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ABSTRACT:

Registration of multiple point clouds acquired via terrestrial laser scanning (TLS) is usually compulsory to obtain the scanned data
covering a whole urban scene. However, the automated processing of aligning multiple scans is still a concern because of the complex
urban environment. To this end, we propose a fast and sturdy estimation of 3D shifts between point clouds by an automated marker-
free process using global features, converting translation measurement between two point clouds in the space domain to the frequency
domain and estimating the phase difference. By using the low-frequency components from the normalized cross-power spectrum,
accurate 3D shifts are calculated by solving parameters in the linear equation representing phase difference angles, with the help of a
robust estimator. The results of experiments using TLS datasets of different scenes show that the proposed approach is both practical
and efficient. In particular, the proposed approach can achieve results with a translation error of less than about 1.0 m on test datasets.

1. INTRODUCTION

Point Clouds acquired via Terrestrial Laser Scanning (TLS) are
often used in numerous fields such as urban planning, transporta-
tion management, 3D modeling, virtual reality, development of
digital surface models and environment monitoring (Vosselman
and Maas, 2010) in recent years. The point cloud has been sug-
gested as the most appropriate data source for the sake of 3D
mapping in large-scale urban scenes because measured 3D points
can provide directly spatial coordinates of measured surfaces,
which simplifies the following surface reconstruction procedure.
In order to cover a large urban scene in the mapping task, how-
ever, it is generally required to scan the scene with a laser system
more than once, particularly in view of the occlusions of street
building observations and scanner location (Yang et al., 2016,
Dong et al., 2018). Therefore, a co-alignment of point clouds
is ideally mandatory before point clouds are applied, in order to
ensure that the entire scene is included (Dong et al., 2020).

In general, a standard registration method must address two crit-
ical issues for points clouds acquired with a TLS of calibrated
sensors, namely, the extraction of geometric features and identifi-
cation of associated features (Habib et al., 2010). Theoretically, if
the respective feature pairs are known, the transition parameters
between the reference frames can be well calculated (three shifts
and three rotations, with no adjustments to the scale). However,
the occlusion caused by complex urban environments and the low
overlap rate between scans are challenging for the automatic reg-
istration of point clouds.

Areas with small overlaps and poor data quality can lead to a
failed key points selection and geometric feature extraction. For
instance, outliers and missing points can greatly influence the
reliability of the extracted features. The points acquired in the
TLS data sets themselves display enormous variations in density
and decrease quadratically with increasing observation distances
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(Hackel et al., 2016), which may also affect the characteristics
of extracted features (Xu et al., 2017). In addition, due to simi-
lar shapes and street scenes, the complex and same layout of city
scenes will cause the corresponding feature pairs to mismatch.
On the other side, given the fact that the registration of point
clouds is computational-intensive, the efficiency is also an essen-
tial factor. This should be taken into account when dealing with
large data sets.

To solve these concerns, we present an automatic marker-free
solution for grossly aligning two point clouds having 3D shifts
via global features that are generated and aligned in the fre-
quency domain. Features using global information are considered
to be robust to the adverse effects of non-overlaps and unequal
distributed densities of points. In addition, by converting 3D
points into discrete 3D signals in the frequency domain, the high-
frequency components corresponding to noise and outliers can
be separated and rejected. Compared to methods that use points
or geometric primitives (e.g., lines or planes) as registration fea-
tures, the global feature generated from the entire point cloud
considers all the underlying information of the observed scene,
which actually results in limited degrees of freedom (DOF) of
the geometric information (Xu et al., 2017) and at the same time
enhancing the reliability. Moreover, in the frequency domain, the
ill-posed registration task can be converted to a straightforward
estimation of phase difference (Tong et al., 2015b), so that we
can achieve a good balance between the efficiency and effective-
ness for coarse but robust alignment of various 3D shifts.

