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ABSTRACT:

Change detection is an important tool for processing multiple epochs of mobile LiDAR data in an efficient manner, since it allows
to cope with an otherwise time-consuming operation by focusing on regions of interest. State-of-the-art approaches usually either
do not handle the case of incomplete observations or are computationally expensive. We present a novel method based on a com-
bination of point clouds and voxels that is able to handle said case, thereby being computationally less expensive than comparable
approaches. Furthermore, our method is able to identify special classes of changes such as partially moved, fully moved and de-
formed objects in addition to the appeared and disappeared objects recognized by conventional approaches. The performance of
our method is evaluated using the publicly available TUM City Campus datasets, showing an overall accuracy of 88 %.

1. INTRODUCTION

Mobile laser scanning (MLS) is a fast and efficient way to col-
lect high resolution 3D measurements of extensive areas. The
possible benefits of such data are numerous. It can, for example,
be used for disaster assessment, to extract street sign informa-
tion or for the generation of city models. Regardless of the ac-
tual use case, the knowledge and products derived from the data
needs to be kept up to date. A re-evaluation of all data once new
measurements are available is inefficient. The active search for
changed areas within the dataset is a much more suitable ap-
proach. In literature, this process is referred to as automatic
change detection.

Figure 1. Our approch in context of change detection research.

The big challenge regarding automatic change detection is the
incomplete observation of the environment. While some scen-
arios allow a complete observation of the area-of-interest, most
real-world datasets suffer from occlusions or the fact that some
areas are only observed in one epoch, but not in the other. Is a
method unaware that some parts of the dataset have not been ob-
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served in both epochs, then it will accidently flag objects within
these areas as changed. For this reason, it is necessary that a
change detection method is able to handle such incomplete ob-
servations. One way to do this is to consider the occupancy
information embedded within the range measurements.

There are several categories of change detection algorithms that
can be classified by runtime and their capability to handle in-
complete observations. An illustration can be seen in Figure 1.
Approaches solely based on point clouds are not able to handle
incomplete observations, but are usually quite fast. Less fast
are volumetric methods such as occupancy grids, since they
are usually generated using raycasting-like algorithms. They
are able to recognize incomplete observations, however, at the
cost of discretization errors. Ray-based methods are the most
precise since they use all of the available information. Unfor-
tunately, they are required to have a quadratic runtime com-
plexity and therefore are much slower than algorithms based on
volumes and point clouds.

Our approach combines the best of two worlds. We use point
clouds in order to get a high spatial resolution and apply in-
formation extracted from a low-resolution occupancy grid to
include occupancy information. Therefore we are able to get
fast runtimes in combination with the capability to handle in-
complete observations. In addition, our approach allows to eas-
ily identify special cases such as partially moved, fully moved
and deformed objects, whereas other approaches usually only
identify appeared and disappeared objects.

Section 2 gives an overview over the state-of-the-art of occu-
pancy grids, change detection and deformation analysis. In Sec-
tion 3, we give a short definition of what we define as changes
and describe the different classes of changes identified by our
approach. A detailed explanation of our method follows in Sec-
tion 4. The capabilities of our approach are evaluated in Sec-
tion 5 based on a synthetic dataset especially created for this
purpose, as well as the TUM City Campus datasets.
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2. RELATED WORK

2.1 Occupancy grids

Occupancy grids are a memory-friendly way to store informa-
tion about free, occupied and unobserved areas. An approach
for indoor mapping proposed by (Moravec, Elfes, 1985) util-
izes a 2D grid with occupancy information. The latter one was
represented by a probability stored in each of the grid cells,
implying either free, occupied or unseen space. The grid has
been generated using ultrasonic sensors. Although the aperture
angle of each sensor was wide, the resulting grid turned out to
be a quite accurate representation of the environment.

