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ABSTRACT:

Registration of point clouds is a fundamental problem in the community of photogrammetry and 3D computer vision. Generally,
point cloud registration consists of two steps: the search of correspondences and the estimation of transformation parameters.
However, to find correspondences from point clouds, generating robust and discriminative features is of necessity. In this paper, we
address the problem of extracting robust rotation-invariant features for fast coarse registration of point clouds under the assumption
that the pairwise point clouds are transformed with rigid transformation. With a Fourier-based descriptor, point clouds represented
by volumetric images can be mapped from the image to feature space. It is achieved by considering a gradient histogram as a
continuous angular signal which can be well represented by the spherical harmonics. The rotation-invariance is established based
on the Fourier-based analysis, in which high-frequency signals can be filtered out. This makes the extracted features robust to noises
and outliers. Then, with the extracted features, pairwise correspondence can be found by the fast search. Finally, the transformation
parameters can be estimated by fitting the rigid transformation model using the corresponding points and RANSAC algorithm.
Experiments are conducted to prove the effectiveness of our proposed method in the task of point cloud registration. Regarding the
experimental results of the point cloud registration using two TLS benchmark point cloud datasets, featuring with limited overlaps
and uneven point densities and covering different urban scenes, our proposed method can achieve a fast coarse registration with
rotation errors of less than 1 degree and translation errors of less than 1m.

1. INTRODUCTION

Registration of point clouds is a fundamental problem in the
community of photogrammetry and 3D computer vision. To
some extent, the result of point cloud registration serve as pre-
requisite for many applications, such as, construction monitor-
ing (Bosché et al., 2015, Tuttas et al., 2017), forestry monitor-
ing (Polewski et al., 2019), urban planning (Vosselman, Maas,
2010), and 3D modeling (Lafarge, Mallet, 2012, Yang et al.,
2013). Briefly, the objective of point cloud registration is to
unite the data (i.e., 3D points) acquired in various views, plat-
forms, or times into a common coordinate system.

Generally, the registration methods mainly consist of two essen-
tial categories: coarse registration and fine registration. For fine
registration, iterative closest point (ICP) (Besl, McKay, 1992,
Chen, Medioni, 1991, Zhang, 1994) and its variants (Habib et
al., 2010, Yang et al., 2015) are the representative algorithms
and have been proved to be effective and efficient. Additionally,
normal distribution transform (NDT) (Biber, Straßer, 2003) is
also a commonly used standard algorithm for fine registration.
However, in the step of fine registration, proper initial trans-
formation values are of great importance for fine registration
to avoid local optimum. In this paper, we address the prob-
lem of how to provide good initial transformation parameters
to find registration, namely the problem of coarse registration.
To achieve coarse registration of point clouds, at least two steps
are required: finding the correspondences and estimating the
∗ Corresponding author

transformation parameters. Among the two steps, finding the
correspondences between point clouds is important and is the
basis for estimating transformation parameters.

For most general registration tasks, one commonly used
strategy of finding correspondences is to use a feature-based
strategy, which can be divided into three steps:

• Detecting of key geometric points or primitives;

• Constructing features for the detected key points or prim-
itives;

• Determining the correspondences using the extracted fea-
tures.

However, the estimation of correspondences of unordered and
unstructured point clouds is still challenging due to the follow-
ing reasons:

• Uneven point densities caused the varying observation dis-
tances of the scanners;

• Noise and outliers resulting from temporary or moving ob-
jects;

• Low-overlapping rate between point clouds;

• High-similarity and symmetry, especially for point clouds
acquired in urban areas;
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• Large data amount of point clouds.