2. LITERATURE REVIEW

To date, a considerable number of studies have offered solutions
for aligning various point clouds through the use of geometric
features. Such registration methods can generally be categorized
according to the kind of features used into three main categories:
points-based, primitive-based, and global-based approaches.
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2.1 Point based registration

For the point-based approaches, the basic concept is to find cor-
responding point pairs from different point clouds. These found
pairs of points will be used to establish the transformation be-
tween the local coordinate frames of source and target point
clouds. For example, Iterative Closest Point (ICP) and its im-
proved versions search for associated points on the basis of mini-
mizing point-by-point distances between the various point clouds
(Besl and McKay, 1992, Habib et al., 2010, Al-Durgham and
Habib, 2013). Likewise, 4-point congruent systems (4PCS) and
its enhanced versions are also representative approaches for find-
ing corresponding points, using particular and constant sets of
conglomerate points with affine invariant ratios as the constraint
(Aiger et al., 2008, Mellado et al., 2014, Theiler et al., 2014).
Either the ICP- or 4PCS-based methods have proven to be of
good performance in many applications. Nonetheless, a time-
consuming iterative process is required when a good initial align-
ment is not achieved. Thus, instead of selecting all the points
as candidates, only utilizing key points is a solution that greatly
reduces the cost of computation. SIFT key points (Bohm and
Becker, 2007, Weinmann et al., 2011), DoG key points (Theiler
et al., 2014), the PFH and FPFH key points (Weber et al., 2015),
virtual intersections (Theiler and Schindler, 2012), and the points
of predefined semantics (Yang et al., 2016, Ge, 2017) are exam-
ples. While they are all typically capable of aligning point clouds,
the point-oriented approaches are susceptible to point densities,
noise, and problems when dealing with large-scale datasets in
terms of efficiency.

2.2 Primitive based registration

For the primitive-based method, rather than points, geometric
primitives (e.g. lines, curves, planes, or surfaces) created from
points are extracted as the description of geometrical character-
istics serving the registration. The application of high-level geo-
metric features can increase the accuracy of the identification of
the appropriate characteristic pairs. The representatives of ge-
ometric primitives include lines, planes, and surfaces. A vast
number of articles have been published using lines or planes as
features to align point clouds. For example, lines created by
intersecting planes (Stamos and Leordeanu, 2003), 3D straight-
lines (Habib et al., 2005, Al-Durgham and Habib, 2013), and
spatial curves (Yang and Zang, 2014) are used as line primi-
tives for matching. In comparison, planes (Dold and Brenner,
2006, Von Hansen, 2006, Xu et al., 2017, Xu et al., 2019, Chen
et al., 2019) and surfaces (Ge and Wunderlich, 2016) are also
used as basic corresponding primitives for alignment. In contrast
with point-based methods, either line-based or plane-based meth-
ods require an abundance of linear objects or smooth surfaces
as candidates, which depends mainly on the content and layout
of scanned scenes. In a scene of only a few houses, problems
can occur when we try to find suitable candidate characteristics.
Using voxel structure to represent points is an alternative in the
context of the registration task as well. (Wang et al., n.d.) has re-
cently proposed a method using correspondences of EGI features
from voxel clusters which shows efficient results when aligning
indoor scenes. Moreover, in the work of (Xu et al., 2017, Xu et
al., 2019), the voxel structure is combined with plane primitives
for fast and coarse registration between point clouds.

2.3 Global feature based registration

For both of the above registration methods, they all use local
information from the point clouds itself or from primitive clus-
ters. In fact, registration can also take the whole point cloud with

global features. In the NDT algorithm (Magnusson et al., 2007)
built for 2D space position and mapping and expanded into 3D
space, all points have been transformed into a normal distribu-
tion so as to force the point cloud alignment. Point density at
the global scale is also used for alignment in coherent point-drift
(Myronenko and Song, 2010) and kernel affinity correlation (Tsin
and Kanade, 2004), respectively. (Dong et al., 2018) presents a
global feature vector for the registration of multiple point clouds
without knowing the viewing orders or locations. In addition,
3D point clouds of as-built buildings are decoupled into 1D his-
tograms and 2D images for registration in the frequency domain
(Huang et al., 2019), which correspond to the matching of low-
frequency components at a global scale in the space domain. The-
oretically, features using global information can provide a more
robust and comprehensive description of the 3D geometry from
points (Huang et al., 2020). Thus, global feature-based registra-
tion methods are more reliable but less explicit than those based
on local features, but it normally requires a large overlapping ratio
between scans. Otherwise, the global features may have signifi-
cant differences.