An octree-based approach to represent arbitrary 3D structures
has been presented by (Meagher, 1982). Initially only binary
occupancy information had been considered, but later probab-
ilistic occupancy information has been added by (Payeur et al.,
1997). (Hornung et al., 2013) introduced propability clamp-
ing in order to ensure fast adjustment of the representation to
a dynamic environment. This also enabled a nearly lossless
compression strategy. The framework implemented by the au-
thors has gained popularity within the robotics community and
is known by the name OctoMap.

Based on the theoretical foundation provided by this work, we
proposed a concept for occupancy representation on a global
scale (Gehrung et al., 2016). The problem of artifacts caused by
the discretization inherent to occupancy grids has been solved
using an iterative refinement algorithm for occupancy octree
generation (Gehrung et al., 2018).

2.2 Change detection

The meaning of the term change detection depends on the con-
text and the field of research in which it is used. It plays an
important role in photogrammetry and remote sensing, where
it is used for tasks such as urban area monitoring and updat-
ing geo-databases (Du et al., 2016). Approaches similar in
effect, but different in name can be found in the field of 3D
computer vision. Here it is applied to tasks such as the De-
tection and Tracking of moving Objects (DATMO) (Litomisky,
Bhanu, 2013) or for the distinction of dynamic objects and static
background (Azim, Aycard, 2012). However, a far better cat-
egorization of methods can be made on the basis of the sensor
system used, more precisely on the processing of the measure-
ments generated by it. Since this work deals with mobile laser
scanning, only approaches that use 3D data are considered.

Surface points. Point clouds are a common representation
for 3D measurements, so using them in change detection ap-
proaches is straightforward. (Girardeau-Montaut et al., 2005)
proposed several simple cloud-to-cloud comparison algorithms,
organizing the point clouds using an octree in order to increase
performance. (Zeibak, Filin, 2008) converted point clouds from
a stationary terrestrial laserscanner into depth images in order
to compare multiple epochs with each other. The downside of
these approaches is that they can’t distinguish between changes
and incomplete observations.

Rays. In addition to the surface points, 3D measurements usu-
ally provide information about the free space traversed by the
measurement. This information is critical in order to distinguish
changes and incomplete observations. A popular approach util-
izing this was proposed by (Underwood et al., 2013). A ray
comparison strategy based on a spherical grid is used in order

to compare point clouds from different epochs or view points.
(Hebel et al., 2013) apply the Dempster-Shafer theory of evid-
ence to derive changes based on rays originating from airborne
laser scanning. A voxel grid is used for performance reasons.
(Xiao et al., 2015) proposed a similar approach for mobile laser
scanning data. Methods of this category allow accurate conclu-
sion, but require the evaluation of all rays within the region of
interest and are therefore computationally very expensive.

Cluster based. Some approaches utilize segmentation tech-
niques in order to extract clusters, which in turn are used
for the actual change detection. This requires well working
segmentation algorithms or classifiers for cluster extraction.
(Schachtschneider et al., 2017) use an occupancy grid in order
to assess the temporal behavior of clusters extracted from point
clouds of urban environments. (Aijazi et al., 2013) proposed
an approach that classifies clusters into known permanent and
temporary classes. A similarity map derived from an evidence
grid is used, inter alia, for change detection.

Occupancy grids. Grid based occupancy representations
provide similar advantages in terms of information as the ray-
based ones, albeit in a condensed form. (Pagac et al., 1996)
utilized the Dempster-Shafer theory of evidence to generate a
2D occupancy grid that serves as environment representation
for autonomous driving. (Wolf, Sukhatme, 2004) use a similar
approach for robot navigation that utilizes two grids to determ-
ine static and dynamic parts of a scene. (Azim, Aycard, 2012)
also divide measurements of an environment into static and dy-
namic elements by utilizing conflict search on an occupancy
grid based on the Octomap framework. We have successfully
applied probabilistic occupancy grids for short-term change de-
tection in order to detect and extract moving objects (Gehrung
et al., 2017). Additionally we proposed a fast indicator for de-
tecting changes (Gehrung et al., 2019). An octree-based struc-
ture utilizing Gaussian kernels has been used in order to repres-
ent the occupancy state of the environments. Thereby, we also
coined the term delta octree, which describes the differences of
occupancy and observation between two epochs.