To tackle the aforementioned problems, we present a robust and
fast registration workflow. The workflow consists of four steps:
representing unordered 3D point clouds by 3D volumetric im-
ages, constructing rotation-invariant features for each voxel in
volumetric images, searching for corresponding voxels in fea-
ture domain, and estimating the transformation parameters with
a robust estimator. Differing from the commonly used feature-
based strategy, as mentioned before, in the proposed workflow,
we skip the step of detecting key geometric points or primitives
to eliminate the errors or inaccuracies caused in the step of de-
tecting edges, planes or other primitives. For most of the point-
wise or voxel-wise rotation-invariant descriptors, the rotation
invariance is achieved by aligning the local reference frame
(LRF) by estimating the dominant gradient direction. How-
ever, the descriptor used in this paper for constructing rotation-
invariance can map arbitrary voxels in volumetric images to a
feature field, which is also the reason why detecting key points
or primitives can be skipped in the proposed workflow. Besides,
the rotation-invariant features are robust to noise without the
step of estimating the dominant gradient direction. With these
factors taken into consideration, the main concept is to repres-
ent point clouds with robust and rotation-invariant features in
the frequency domain, so that a robust alignment between point
clouds can be achieved.

2. RELATED WORK

In this paper, we mainly address the problem of coarse registra-
tion. Generally, many kinds of research have reported different
solutions for coarse point cloud registration. The registration
methods can be primarily categorized into two classes: Feature
description-based registration and geometric constraint-based
registration.

2.1 Feature description-based registration

For the feature description-based registration methods, as men-
tioned before, feature descriptor plays an important role in fea-
ture matching. Corresponding points are identified via the sim-
ilarity measurement between features. In the literature, many
different descriptors have been reported to be useful in the fea-
ture matching, such as scale-invariant feature transform (SIFT)
(Flitton et al., 2010), fast point feature histogram (FPFH) (Rusu
et al., 2009), rotational projection statistics (RoPS) (Guo et
al., 2013) and signature of histogram of orientations (SHOT)
(Tombari et al., 2010) and so on. Generally, two characteristics
of a sufficient descriptor have to be addressed, which are high
descriptiveness and rotation-invariance. However, descriptors,
such as SIFT, highly depend on intersecting point detectors.
Thus, it is impossible for dense feature extraction using this
kind of descriptor. Additionally, the strategy used for achiev-
ing rotation in-variance is based on pose normalization. For
example, SIFT produces rotation-invariant features by aligning
LRF to the dominant gradient orientation. However, most of the
LRF-based feature descriptors are not robust to surface noise
and outliers. The other way is to obtain the statistics of the
local geometry. It is of easy conduction and fast computation.
But the only problem for this strategy is that the features may
suffer from low descriptiveness.

Apart from the point-based feature matching methods, many
other researches utilized geometric primitives as features in-
stead of points, such as lines (Habib et al., 2005, Polewski, Yao,

2019), curves (Yang, Zang, 2014), planes (Xiao et al., 2013)
and plane pairs (Chen et al., 2019). On the other hand, the com-
bination of different kinds of primitives is also an effective dir-
ection for the task of registration and simultaneously improve
the robustness of these geometric features (Xu et al., 2017). No
matter the process of detecting keypoints or forming geometric
primitives, the accuracy of the registration highly relies on the
accuracy of the estimation of these geometric representations.
Sometimes, outliers will be induced in the process of finding
edges, lines, or planes.

2.2 Geometric constraint-based registration

In addition to the feature description-based method, some meth-
ods follow a different registration scheme. In this type of
method, the registration is not achieved by generating fea-
tures and find feature correspondences; instead, they will
identify corresponding points by predefined geometric con-
straints. Here, 4-points congruent set (4PCS) (Aiger et al.,
2008), as well as its variants, such as Super4PCS (Mellado et
al., n.d.), keypoint-based 4PCS (K4PCS) (Theiler et al., 2014),
and semantic keypoint-based 4PCS (SK4PCS) (Ge, 2017) are
representative registration methods using this strategy, in which
pairwise congruent point sets are determined by exploiting the
rule of intersection ratios. For point clouds, intersection ratios
of congruent points are invariant under the affine transforma-
tion, and they are used to determine whether two point sets are
matched or not. Compared with feature description-based regis-
tration, these algorithms are more robust to noise, occlusions,
and uneven densities. Additionally, in this method, the candid-
ates for the transformation parameters can be largely reduced,
which releases the pressure on computation. Meanwhile, some
other strategies are based on the 4PCS strategy but conduc-
ted using different primitives. Representative extensions of this
strategy are the ones using planes replacing points. Voxel-based
4-plane congruent sets (V4PCS) (Xu et al., 2019) and 4-planes
congruent sets (4-PlCS) (Bueno et al., 2017) are symbolic of
the implementation of structured planes as congruent sets with
angle ratio constraints.

