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ABSTRACT:

This paper presents and extends an approach for the detection of pedestrians in unstructured point clouds resulting from single MLS
(mobile laser scanning) scans. The approach is based on a neural network and a subsequent voting process. The neural network
processes point clouds subdivided into local point neighborhoods. The member points of these neighborhoods are directly processed
by the network, hence a conversion in a structured representation of the data is not needed. The network also uses meta information
of the neighborhoods themselves to improve the results, like their distance to the ground plane. It decides if the neighborhood
is part of an object of interest and estimates the center of said object. This information is then used in a voting process. By
searching for maxima in the voting space, the discrimination between an actual object and incorrectly classified neighborhoods is
made. Since a single labeled object can be subdivided into multiple local neighborhoods, we are able to train the neural network
with comparatively low amounts of labeled data. Considerations are made to deal with the varying and sparse point density that is
typical for single MLS scans. We supplement the detection with a 3D tracking which, although straightforward, allows us to deal
with objects which are occluded for short periods of time to improve the quality of the results. Overall, our approach performs
reasonably well for the detection and tracking of pedestrians in single MLS scans as long as the local point density is not too low.
Given the LiDAR sensor we used, this is the case up to distances of 22m.

1. INTRODUCTION

The detection and tracking of pedestrians and, in general, ob-
jects of certain types of interest like road users or road side
objects is an important capability for several use cases, espe-
cially in the context of driver assistance systems and autonom-
ous driving. For such applications, the detection and differenti-
ation of relevant object types allows to take special care for the
behavior of certain road users and their safety. For example, a
pedestrian can change his or her movement vector faster than
a car. In addition, pedestrians and bicyclists are more vulner-
able than cars. Therefore, it may be important for a vehicle in
traffic to keep a greater safety distance from pedestrians than
from other cars. A mobile sensor system which is able to detect
and track pedestrians and cyclists can also be used to determine
their movement patterns in an urban environment, which could
be useful for urban traffic planning purposes.

Multiple kinds of established sensors are typically used for
autonomous driving, for driver assistance systems, and for mo-
bile sensor systems in general. This includes radar, cameras
for visible and infrared light, ultrasonic sensors and LiDAR
sensors. LiDAR sensors are able to provide accurate three-
dimensional geometric information of the surroundings up to
distances of several hundred meters. They are independent of
external light sources and often have a comparatively wide field
of view. For example, rotating laser scanners reach full 360◦

perpendicular to their rotation axis. They are an advantage-
ous type of sensors for the detection and tracking of objects
in the vehicle’s entire vicinity. One of their disadvantages is
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their low data density compared to most cameras: e.g., a 3D
point cloud resulting from a single 360◦ scan by a commer-
cially available LiDAR sensor typically contains approximately
130.000 points1. In comparison, a single video frame from a
full-HD camera contains more than 2.000.000 pixels. In many
use cases, for example in the area of mobile mapping, this is
offset by the possibility to accumulate multiple LiDAR scans
into one large combined 3D point cloud of data recorded over
a longer period of time. But such a data accumulation over
multiple scans does not work well for moving objects in the re-
corded area and can therefore not be used for the detection and
tracking of such objects. The local data density provided by a
LiDAR sensor also varies depending on the distance between
the captured scene and the sensor. Hence, the processing of
MLS (mobile laser scanning) point clouds for the purpose of
detecting and tracking of mobile objects has to deal with sparse
data and a varying data density.

This paper presents and extents a machine learning approach
to detect persons or other objects of interest in point clouds of
single MLS scans, e.g., single 360◦ scans of a rotating laser
scanner. Starting from the point cloud representing such a
single scan, our approach generates local point neighborhoods,
each with a well defined coordinate frame. These are then pro-
cessed by a neural network to decide if the neighborhood is part
of an object of interest and where it is located in relation to the
center of that object. This information is used in a voting pro-
cess which accumulates the results of multiple processed local
point neighborhoods. Since an object instance provides data for
multiple local neighborhoods, we are able to generate multiple

1 Velodyne HDL-64E with ten rotations per second
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training data examples from a single labeled object. This allows
us to work with a smaller amount of hand-labeled data during
the training phase. The main focus and contribution of this pa-
per is the integration of certain meta information about the local
point neighborhoods as additional input for the neural network,
the consideration of the varying data density, and supplement-
ing the detection method with a basic tracking component to
track detected objects in a sequence of point clouds.

2. RELATED WORK

This section is divided into two parts. In the first part, we posi-
tion our work in relation to studies related to the area of object
detection based on LiDAR data, covering classical approaches
relying on handcrafted features as well as approaches with fea-
tures learned by a deep neural network. The second part refers
to work in the field of neural networks and their use for the
processing of point clouds.