Most of the approaches mentioned above do not scale to large
amounts of sensor data, such as the one generated by a state-of-
the-art mobile laser scanning system. Surface point based ap-
proaches as well as cluster-based ones are not able to handle oc-
clusions, ray-based approaches encounter performance issues.
Approaches based on occupancy grids either suffer from in-
formation loss due to crude resolutions or require great effort
in order to generate high spatial resolutions. Also, none of the
proposed techniques can correctly recognize partly moved ob-
jects out-of-the-box.

2.3 Deformation analysis

(Lindenbergh, 2010) distinguishes between change detection
and deformation analysis. In contrast to change detection, de-
formation analysis does not determine a purely binary change,
but rather the degree of change. There are different classes of
approaches, each one of them working on a different abstrac-
tion level. Point-by-point deformation analysis uses individual
measurement points or the corner points of a regular grid, like
the approach proposed by (Lague et al., 2013). Object-oriented
deformation exploits some kind of object representation, such
as geometric primitives (Xu et al., 2013) or building footprints
(Rutzinger et al., 2010). A middleway between both classes
of approaches are morphological maps, where the distances
between points and a geometric representation of the object are
determined (Pesci et al., 2013).
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(a) (b) (c) (d) (e)

Figure 2. The change detection classes, (a) appeared, (b) disappeared, (c) partially moved, (d) fully moved and (e) deformed.

3. THEORETICAL PRIMER TO CHANGE
DETECTION

3.1 About the term changes

The scope of this work is on long-term changes that typically
appear when comparing epochs that have a timespan of days,
weeks or month in between. Short-term changes such as mov-
ing objects are not considered. Furthermore, we define change
as the result of a semantically meaningful action that is applied
to some kind of object instance. Examples for this would be
moving a car or breaking a hole into a wall.

(a) (b) (c)

Figure 3. An object partially moved between (a) epoch t and (b)
epoch t+1 is usually recognized as (c) an appeared and a
disappeared cluster with an unchanged area in between.

Usually change detection is limited to determining appeared
and disappeared areas by comparing two or more epochs. This
leads to the following problems. Whenever an object has been
partially moved, it is broken down into an appeared, a disap-
peared and an unchanged part instead of being recognized as
the same object at different locations (see Figure 3). Also, when
an object is replaced by another one of about the same size,
detecting a change by comparing surface points or occupancy
information only could lead to partial or no detection at all.

3.2 Class definitions

In order to deal with the problems mentioned above, the change
detection approach presented in this work classifies changes
into five classes and a residue class. An illustration can be seen
in Figure 2. The classes are defined as follows.

Appeared. An object instance appeared. The space encom-
passed by it is free in epoch t but occupied in epoch t+ 1.

Disappeared. An object instance disappeared. The space en-
compassed by it is occupied in epoch t but free in epoch t+ 1.

Partially moved. An object instance has been moved between
epoch t and t+1, but in a way that it overlaps when comparing
both epochs with each other.

Fully moved. An object instance has been moved between
epoch t and t + 1, but in a way that it does not overlap when
comparing both epochs with each other. The object instance has
the same appearance in both epochs and the distance between
its center points is less than a predefined threshold.

Deformed. An object instance encompasses the same space
in both epochs t and t + 1 and has approximately the same
dimensions, but a different form. If an object instance exists in
both epochs, but with a significantly different size, the object
instance is considered to be disappeared and another one to be
appeared.

Unchanged Residue class which is applied to object instances
that are considered to be unchanged. It is used in case no class
of the above applies.

Appeared and disappeared are the classes usually used in
change detection. The partially moved class solves the typical
change detection related issue mentioned above and is a valu-
able source of information, as the class fully moved is. The
deformed class is required to denote object instances that have
significantly changed their appearance or have been replaced by
instances of other objects.

