiments
related to 3D shape completion are conducted on synthetic
shapes from the ShapeNet (Chang et al., 2015) dataset and real
raw point clouds from KITTI (Geiger et al., 2013) dataset and
TUM dataset (Gehrung et al., 2017). We firstly introduce how
to prepare the training data and some implementation details
about our network. Next, we compare the proposed method
with the state-of-arts. Last, we apply the completed results to
point cloud registration task in order to demonstrate the per-
formance of our method.

4.1 Dataset and Implementation Details

4.1.1 Dataset We train our network based on the
ShapeNet (Chang et al., 2015) dataset, which is a richly-
annotated and large-scale source of synthetic 3D CAD models.
ShapeNet has covered 220,000 models and 3,135 categories
of objects. In this work, we only use the category of cars
as training samples here, having a total of 5677 objects. For
the preparation, on the one hand, 16384 points are sampled
uniformly from the mesh surfaces of each object as the ground
truth point cloud. On the other hand, we create partial point
clouds by transforming the depth images to point clouds. For
the data augmentation, multiple depth images are used from
different viewpoints (e.g., eight directions) for each sample.
Therefore, each training set includes eight partial point clouds
and one corresponding ground truth point cloud. Notably, the
size of these partial point clouds can be different.

In addition, we choose the KITTI (Geiger et al., 2013) data-
set for evaluating the performance of our method on real scan
data. KITTI dataset provides raw point clouds collected by
Velodyne HDL-64E rotating 3D laser scanner and annotations
for the seven classes of the dynamic objects in the form of 3D
bounding box tracklets. In this work, we select the category of
cars for shape completion.

4.1.2 Training strategy The proposed network S2U-Net is
implemented in the Tensorflow framework and trained on a
single Nvidia Titan Xp GPU. We use Adam as an optimizer
in the whole network for 100 epochs. Due to the limitation of
GPU resources, the batch size is set as 8. The coarse output
point cloud in the generator includes 1024 points. We set the
initial learning rate as 0.0001, and it is gradually reduced by a
decay rate of 0.7 per 50K steps until 10−6.

4.2 Results and Comparisons

4.2.1 Shape completion on Real-scanned data In this ex-
periment, we compare our proposed method S2U-Net with
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Figure 3. 3D point cloud completion for the shape of cars from the KITTI dataset. The orders from left to right: input partial scans,
PCN and S2U-Net. Note that these completed point clouds all have 16,384 points.
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Figure 4. 3D point cloud completion for the shape of cars from the TUM City Campus dataset. The orders from left to right: input
partial scans, completed results by S2U-Net.

PCN(Yuan et al., 2018) on partial real-scanned data from
KITTI (Geiger et al., 2013) dataset. Following the experimental
setting in PCN, we extract 2483 partial point clouds of cars ac-
cording to their labeled bounding boxes for each frame. Note
that we need to convert the origin scan data firstly into the box’s
coordinates since the training model based on cars in the syn-
thetic 3D model dataset, in which all point clouds are normal-
ized. Besides, because there are no ground truth point clouds
of vehicles in the KITTI dataset, we only qualitatively compare
these two methods. Some visual results are shown in Figure 3.

To conclusively prove the better performance of our proposed
method, we randomly select ten different cars from the KITTI
dataset for comparison. The first column is the sparse and in-
complete input; the second and fourth columns are the results
of PCN and S2U-Net, respectively. Note that the points of out-
put point clouds are all 16384. It may lead to an visual illusion
that PCN have more points since the generated point clouds by
PCN are clustered and disorganized. From Figure 3, we can
see that our method S2U-Net produces more uniform point sets
compared with PCN, which tend to generate noisy and non-
uniform point clouds. For example, in the first row of Figure 3,
the points of the car created by PCN are messy, and most of the
points are over-concentrated in the wheels of the vehicle. How-
ever, the points of completed results by S2U-Net are uniformly
scattered on the geometric surface.

Especially, from the below-up views (the third column and fifth
column), it can be seen that S2U-Net recovered the fine-detailed

structure of cars. For instance, in the first row of Figure 3, S2U-
Net heals the complete wheels of the vehicle, while PCN almost
misses them. And in the eighth row, some points escaped the
surface of the car using the PCN method, whereas, these points
lie flat and uniform on the geometric plane using our method. It
is attributed to the generator’s feature expansion capability and
farthest point sampling strategy.