2.1 Object detection based on LiDAR data

The task of detecting objects of certain classes of interest is of-
ten divided into two subtasks. The first one is to extract regions
from the processed data which potentially contain an object of
interest (hypothesis generation). For example, a segmentation
into contiguous regions can be applied to achieve this. Such a
segmentation can be performed by methods like region grow-
ing (Velizhev et al., 2012) or DBSCAN (Asvadi et al., 2017).
A problem with segmentation approaches is their proneness to
over- or undersegmentation, which has to be dealt with in the
further processing. More recent approaches use a Region Pro-
posal Network (RPN) instead (Zhou, Tuzel, 2017).

After object candidates have been extracted, typically a classi-
fier is used to decide for each cluster if it is an object of in-
terest and to determine its object class (hypothesis validation).
Such a classifier can either rely on handcrafted features, like
support vector machines (Navarro-Serment et al., 2010), bag-
of-words (Behley et al., 2013) or the random forest (Fukano,
Masuda, 2015) classifier. Recently, many approaches use deep
neural networks which learn both the features and the classific-
ation of these features. Hence, they do not rely on handcrafted
features and are able to learn features which are better suited for
the task at hand. The use of neural networks for the processing
of point clouds is the focus of Subsection 2.2.

Voting-based approaches are able to detect objects in data
without the need of an explicit hypothesis generation. Such
methods extract features, which are then used to fill a voting
space with votes for objects of interest. Objects are detected
by searching for groups of matching votes in this voting space.
Voting-based approaches can be implemented with handcraf-
ted features and a dictionary to which the extracted features
are matched. This dictionary is the result of a previous train-
ing phase and it is used for the casting of votes. (Velizhev et al.,
2012) use such an approach on point clouds, but combine it with
a preceding segmentation. (Knopp et al., 2011) use a voting-
based approach to detect objects in a mesh of a 3D scene. This
mesh has previously been generated from a 3D point cloud. Re-
cently, (Qi et al., 2019) have proposed VoteNet, which processes
a point cloud and uses a deep neural network for the casting of
votes and to propose objects and classify them based on these
votes.

In our earlier work we combined a neural network with a clas-
sical voting-based approach (Borgmann et al., 2019), and we

follow the same strategy in the present paper. We use the net-
work to cast votes and to replace the dictionary found in clas-
sical voting-based approaches (e.g., ISM). But in contrast to
(Qi et al., 2019), we apply classical methods for the evaluation
of the resulting voting space and process only local point neigh-
borhoods with the neural network. This allows us to use smaller
neural networks that require less training data.

2.2 Neural networks for point cloud processing

Several approaches for the use of neural networks on point
clouds can be found in literature. One difficulty is the often
unstructured nature of measured 3D point clouds. In contrast
to camera images which have a defined pixel structure (regu-
lar grid), point clouds of many common LiDAR sensors do not
have such an inherent structure. Neural networks which rely
on discrete convolutions, very prominently used in the area of
image exploitation, can therefore not directly be transferred to
the processing of 3D point cloud data. A way to deal with this
problem is the discretization of the point clouds. One possibil-
ity is the discretization into two-dimensional depth images or,
if there is a source for color information (for example a cam-
era which covers the same area as the LiDAR-sensor), in RGB
depth images. Such a method is used by (Asvadi et al., 2017)
to process MLS data for the detection of vehicles. The first
steps of their approach are a ground removal and a segmenta-
tion based on DBSCAN. After that, the segments are converted
into dense depth images which are then processed in a convo-
lutional neural network to determine their object classes. An
example for the use of RGB depth images and deep convolu-
tional neural networks for the classification of objects has been
presented in (Socher et al., 2012).

Instead of two-dimensional depth images, point clouds can also
be converted to voxel grids. Voxels allow the processing by
neural networks using discrete 3D convolutions. (Maturana,
Scherer, 2015) describe an approach which detects objects in
a 3D occupancy grid. They generate these grids from LiDAR
and RGB depth point clouds. Similarly, (Garcia-Garcia et al.,
2016) use occupancy grids and a convolutional neural network
for object recognition tasks. (Zhou, Tuzel, 2017) detect cars
and other road users. They use a voxel grid and determine a
feature for each non-empty voxel. For the generation of this
voxel feature, a neural network is used that generates a feature
for each point, based on its coordinates and its coordinates in
relation to the local mean of all points of the voxel. Following
that, a max-pooling is used to combine the point features of all
points of a voxel to a feature of the voxel itself. These voxel
features are then processed in a convolutional neural network.