3.3 Reasons for combining voxels and point clouds

As mentioned in Section 2.2, change detection methods either
utilize volumes or some variation of point clouds. An advantage
of point clouds is their ability to represent the environment with
the highest resolution available, given the sensor measurements.
However, point clouds gained from mobile laser scans do only
provide occupancy information if the latter ones are processed
as rays, but the evaluation of all available rays within an area
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is a time-consuming process, especially when considering large
areas or huge amounts of measurements common for mobile
laser scanning.

Figure 4. Whenever the environment is insufficiently sampled by
the laserscanner, holes appear in occupancy grids of high

resolution.

Volume-based data structures like octrees or occupancy grids
have the inherent advantage that they are able to represent oc-
cupancy as well as explorational information. They enable the
derivation of a so called delta octree that encodes information
about changes between epochs (Gehrung et al., 2019). It is also
able to mark areas for which no statement about a change of oc-
cupancy can be made. The challenge with volume-based tech-
nologies is that the maximum resolution is limited. For one
thing, this is due to performance issues regarding the voxel gen-
eration. Even fast algorithms such as the one using iterative
refinement previously proposed by us (Gehrung et al., 2018)
require large runtimes for resolutions of about 10 cm.

Another limitation is the well known Nyquist-Shannon
sampling theorem that describes the condition required for the
sampling of a continuous signal. In this case it can be used
as an analogy to understand the effects that take place when
an environment is reconstructed from laser scanning data. The
generation of a voxel grid from laser scans represents such a re-
construction. Figure 4 shows the effects appearing when a voxel
grid is constructed using a resolution too fine for the available
laser scans. A fragmentation occurs in a way that the compar-
ison of two epochs would compare most voxels with unseen
areas. The reason for this is that the laser scanner sampled the
environment in a frequence too low to allow for its reconstruc-
tion at the given resolution. The correct frequency would be a
function of the scanner mount angle, the distance to the surface
and the speed of the mobile mapping system. As a result, the
actual sampling frequency varies greatly in practice.

This work attempts to combine the advantages of both volumes
and point clouds. The goal is to propose a change detection
algorithm that is able to utilize occupancy and explorational in-
formation from a voxel-grid with a coarse resolution in order to
detect and evaluate candidates selected from a point cloud with
a higher resolution. This approach is also intended to solve the
problems regarding partially moved and deformed objects de-
scribed in Section 3.1.

4. VOXEL-ENHANCED CHANGE DETECTION

4.1 Overview

This section provides a quick overview of the approach presen-
ted in this paper. A full explanation is given in the following

sections. A flow chart illustrating the process can be seen in
Figure 5. The input consists of the point clouds of both epochs
as well as the delta octree. In a first step, candidates are selec-
ted from the point clouds of both epochs. Clusters representing
appeared and disappeared volumes are extracted from the delta
octree and intersected with the candidates. This results in what
we refer to as basic instances. These represent object instances
that either appeared or disappeared. This term has been chosen
in order to describe the kind of information usually generated
by state-of-the-art change detection approaches.

Figure 5. The individual sections of the change detection
method presented in this work.

Based on the basic instances, the extended instances are de-
termined. These are partially and fully moved object instances,
as well as deformed object instances. In a final step, the basic
and extended instance lists are checked for plausibility. Each
individual step is described in the subsequent sections.

4.2 Candidate selection from point clouds

The candidate selection describes the segmentation of the point
cloud into clusters. These clusters are considered to have some
kind of semantic meaning, they are therefore instances of an ob-
ject set. They can, for example, correspond to people, cars, ve-
getation or buildings. For the sake of simplicity, we assume that
removing the ground plane and applying a simple Euclidean
clustering algorithm will provide said clusters.

Filtering is an important step following the clustering, be it in
order to remove clutter or to provide additional boundary condi-
tions. These could be a given cluster dimension when searching
for persons or if a focus on large objects is required. The fol-
lowing criteria are used, specified as intervals.