In addition, our approach reveals robustness to varying input
densities. As we can see in Figure 3, the points of ten inputs
range from tens to hundreds. For example, in the second, third,
sixth and tenth rows, although the inputs are less than 50 points,
our proposed method S2U-Net still generates complete, smooth
and uniform surface for the missing structure. It also demon-
strates that our method has an ability in filling large gaps in
point clouds. We believe that it is owing to the powerful global
feature extraction capabilities of the encoder.

4.2.2 Applications with completion results 3D point
cloud completion of vehicles is helpful for many applications
in the autonomous driving field, for example, the registration
between point clouds. Therefore, we conduct a set of regis-
tration experiments, which is between vehicle point clouds of
adjacent frames from the KITTI dataset. As we know, it ex-
ists some errors when estimating the spatial transformation that
aligns two different point clouds. To demonstrate our comple-
tion results can significantly reduce errors for point cloud re-
gistration tasks, we take the origin partial point cloud and com-
pletion results by our proposed S2U-Net as inputs, respectively.
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Besides, we implement it by a point-to-point ICP (Besl, McKay,
1992) method. ICP is a classic point cloud matching algorithm,
which registers the point clouds by iteratively minimizing dis-
tances between points from two scans. It is simple and easy to
implement using the PCL library (Rusu, Cousins, 2011). Not-
ably, the ICP algorithm is not the only choice for such experi-
ments.

Inputs Average error
translation (cm) rotation (◦)

Origin 13.9413 7.0546
Completed by S2U-Net 6.8581 4.1974

Table 1. The errors of point cloud registration using different
inputs

Similar to PCN (Yuan et al., 2018), we select the average ro-
tation and translation error as an evaluation metric, which is
defined as following respectively:

ER = 2 cos−1(2 < R1, R2 >
2 −1) (4)

ET = ||T1 − T2||2 (5)

where R1 and T1 are the rotation, translation of groud truth in
the KITTI dataset, respectively. R2 and T2 are the rotation,
translation measured by the ICP method, respectively.

The results are shown in Table 1. We refer to the sparse and
partial point clouds from the original scans as ”Origin”. From
Table 1, we can clearly see that using the completed point cloud
by S2U-Net significantly improves the effectiveness of the re-
gistration task. In terms of translation accuracy and rotation
accuracy, we promote that by 50.8% and 40.6%, respectively.
We think the completed point clouds can achieve satisfying
performance is due to that they have more overlapping regions
from the points generated by S2U-Net than that of origin scan
data. Therefore, it also demonstrates our method has a great
significance for real applications.

4.2.3 Test with TUM dataset To demonstrate the effect-
iveness of our proposed method S2U-Net on real scan data,
we select the Mobile Laser Scanning (MLS) dataset (Gehrung
et al., 2017) in the TUM City Campus for further evaluation.
This dataset covers around 80000 m2 with annotations, and
Fraunhofer Institute of Optronics, System Technologies and
Image Exploitation (IOSB) originally acquires this dataset with
two Velodyne HDL-64E laser scanner. Here, we use the cat-
egory of vehicles as the testing data. Some results include the
failure cases that are visualized in Figure 4. Notably, there are
also no corresponding real point clouds of vehicles in this data-
set.

As we can see in the first three rows in Figure 4, S2U-Net pro-
duces the dense, uniform, and complete point clouds for these
partial inputs with different sizes. However, the remaining rows
show examples of failure cases of our proposed method. We
can clearly see the generated points are not lying on the sur-
face, with many points escaped. Because there are not bound-
ing boxes of vehicles from the TUM City Campus dataset, we
need to extract the point clouds of vehicles manually. In addi-
tion, it exists many noises in this dataset, for example, in the
second row, there are many unrelated points on the wheels of
the cars. Therefore, these reasons result in the accuracy of data
prepossessing is not enough.

5. CONCLUSION

In this paper, we proposed a novel end-to-end network S2U-
Net, which can recover a more uniform and fine-detailed struc-
ture for 3D shape completion of vehicles from a partial point
cloud in a real scan data. Compared with previous methods,
we explored an upsampling strategy to enhance the distribution
uniformity and completion quality in the process of generating
complete point clouds. Experimental results demonstrated the
performance of our method can outperform other state-of-art
methods.

However, we found the variation of generated point clouds is
less noticeable. One of the reasons is that there is a little inter-
class variation for vehicles in the ShapeNet dataset when we
prepare training data. Thus, we believe that it is also a limitation
for any method using this synthetic 3D CAD model database as
the training data, including 3D-EPN, PCN, and so on. Besides,
S2U-Net can only complete the class of vehicles from real scan
data. We will explore the more categories in the urban scene in
the future, such as traffic signs, buildings, and so on.
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