The assembly or extracting of planes from points will power-
fully overcome the uneven dot density and outlines that ensure
consistent alignment of planes of specific angles. The distance
measured of points used by conventional 4PCS approaches, as
a comparison, is more sensitive to outliers and noises. Another
interesting example is the volumetric 4PCS (V-4PCS) (Huang
et al., 2017), which extends the four coplanar points to volu-
metric non-coplanar data and theoretically shows a significant
reduction in computational complexity.

2.3 Our contributions

Although the literature mentioned above is not comprehensive,
a few pieces of research have addressed the characteristics of
3D point clouds in the frequency domain. In 2D image match-
ing, methods based on Fourier transforms are commonly util-
ized, such as phase correlation (Nagashima et al., 2006). In
(Huang et al., 2019), the strategy of Fourier-based 2D image
matching was successfully applied to 3D point cloud registra-
tion. In (Liu et al., 2014), a 3D rotation-invariant descriptor was
proposed and tested in the task of shape retrieval. In our work,
we embed the concept of achieving rotation-invariance in the
frequency domain in the framework of point cloud registration.
The major contributions of this paper are abstracted as follows:
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• We proposed an efficient framework for fast coarse re-
gistration of point clouds, which is sufficient in the
low-overlapping dataset. In the proposed workflow,
point clouds are represented using volumetric images
and mapped to feature space using a rotation-invariant
descriptor, spherical harmonic HoG (SHHOG), in the fre-
quency domain.

• The descriptor has two main benefits. The descriptor is
not restricted by geometric shape extraction. On the other
hand, the descriptor is robust to noise and outliers since
high-frequency signals are filtered out when representing
the corresponding signal with spherical harmonics.

3. METHODOLOGY

The proposed methodology for point cloud registration com-
prises four essential steps: voxelization of point clouds, local
rotation-invariant feature extraction from two volumetric im-
ages, finding pairwise correspondences, and estimation of
transformation parameters, as illustrated in Fig. 1. In the first
step, point clouds are individually transformed into 3D volu-
metric images, in which each voxel in the 3D grids represents
the number of points located within the corresponding spatial
boundaries. Second, features for each voxel are constructed
using Fourier-based HoG features in a continuous way. Sub-
sequently, the corresponding voxels are matched with a fast
search method using the features extracted in the previous step.
Finally, the transformation parameters are calculated using the
corresponding voxels and a RANSAC-based strategy for robust
estimation. The detailed explanation of each step in the work-
flow is introduced in the following sub-sections.

3.1 Local rotation-invariant feature extraction in the fre-
quency domain

The local rotation-invariant feature extraction consists of three
steps: voxel-wise HoG feature extraction with spherical har-
monic representations, computation of regional features, and
the final feature extraction. In Fig. 2, the key parts in feature
extraction are illustrated.

3.1.1 Voxel-wise feature extraction The first step is to cre-
ate a distribution for each voxel. Let a 3D location of any voxel
in a volumetric image C be (x, y, z) in Cartesian coordinates,
and the corresponding 3D gradient to be d(x,y, z) denoted as
the gradient in each direction. Thus, the SH coefficients will
be:

Fl(x, y, z) =
2l + 1

4π
‖d(x, y, z)‖Yl(d(x, y, z)) (1)

where the Schmidt semi-normalized SHs are defined as:

Yl
m =

√
(l −m)!

(l +m)!
Pl
m(cos(θ))eimφ, (2)

where Pl
m are Legendre polynomials, which can be calculated

by given functions in Matlab. With the issue of noise and out-
liers considered, only low-frequency degrees in the SH repres-
entation are computed, which has the same effect as low-pass
filtering.