• Number of points

• Cluster height, weight and length

• Height above ground

Other criteria are possible, therefore the above list is not neces-
sarily complete.
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4.3 Extracting voxel-clusters from the delta octree

The delta octree is a volumetric data structure that encodes the
changes within the occupancy and observation of the environ-
ment. Note that all ground points had been removed before
generating the occupancy grid in order to increase performance
and to avoid clutter. The delta octree is segmented into clusters
representing appeared and disappeard objects. Starting from a
seed list, flood filling is applied in order to get said clusters. As
with point clouds, filtering is used. The following criteria are
used, specified as intervals:

• Volume

• Height above ground

Other criteria are possible, therefore the above list is not neces-
sarily complete.

4.4 Determining basic instances

The lists of appeared and disappeared object instances, the ba-
sic instances are determined by calculating the overlap between
the candidates extracted from the point clouds and the voxel
clusters. All voxel clusters are intersected with all point cloud
clusters within a given range. For each correspondence, the pro-
portion of points inside the voxels of the cluster is calculated.
Filtering based on the activity threshold ta is applied in order to
determine whether or not a candidate is added to the list. This
process is executed for appeared and disappeared clusters.

4.5 Determining extended instances

The extended instances are derived from the basic instances.
They represent partially moved, fully moved and deformed ob-
ject instances. A search within the local neighborhood between
both appeared and disappeared object instances is executed.
Therefore, all appeared and disappeared instances are com-
pared with each other. If the volumes of the bounding boxes
have about the same order of magnitude, further comparisons
as shown in Figure 6 take place.

Figure 6. The case discrimination that is applied to determine
the extended instances.

An intersection test based on axis-aligned bounding boxes is
applied. If it is successful, an advanced intersection test using
a k-d tree is used in order to determine whether or not object
instances actually intersect. If they do, their similarity is com-
pared using the technique described in Section 4.6. If there is a

similarity, the object instance pair is considered to be partially
moved. In case they are not similar, the pair is considered to be
deformed. If there is a similarity but no intersection, the object
is considered to be fully moved.

4.6 Comparing candidate similarities

Basic instances are checked for similarity by comparing the
point clouds representing them. Two point clouds A and B of
different epochs are compared in a point-wise manner. Since it
cannot be assumed that there are no occlusions and the envir-
onment is completely observed, observability information ex-
tracted from the delta octree is incorporated. The difference
between two clouds is determined using the error function e.
Both clouds are considered to be similar to each other if the
function value is less or equal to a similarity threshold ts.

Before both clouds can be compared, cloud A needs to be
aligned to cloud B. Therefore, an initial transformation is
determined using a centroid-based technique. Based on this,
RANSAC-enhanced ICP is applied. Cloud A is then compared
to cloud B in a point-wise manner using a variation of the mean
square error. It is defined as

eBA =

NA∑
i=1

di. (1)

NA is the number of points in cloud A. The deviation di
between two points in cloud A and B is defined as

dAB
i =


(
pAi − pBi

)2
if neighbor in B

4ts
NA

if no neighbor in B
0 if area unobserved in B.

(2)

For each point pAi in cloud A, the neighbor point pBi in cloud
B is determined. A maximum distance is used for the neigh-
borhood search. If a neighbor is found, di is set to the squared
distance between both points, otherwise to a penalty constant.
The constant is designed in a way that a comparison to the sim-
ilarity threshold ts fails as soon as a predefined percentage of
all points in cloud A does not have a neighbor in cloud B. The
percentage of points is defined by the penalty threshold tp. In
case no neighbor is found, the delta octree is checked whether
or not the area has been observed in cloud B. If this is the case,
di is set to zero, since it is impossible to say whether or not that
part of the object instance has changed or not been observed.
The error function e combines both comparisons eBA and eAB . It
is defined as

e = log

(
eBA

NA

NA +NB
+ eAB

NB

NA +NB

)
, (3)

where the score for a comparison in each direction is weighted
by the number of involved points. The logarithm is used to
stretch the result space in a way that benefits the selection of
the similarity threshold ts.
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4.7 Plausibility check

The purpose of the plausibility check is it to keep the lists con-
taining the basic instances consistent with the lists of the exten-
ded instances. Since the latter ones are derived from the former
ones, there are some object instances that are part of both the
basic and extended instances. A simple search is applied to re-
move all of these object instances from the basic instance lists.