2.4 Our contributions

The major contribution of this work is twofold, including: (1)
A 3D phase correlation-based method is developed for matching
point clouds with 3D shifts, converting the problem of measuring
3D translations to the estimation of the phase difference between
to 3D tensors; (2) A RANSAC-based strategy is applied to fit
the low-frequency components of the correlated cross-spectrum,
which can avoid the high-frequency noise caused by the details
and non-overlapping area of point clouds.

3. METHOD

Our proposed method consists of three steps: discretization of
point clouds, phase correlation and frequency components selec-
tion, and robust estimation of 3D shifts. In Fig. 1, the workflow is
illustrated, showing the core steps of involved methods and sam-
ple results. A detailed explanation of each step will be given in
the following subsections.

3.1 Discretization of point clouds

The discretization of point clouds is a resampling of 3D data,
which is designed to convert two original point clouds with 3D
shifts into two 3D signals with mainly phase differences. To
achieve this, two major steps are implemented, namely, the vox-
elization and binarization and the rough alignment of bounding
boxes.

3.1.1 Voxelization and binarization The voxelization is to
resample unevenly distributed points, as well as the 3D space,
into a regularly sampled discrete 3D grid. The point cloud is de-
picted by centers of all cells (i.e., voxels) in this 3D grid. It is
noteworthy that unlike the voxelization steps in other previous
studies like (Xu et al., 2018, Wang et al., n.d., Gehrung et al.,
2016), which voxelized only the point cloud, here, the entire 3D
space covering the point cloud will be voxelized, and centers of
all these voxels will be used as input in the phase correlation later.
For assigning attributes to all voxels, we conduct a binarization
annotating voxels with binary values, namely zero or one. The
annotating binary value for a voxel is identified in accordance
with the occupancy of this voxel. In other words, if there are
points fallen into a voxel, this voxel will be annotated with value
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Figure 1. Workflow of the proposed 3D shifts estimation
method.

one. In contrast, if a voxel is an empty one, it will be annotated
with value zero. Their centers will represent the annotated voxels
with assigned labels as input for further processing. In this way,
a regularly sampled 3D position inside the bounding box of the
given point cloud will be assigned with 3D coordinates and a bi-
nary label. After the voxelization and binarization, the original
point cloud has been converted to a regularly sampled discrete
3D signal with two attributes for each element. In Fig. 2, a top-
viewed illustration shows the voxelization and binarization of 3D
point clouds.

3.1.2 Rough alignment using bounding boxes After the
voxelization and binarization of point clouds, the translation dif-
ference (i.e., Xo, Yo, and Zp) between center coordinates of
bounding boxes of source and target point clouds will be calcu-
lated. This calculated translation is regarded as a rough alignment
between point clouds, which can reduce large phase angle differ-
ences in the normalized cross-power spectrum.

3.2 Phase correlation and frequency components selection

Once the point cloud is converted from raw 3D points into reg-
ularly sampled 3D signals, a 3D phase correlation will be con-
ducted by the use of 3D fast Fourier transformation. On the ba-
sis of the phase correlation result, the low-frequency components
will be extracted and then used for estimating accurate 3D shifts.

3.2.1 3D fast fourier transformation Before introducing the
3D phase correlation method used in this paper, a short intro-
duction to phase correlation will be given. Compared with some

Voxels Points [] Label: 0 [l Label: 1

(b)

Figure 2. A 2D illustration of voxelization and binarization. For
simplifying the sketches, we show top views of the results as
examples. (a) Voxelization of the point cloud (top view). (b)

Binarization of the voxels (top view).

other commonly used correlation-based methods, phase correla-
tion tends to be more accurate and efficient. The general idea
of phase correlation is that any translation between two relevant
signals (i.e., 3D discrete points) in the spatial domain can be rep-
resented as a phase shift in the frequency domain. Assume that
two point clouds are related to each other by shifts in x—, y—,
and z— directions denoted as dz, Jy, and Jz, respectively, and
the relation can be presented by:

s(z,y,z) =r(z —dx,y — 0y, z — 6z2) (1)

where s(z,y, z) and r(z, y, z) represent the two point clouds in
spatial domain. Then, a 3D fast Fourier transformation (FFT)
can be conducted on these two discrete point clouds to transform
them into the frequency domain.