Then, with spatial aggregation and normalization, the SHHOG
field can be expressed as:

F̃lm = Flm/
√
‖d2‖ ∗K (3)

Assuming that the 3D signal is rotated with l-th degree, the fea-
ture behavior under the rotation can be derived as:

gF̂l = [‖d‖DlgYl(d)] ◦Tg = Dlg[F̂l ◦Tg] (4)

Thus, the spherical tensor operations are needed to create
rotation-invariant regional descriptors from the SH HOG field.

3.1.2 Regional feature extraction To obtain rotation-
invariant features and improve the descriptiveness of the fea-
tures, multiple concentric voxels around a selected voxel are
used to describe the surroundings of the corresponding voxel.

Before the identification of rotation-invariance of features, it
should be noted that the inner-product of two spherical tensors
are rotation-invariant, which can be proved by

g(F1
†F2) = g(F1)†g(F2) = (DlgF1)†(DlgF2)

= F1Dlg
†DlgF2 = F1

†F2

(5)

Thus, we can produce rotation-invariant features by coupling
the filtering output of the same rank as the inner product. Fi-
nally, the descriptor can be calculated by

fi =

∫
tensor product(F̃l(x− x′),Gn(x′), k)dx′ (6)

where Gn denotes the spherical Guassian derivatives.

3.1.3 Procedures of local rotation-invariant feature ex-
traction In summary, the procedures for extracting rotation-
invariant features are given below:

• By applying Fourier transformation in spherical coordin-
ates on each voxel in the volumetric image, the mag-
nitude features can be obtained given the corresponding
Fourier order numbers, which can be denoted as f1m =
‖Dm‖,m = 0, 1, 2, ...,m. This part is called the mag-
nitude part.

• Using Eq. 5, rotation behavior can be compensated. Thus,
the second part of features is absolute rotation-invariant
features, which can be presented as FmFm.

• In the former two parts, the phase information is com-
pletely removed. Aiming at reducing the loss of phase
information, we derive the relative rotation-invariant fea-
tures by the convolution of two spherical tensor fields us-
ing the tensor product using Eq. 6.

Combining the aforementioned parts, we can finally derive the
rotation-invariant features. In general, there are three main ad-
vantages of this Fourier-based rotation-invariant features. First,
continuous dense feature computation can be achieved using
this descriptor. Second, a low-frequency filtering is conducted
with the spherical harmonic representation, which makes the
descriptor robust to noise and outliers. Third, the final features
contain not only the information of the corresponding voxels
but also the surroundings, which makes this descriptor of high
descriptiveness.

3.2 Generating pairwise correspondences

The identification of corresponding voxels can be conducted in
a fast way using the estimated features. The correspondences

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-235-2020 | © Authors 2020. CC BY 4.0 License.

 
237



Figure 1. Workflow of the proposed coarse registration strategy.

Figure 2. RIDF descriptor. (a) An individual gradient vector is
represented by a distribution in sphere. (b) Signals on sphere are

reconstructed from spherical harmonics. (c) Regional
convolution obtained by spherical tensor operations considering

the corresponding surroundings.

between features are estimated by the criteria set with Euclidean
distances in the feature domain. The selection of the threshold
for feature matching varies for different datasets and is set em-
pirically. It is set by checking the distribution of the distances
between each voxel and its corresponding nearest voxel and
also the number of voxel-pairs selected to the matched voxel
list. The specific workflow for finding correspondences are
provided in Algorithm 1.

3.3 Estimation of transformation parameters

After finding the corresponding voxel pairs, the transformation
parameters of the rigid transformation, including 3D rotations
and translation, between point clouds can be estimated. For
achieving a robust estimation for the parameters, a RANSAC-
based strategy is applied. In each round of RANSAC, a set
of transformation parameters can be obtained. Then the es-
timated transformation parameters are utilized to transform all

Algorithm 1: Finding feature correspondences: Given fea-
ture representations of volumetric images of two scans, find
the matched voxels from the two scans using the features.
Require: Volumetric images I1 and I2 and corresponding

feature fields F1 and F2

Ensure: Matched voxel pairs denoted by their corresponding
positions

1: For each voxel in I1, search for the nearest points in
feature domain using the Tree(F2) created with the
corresponding features

2: Judge whether the distance between F1 and the matched
F2 are smaller than the threshold σ

3: If not, jump to the next voxel
4: If yes, add the voxel pairs to the matched voxel list

the matched voxels in the target scan. Here, the thresholds for
the RANSAC trials are set to be two-fold. One should be the
maximum number of trials, and the other one is the minimum
threshold of the registration score. For any trials, if the registra-
tion score is lower than the threshold, the transformation para-
meters will be the final estimated transformation parameters,
and the RANSAC process will be stopped. The other case is
that the RANSAC process will be stopped when the number of
trial reaches the maximum amount. In this case, the transform-
ation parameters in the last trial will be saved.