5. EXPERIMENTS

5.1 Synthetic dataset

In order to verify that our approach is capable to identify the
change classes defined in Section 3, we created a synthetic
LiDAR dataset using the Blensor plugin for the free software
Blender. For each class we created a simple three-dimensional
scene, each with two epochs. Each scene consists of a flat
surface with one or more geometric primitives and is avail-
able in two versions. In a fully observed version, the scene
has been scanned from all cardinal directions, therefore four
LiDAR scans were generated. In the partially observed ver-
sion, only a single LiDAR scan showing the scene from one
cardinal direction has been created. In addition, a demo scene
containing examples for all classes has been created. It serves
for illustration purposes only.

5.2 TUM MLS datasets

The evaluation with real-world data is based on the TUM City
Campus1 datasets (Gehrung et al., 2017). They consist of two
measurement rides that took place in spring 2016 and winter
2018. It is well suited for change detection, since there are a
variety of minor and major changes between both epochs. Both
datasets are publicly available under a Creative Commons Li-
cense.

The datasets have been recorded using the measurement vehicle
MODISSA (Borgmann et al., 2018). It is equipped with two
Velodyne HDL-64E LiDAR sensors mounted at an angle of 25 °
on the vehicle front roof. This allows recording both the area
in the vicinity of the vehicle as well as building facades. The
datasets consist of a sequence of individual scans, with each
scan covering approximately 0.1 seconds of data aquisition. All
single points in all scans have individually been georeferenced
using the on-board Applanix POS LV navigation system that
combines navigation data from two GNSS antennas, an inertial
measuring unit and a distance measurement indicator (Diehm
et al., 2020).

In order to further increase the quality of intra- and inter-
epoch registration of the scans in the dataset, we applied meth-
ods known from graph-based SLAM. In an additional fine-
registration step, we combined multiple consecutive scans to
chunks which in turn were registered against an accumulated
point cloud of the first epoch using ICP. From this data we ex-
tracted a subset containing the TU Munich inner city campus.

Labels for all moving objects were manually generated and
used to remove them from both epochs. In addition, we cre-
ated labels for all objects that disappeared from the first epoch
and appeared in the second one. The labels are used during
the evaluation as ground truth for changed objects. Evaluating
the plausibility of an object instance class is done by a human
observer, due to reasons mentioned in Section 6.2.

1http://s.fhg.de/mls2

6. RESULTS AND DISCUSSION

6.1 Synthetic dataset

The synthetic dataset has been used for developement purposes
and to determine initial parameters for the real-world data.
For cluster activity threshold and penalty threshold ta = 0.1
and tp = 0.25 were found to be appropriate. The similarity
threshold has been defined as ts = 1.5. The maximum search
distance for neighbors is set to 0.3 m. The synthetic dataset
shows that object instances in every scene are recognized and
classified correctly, even if the object instance is only partly ob-
served. It also shows that there is a clear difference in the error
functions value for objects that are similar (e < 1.0) and those
that are not (e > 4.0). Furthermore, it demonstrates that con-
sidering the effects of incomplete observation is important in
order to suppress apparent deviations of object instances due to
occlusion. Figure 7(a) and 7(b) show the demo scene.

6.2 TUM MLS datasets

For reasons explained in (Gehrung et al., 2016), we broke the
dataset down into 16 3D tiles, each of them with an edge length
of 32x32x32 m. Our change detection method was applied to
each of them separately. The parameters are the same as in Sec-
tion 6.1. The edge length of a voxel is 0.5 m. Figure 7(c) and
7(d) shows pedestrians correctly identified as fully moved. It
also demonstrates the effect of segmentation errors. In the first
epoch the point cluster of the dumpster is merged with the point
cluster of the building. Therefore the dumpster is recognized
as appeared, not as deformed. Figure 7(c) and 7(d) demon-
strate that an object instance can be part of multiple extended
instances. The golden object could either have been deformed
(switched with another, unknown object) or been replaced by
one of the objects to both of its sides.