R(u,v,w) = FFT(r(z,y,2)) ©)

in which S(u,v,w) and R(u,v,w) are the corresponding
Fourier transforms of s(z, y, z) and r(z, y, 2).

3.2.2 3D phase correlation Afterward, the phase correlation
between S(u,v,w) and R(u,v,w) is carried out. After the
correlation, the relation between the Fourier transformed point
clouds can be written as:

S(u,v,w) = R(u,v’w)efi(u6x+v6y+w5z) @

The normalized cross spectrum can be represented as:

_ S(”? v, u))R)k (’U,, v, 'LU) — e—i(uéz+v6y+wéz)
|S (u, v, w)R*(u, v, w)|
(5)

in which R* is the complex conjugate of R, and the magnitude
of @ is normalized to 1. The inverse Fourier transform (IFT)
of Q(u,v,w) is a Dirac delta function centered on (z, dy, §z).
Thus, the translation can be estimated by finding the peak co-
ordinates of this function. However, this solution can only pro-
vide results in the accuracy of integer voxels, which is not precise
enough for our demand and highly depends on the resolution of
voxels. To tackle this problem, instead of finding the peak in the
IFT of the normalized cross-power spectrum, we provide a so-
lution for identifying sub-voxel shifts directly in the frequency
domain. Since the phase different angle is a linear function of the
shift parameters defined by:

Q(u? 7‘)7 w)

£Q(u, v, w) = udz + voy + wiz, (6)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2020-227-2020 | © Authors 2020. CC BY 4.0 License. 229



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020
XXIV ISPRS Congress (2020 edition)

As seen from this equation, we can easily find that the represen-
tation of the phase difference angle equals to a linear function
with three unknown parameters representing shifts. By linear re-
gression, a solution of these parameters can be achieved (Tong
et al., 2015a). However, this is the ideal situation, and the real
situation is that source and target point clouds are not fully over-
lapped. Moreover, there would be noise and outliers existing in
the point clouds. All these will result in high-frequency noise in
the cross-power spectrum tensor. To avoid these high-frequency
disturbances, we need a selection of desired frequency compo-
nents.

3.2.3 Extraction of low-frequency components Based on
the computed Fourier spectra of the individual point clouds us-
ing FFT and their normalized cross-power spectrum matrix, it is
necessary to conduct a selection of frequency components for ex-
tracting those low-frequency ones. Here, it is assumed that the 3D
phase correlation between point clouds has similar characteristics
like the 2D phase correlation between images. Thus, as spectral
components at a high frequency are the most likely to be biased
due to aliasing and noise, most of the energy is mainly concen-
trated in the low-frequency components for 2D natural images in
the 2D case (Leprince et al., 2007, Tong et al., 2015b). For the
cross-power spectrum from the 3D phase correlation, a similar
strategy is used masking out around 80% of frequency compo-
nents at the periphery of the tensor ). Namely, only the core of
the tensor ) will be preserved for estimating the parameters of a
linear function.

3.3 Robust estimation of 3D shifts

Once the low-frequency components in the cross-power spectrum
are extracted, one can still follow the linear function given in
Eq.6. In order to estimate the parameters of this linear function,
a RANSAC algorithm is adopted, in which a subset with a min-
imized required size of randomly sampled data is utilized to fit
the model. In general, the idea of RANSAC is to estimate the
model parameters with the sampled data with a minimized size
(i.e., four points in this tensor) and then to check whether other
data samples are within a predefined threshold. However, the di-
rectly obtained cross-power spectrum is a wrapped tensor. There-
fore, prior to the estimation of parameters, a 3D unwrapping is
required. Then, the parameters (0x, dy, dz) of the unwrapped
phase angles of the identified components can be converted to the
real estimated shift parameters (AX, AY, AZ):

AX = 52M/(2r) )
AY = dyN/(2m) (8)
AZ = 621/ (2r) )

where M, N, L denote the dimensions of the input tensor. Af-
terward, considering the difference of the coordinates (Xo, Yo,
Zj) calculated from the rough alignment, the estimated 3D shifts
should be (Xo+AX, Yo+AY, Zy+AZ), which are the final out-
puts.