4. EXPERIMENTS AND ANALYSIS

4.1 Experimental data

The proposed method for performing the registration is tested
using two TLS point cloud datasets, which are acquired with
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different scanners and from different urban scenes, as illus-
trated in Fig. 3. The first one is a point cloud pair from the
ThermalMapper project acquired by the Jacobs University Bre-
men (Borrmann et al., 2013). The second dataset is one pair
of point clouds chosen from the Real-world Scans with Small
Overlap (RESSO) dataset (Chen et al., 2019). Compared with
the first dataset, the overlapping rate is relatively lower. For
the first dataset, the source and target point clouds are manually
aligned as ground truth. For the second one, it is provided as a
benchmark dataset, in which the accurate transformation para-
meters between the source and target point clouds are provided.
All the experiments were conducted on a 64 Bit Windows 10
PC with 8 GB RAM and an Intel (R) Core (TM) i7-6700 @ 3.4
GHz CPU.

Table 1. Information of experimental datasets.

Dataset Number of points and overlaps
Source Target Overlap ratio

Bremen 15033238 15246878 0.85
Resso Pair2-3 825915 618672 0.60

4.2 Evaluation metric

For evaluation, we use the following evaluation metrics: the ro-
tation errors and the translation errors, which are computed us-
ing the references provided by manually registration or ground
truth. Providing the reference transformation matrix Tgt and
the estimated transformation matrix Te, the rotation error er

and translation error et can be computed by:

∆T = Tgt(Te)
−1 =

[
∆R ∆t

0 1

]
(7)

er = arccos(
tr(∆R)− 1

2
) (8)

et = ‖∆t‖ (9)

wherein tr(·) denotes the trace.

4.3 Experimental results

The coarse registration results using two datasets are illustrated
in Fig. 4. In the experiments, the voxel size used for the Bremen
dataset is set to 2m, and the voxel size for the Resso dataset is
set as 1m. The thresholds for the identification of feature cor-
respondence are both set to be 0.5, and the maximum iteration
number of RANSAC is set as 1 million times. In Table 2, the
number of matched voxels are provided. From the visualization
aspect, it is shown that the point clouds are well aligned. Mean-
while, the quantitative results for the registration are given in
Table 3 and 4. For the two scenes of Bremen and Resso, the ro-
tation errors are less than 1 degree. As for translation errors,
they are both less than 1m. The results reveal that the pro-
posed method can achieve successful registration among dif-
ferent point cloud datasets, even for the datasets which have a
comparatively low overlapping rate. On the other hand, based
on the coarse registration results, the registration can be further
improved by applying fine registration.

To further validate the effectiveness, the experimental results
are compared with three benchmark methods using the Bremen
dataset. The baseline methods we used for comparison are FPF-
HSAC (Holz et al., 2015), K4PCS (Theiler et al., 2014), and

Table 2. Matched voxels in the experimental datasets.

Dataset Number of matched voxels
Source Target Matched

Bremen 12712 13197 142
Resso Pair2-3 13428 19424 382

V4PCS (Xu et al., 2019). The FPFHSAC method registered
point clouds using FPFH features and a RANSAC process for
the robust estimation of transformation parameters. The K4PCS
method is under the framework of 4PCS. The difference is that
this method using keypoints instead of random points, which
largely reduces the number of candidates and improves the ef-
ficiency and robustness of the algorithm. V4PCS provided a
different solution for utilizing the 4PCS framework. The 4PCS
are replaced by voxel-based 4-planes congruent sets. In this
method, more geometric constraints are added, which improved
the robustness and has been proved to be a fast and effective
way for point cloud registration. The registration results for
these methods are listed in Table 3. It is shown that all com-

Table 3. Results of four registration methods using the Bremen
dataset.