Predicted
App. Dis. P.M. F.M. Def. Un.

A
ct

ua
l

App. 45 1 6 1 5/2 29/0
Dis. − 103 − − 9/2 28/13
P.M. − − 10 − − 3/2
F.M. − − − 26 − 12/1
Def. 4/3 1/0 − − 14 13/3
Un. 4/2 5 − − 3/0 −

Table 1. The confusion matrix achieved by applying our method
to the TUM City Campus dataset. Values after the slash result

from excluding segmentation errors.

During the evaluation, it turned out that the main cause of in-
correct classifications can be attributed to the above-mentioned
segmentation errors. Those distort the results and make the
evaluation challenging, since the assessment of such cases re-
quires interpretation by a human observer. This is the reason
why the qualitative evaluation was done based on labels, but
manually. Table 1 shows the quantitative results of the eval-
uation. The overall accuracy of our change detection method
is 88 %. The exclusion of all misclassifications caused by seg-
mentation errors would lead to an overall accuracy of 93 %.

It should be noted that both the partially moved and deformed
cases are too underrepresented to draw meaningful conclusions.
This is mostly caused by said segmentation errors, but also due
to the nature of the datasets. Table 2 shows precision and re-
call with and without considering segmentation errors. Both
precision and recall are high for classes with many examples.
The precision for appeared and disappeared object instances is
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(a) (b)

(c) (d)

(e) (f)

Figure 7. The demo scene from the synthetic dataset with two epochs (a) and (b). Two scenes (c,d) and (e,f) with two epochs from the
TUM City campus datasets. The classes appeared (green), disappeared (red), partially moved (purple), fully moved (blue) and

deformed (gold) are shown. Lines symbolize associations of object instances between epochs.

Appeared Disappeared Partially moved Fully moved Deformed

Precision 84.9%/90.0% 93.6%/94.5% 62.5%/62.5% 96.3%/96.3% 45.2%/77.8%
Recall 51.7%/81.8% 73.6%/87.3% 76.9%/83.3% 68.4%/96.3% 43.8%/70.0%

Table 2. Precision and recall for all change classes with and without considering segmentation errors.

high, since those are the simplest cases to detect. The preci-
sion for partially moved and deformed object instances is in the
medium range, most likely because of the underrepresentation
of these cases as mentioned above. Both precision and recall
increase drastically once the segmentation errors are excluded.

6.3 Runtimes

All reported results were generated on a machine with 64 Giga-
byte of RAM and an Intel Core i7 processor with 3.5 GHz and
36 cores. The accumulation of all LiDAR-measurements and
and distribution on 3D tiles needs about 10 minutes. Gener-
ating the occupancy grid requires 17.9 minutes per 3D tile and
epoch on average, that is 4.8 hours per epoch. Creating the delta
octrees for all 3D tiles and epochs takes less than 2 seconds.
The runtime for our change detection approach varies with the
amount of cloud clusters and the number of points within. It is
between 30 seconds and 10 minutes. While the overall runtime
of our method for the TUM City Campus datasets is in the

range of hours, point-based approaches usually require minutes,
whereas ray-based methods such as the one presented by (Un-
derwood et al., 2013) require days.

7. CONCLUSION AND FUTURE WORK

In this paper we presented a novel change detection approach
that is able to identify partially moved, fully moved and de-
formed object instances. Our method is able to handle incom-
plete observations, but is far from being as computationally
expensive as comparable approaches. The overall accuracy is
88 %, but can be improved to at least 93 % by eliminating seg-
mentation errors in the candidate selection. For future work,
we propose to solve these segmentation errors using advanced
techniques auch as semantic segmentation. Furthermore, we
intend to further decrease the runtime by only generating the
occupancy grid at locations that contain possible candidates.
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