4. EXPERIMENTS AND RESULTS

4.1 Testing datasets

The proposed method for performing automated registration was
tested using TLS datasets of various scanners and scenes. Specif-
ically, three datasets were tested. The first dataset is a pair of
TLS point clouds from the ThermalMapper project acquired by

the Jacobs University Bremen (see Fig. 3a) (Borrmann et al.,
2013). The second dataset is from a pair of TLS point clouds
from the large-scale point cloud classification benchmark (Se-
mantic3D) datasets published by ETH Zurich (Hackel et al.,
2016), which is the area of Cathedral of St. Gallen (see Fig. 4a).
The last one is a set of scans from the Real-world Scans with
Small Overlap (RESSO) dataset (see Fig. 5a) (Chen et al., 2019).
For this dataset, we used three pairs of TLS point clouds. The
detailed information of the datasets is listed in Table 1. For the
first two datasets, we manually aligned source and target point
clouds as ground truth, while, as a registration benchmark, the
last one provided the accurately aligned source and target scans
as ground truth. Based on the ground truth, we manually trans-
lated the source point cloud with predefined 3D shifts. Then,
the matching was performed between the source and target point
clouds, and the root mean squared error (RMSE) of estimated 3D
shifts served as the criterion for the evaluation. Our method was
implemented in Matlab, and all the experiments were conducted
on a computer with an Intel i7-4710MQ CPU and 16GB RAM.

Number of points and overlaps
Datasets
Source Target approx. overlap
ratios

Bremen 15033238 | 15246878 | 0.85
StGallen 31640124 | 31149413 | 0.62
Resso Pair0-10 | 469284 461612 0.82
Resso Pair2-3 825915 618672 0.60
Resso Pair5-6 607874 501967 0.71

Table 1. Detailed information of experimental datasets.

4.2 Influence of different shifts

The first experiment is about the influence of different shifts. In
this experiment, we manually translated the source point cloud of
the Bremen dataset with predefined 3D shifts, ranging from 10m
to 100m with an incremental rate of 10m. In these tests, the size
of the voxel was set to 2m, and the threshold for RANSAC fitting
was set to 0.1. The maximum iteration number of RANSAC pro-
cess was limited to 20000 times. In Fig. 6, the 3D shifts estima-
tion results are displayed.

As seen from Figure 6, we can find that the performance of the
proposed method is insensitive to the shifts between source and
target point clouds. The RMSE of the estimated 3D shift was
around 0.65 m. This is because that the rough alignment using
bounding boxes has offset any large shifts. After such a rough
alignment, for the same pair of point clouds, the 3D shift esti-
mation is always the same problem. It is also interesting that the
execution time of tests reveals a slightly decreasing tendency, but
it is still within a range between 25 s and 35 s. Considering the
number of points, such an execution time indicates our method
is an efficient solution. This is also a major advantage of global
feature-based registration methods.

4.3 Influence of different resolutions in the discretization

Besides the shifts, for the proposed method, the resolution of vox-
els is also an essential factor that can significantly influence the
quality of shift estimation. The resolution is actually the geomet-
ric size of each voxel used in the voxelization and binarization. In
these experiments, we manually translated the source point cloud
of the Bremen and St.Gallen datasets with predefined 3D shifts
of 50 m. In these tests, the size of voxel ranged from 1.0 m to
5.0 m with an incremental rate of 1.0 m, and the threshold for
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Figure 4. Data and results of StGallen dataset. (a) Source and target point clouds. (b) Matching result.

RANSAC fitting was set to 0.1. The maximum iteration number
of RANSAC process was also limited to 20000 times. In Fig. 7b,
the 3D shifts estimation results are given.