Methods Rotation error (deg) Translation error (m) Time (s)
FPFHSAC 0.3601 0.0692 318

K4PCS 0.3682 0.4826 256
V4PCS 0.1916 0.6312 78

Ours 0.9218 0.6054 104

pared methods provide satisfying performance. Comparatively,
our proposed method offers a weaker performance considering
the rotation error and translation error. The main reason lies
in the two factors which highly influence the registration ac-
curacy. The first one is the geometric resolution of each voxel.
In our experiments, considering the limitation of computation
memory and the covered areas of the point clouds, the voxel
size can not be set to a small value, which largely limits the
representation of details of the scene. In future work, the rep-
resentation of voxels and the processing way for extracting the
features can be changed to reduce the required memory. On
the other hand, the criteria for estimating correspondences is
also an important factor. The smaller the threshold is set, the
fewer correspondences are extracted. The time spent on the
RANSAC process will be largely reduced. However, a strict
setting for the threshold will also decrease the flexibility of the
registration framework in considering noise, outliers, or even
artifacts caused by our former voxelization processing. As for
the running time, although the time performance of our pro-
posed method is slightly weaker than V4PCS, it is obviously
better than the other two feature-based methods. However, it is
not fair to draw a conclusion for the time performance since our
proposed method was conducted on Matlab while others were
conducted on C++. Additionally, as stated before, the voxel size
and the criteria for estimating correspondence are two import-
ant factors influencing time performance. The time spent on the
RANSAC process can be largely reduced with larger voxel size
and smaller threshold.

Table 4. Results of two registration methods using the Resso
dataset.

Methods Rotation error (deg) Translation error (m)
PLADE 0.0803 0.0854

Ours 0.4130 0.4619
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Figure 3. The experimental datasets. (a) and (b) are the source and target point clouds in the Bremen dataset. (c) and (d) are the source
and target point clouds in the Resso dataset. (color coded with intensities).

Figure 4. Coarse registration results. (a) and (b) are the source and target point clouds before registration. (b) and (d) are the coarse
registration results.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-235-2020 | © Authors 2020. CC BY 4.0 License.

 
240



Additionally, we also compare our registration results with the
baseline coarse registration method, PLADE, provided by the
data provider of Resso. The PLADE method offers a solution
for the small-overlapping dataset, which utilizes strong con-
straints between different planes as descriptors for point clouds.
As shown in Table 4 and Fig. 4, our proposed method can also
achieve acceptable results for the dataset with a small overlap.
Although our result is not as satisfying as the result provided
by PLADE, our result is at an acceptable level of coarse re-
gistration. It proves that our method is also adaptive to low-
overlapping cases.

5. SUMMARY

In this work, we present a marker-free registration method
which combines a robust rotation-invariant descriptor with a
RANSAC estimator. Specifically, the Fourier-based descriptor
enables us to describe each point cloud with rotation-invariant
features in a continuous dense way. The main benefit of this
descriptor can be concluded as high-descriptiveness, rotation-
invariance, robustness, and independent on shape feature ex-
traction. The RANSAC-based strategy provides the possibilit-
ies for excluding some outliers in the process of finding cor-
respondences. The experimental results using TLS benchmark
datasets have proved the effectiveness of our proposed method.

Meanwhile, the proposed method also provides satisfying res-
ults for datasets with small overlaps. However, there are also
some limitations of the proposed methods. The extraction of
features using the rotation-invariant descriptor relies on the rep-
resentation of point clouds in a volumetric way, which has a
high requirement for the computation memory. In the future,
we will try to embed a more efficient and less computation-
expensive data structure to this framework. On the other hand,
since this descriptor is less dependent on geometric feature ex-
traction, such as edges, lines, or planes, it may be sufficient
to utilize this descriptor for the registration in irregular-shaped
areas (i.e., forested areas, non-urban areas).
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mapping of building façades. Intelligent Autonomous Systems
12, Springer, 173–182.
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