As one can expect, the larger the voxel is, the faster the execution
of our method will be. The experimental result proves this as-
sumption. For both two datasets, the execution time experiences
a significant decrease along with the increase of voxel resolution.
On the other hand, it is also evident that the RMSE of the esti-
mated 3D shift for both two datasets shows a drastic improvement
from less than 0.5 m to more than 1.5 m. This is mainly because
the voxel resolution in the discretization directly determines the
sampling rate of 3D points. A large voxel size, namely a low
voxel resolution, indicates a sparse sampling of the point cloud,
which would be easier influenced by the aliasing effect. To give
a better illustration of the dataset and shift estimation results, in
Figs. 3b and 4b, source and target point clouds and matching re-
sults using a voxel resolution of 2.0 m are displayed.

4.4 Influence of different overlapping ratio

The overlapping ratio is another factor that matters to the pro-
posed method. This is because scans in the real-world typically
have unpredictable varying overlap ratios, which challenges any
registration algorithms (Chen et al., 2019). In this experiment,
six scans from the RESSO dataset were arranged into three pairs,

and the source point clouds of these pairs were manually trans-
lated by 50 m. The size of voxels was set 1.0 m, 2.0 m, and 3.0
m, respectively, and the threshold for RANSAC fitting was set to
0.1. The maximum iteration number of RANSAC process was
also limited to 20000 times. In Fig. 8, the 3D shifts estimation
results are shown.

As seen from Figure 8, we can observe the tendency that the exe-
cution time reveals a significant decrease along with the increase
of voxel resolution, while the RMSE will increase when the voxel
size is getting larger, except the result of the third pair. Accord-
ing to these observed results, we can conclude that our proposed
method is robust to the datasets with various overlapping ratios.
In Fig. 5b, the source and target point clouds and matching re-
sults using a voxel resolution of 2.0 m are displayed. From these
illustrated results, we can definitely confirm that our proposed
method shows a satisfying performance of efficient estimation of
3D shifts between point clouds of different overlapping ratios.

5. CONCLUSION

This work proposed an automatic marker-free method using
global features for a fast and robust estimation of 3D shifts be-
tween point clouds, which converted the 3D translation calcula-
tion between two point clouds from the space domain to the esti-
mation of phase difference in the frequency domain. By utilizing
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Figure 5. Data and results of Resso dataset. (a), (b) and (c) source and target point clouds. (d), (e), and (f) matching results.
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Figure 6. RMSE and running time of the test using Bremen
dataset with different shifts.

the low-frequency components and robust estimator, accurate 3D
shifts were estimated from the parameters of the linear expres-
sion in the cross-power spectrum of phase correlation. The ex-
perimental results using TLS datasets of different scenes revealed
that the proposed method is both effective and efficient. Specifi-
cally, the proposed method achieved a matching with translation
error less than around 1.0 m using the testing datasets.

However, the current method and conducted experiments still
have some drawbacks that could be improved in future work. For
example, the rotation is not considered in the current solution,
which is actually a more challenging task than just estimating
the translation. Fortunately, the angle difference between two
point clouds could also be converted into a phase difference in
the frequency domain using log-polar transformation. Success-
ful cases have been achieved for the 2D image via Fourier-Mellin
transformation, which can be drawn on for the 3D case as well.
Moreover, in the binarization of the 3D point cloud, the current
method considers only the occupancy of the 3D space, but actu-
ally the point density also plays a role in the binarization, which
can increase the quantization accuracy of the 3D signal, provid-
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Figure 7. RMSE and running time of the tests using (a) Bremen
dataset and (b) StGallen dataset with different voxel resolutions.

ing richer information in the phase correlation. Therefore, future
work will focus on the following points, on the basis of the cur-
rent method:

e The estimation of rotation between point clouds using global
features in the frequency domain.

e The registration of multi-source point clouds with varying
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Figure 8. RMSE and running time of the test using RESSO dataset with different overlapping ratios.

density, overlaps, and noise levels.

e A refinement based on the coarse registration results for a
fine registration.

All these points would be further tasks that needed to be ad-
dressed so that the potential of using global features for point
clouds registration can be fully explored.
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