The conversion of unordered point clouds to a pixel or voxel
structure is often difficult, since an optimal voxel or pixel size,
to some degree, depends on the data density. If the size is too
low for the available data density, many pixels or voxels turn
out to be empty. If it is too high, a large amount of the inform-
ation provided by the point clouds can get lost, because many
points end up being inside the same voxel or pixel. This prob-
lem can not easily be solved, since the density provided by a
LiDAR sensor depends on the distance between the sensor and
the recorded area. Hence, it highly varies throughout a point
cloud of a single scan. For this reason, it can be beneficial to
directly process data of unordered point clouds in deep neural
networks.

PointNet presented by (Qi et al., 2017a) is such a neural net-
work that is able to process unordered sets of 3D points. The
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network learns a symmetric function to generate a feature de-
scribing the processed data. This can then be further processed
for the classification or semantic labeling of the processed data.
The network contains a special subnetwork which predicts af-
fine transformations to deal with uncertainties with regard to the
position and orientation of the processed data in the surround-
ing coordinate frame. The original PointNet was later extended
to PointNet++ by adding a hierarchical component (Qi et al.,
2017b). At first, features for local subsets (each defined by a
centroid point) of a point cloud are generated using the original
PointNet. Neighboring subsets and their features are then com-
bined across multiple hierarchical levels. This resembles the
idea of convolutional neural networks of generating higher level
features of a larger area from lower level features of a smaller
area.

(Liu et al., 2019) presented an continuous convolutional neural
network for point clouds which does not depend on discrete
data. They use a specially designed convolution operator PConv
which is able to deal with the irregularities of point clouds.
They also connect multiple convolutional layers in a dense way
using the output of all previous layers as input of the subsequent
layer.

3. PROPOSED APPROACH

In the following we present our approach for the detection of
pedestrians or, in general, distinct objects in sparse 3D point
clouds. In addition, we present a basic tracking method for de-
tected objects. We assume that the input is a sequence of single
LiDAR scans (e.g., single 360◦ rotations of a LiDAR sensor
with a rotating scanner head). The LiDAR data are expected
to be directly georeferenced, i.e., resulting in 3D point clouds
which share a common coordinate frame. This requires the
availability of a technical (IMU/GNSS) or procedural (SLAM)
way to take the movement of the sensor platform into account,
which is not further discussed in this paper. We also assume
that one axis of the coordinate frame is aligned with the gravit-
ational axis (height). Within this paper, we call this axis the z-
axis. Additionally we assume that, while recording the data, the
position or trajectory of the LiDAR sensor is known in a way
which allows us to store a viewpoint for each recorded single
scan or even each recorded 3D point.

The basic outlines of our approach have already been described
in (Borgmann et al., 2019). This paper focuses on improve-
ments of the original approach: integration of certain meta in-
formation as additional input for the neural network, methodical
refinements to better deal with the effects caused by varying
data density, and the integration of a tracking component.

Our approach uses a neural network which, similar to the one
presented by (Qi et al., 2017a), directly processes 3D points. In
a preprocessing step and as input for the network, we divide the
point cloud into local point neighborhoods. The output of the
neural network is assessed in a voting process which is inspired
by implicit shape models (Velizhev et al., 2012).

At first, we give an overview and describe the main processing
steps. Then we explain the method used for the estimation of
the ground level which, among other things, is a source for the
newly added meta information, which acts as an additional in-
put to the neural network. The neural network itself and the
specifications of the meta information are topics of the sec-
tions 3.3 and 3.4. Following that, we explain the training of

the neural network and finish with a short description of the
tracking method used to deal with detected objects which are
occluded for a short period of time.

3.1 Overview

Figure 1. Main processing steps of our approach. The ground
removal is optional and improves the runtime performance.

Figure 1 shows the processing steps of the extended approach
presented in this paper. The initial ground removal is optional
and allows for a faster processing by excluding the ground
points from the further processing. The ground level estima-
tion used for the ground removal is explained in Section 3.2.

After the ground removal we generate local point neighbor-
hoods. These neighborhoods can be generated for each point
of the processed data, but can also be generated only for a ran-
domly selected subset of that data. This depends on a chosen
sub-sampling parameter. In our previous work (Borgmann et
al., 2019) we found that a low sub-sampling rate has only a
minor influence on the quality of the results, but it improves the
runtime performance significantly. Hence, for the purposes of
this paper, we use a moderate sub-sampling rate by generating
local point neighborhoods for approximately one third of the
data.

Each local point neighborhood is defined by a center point and
contains all surrounding points within a certain radius. This ra-
dius has to be chosen according to the type of processed data
and the use case. The neighborhoods should provide some sort
of pre-segmentation of the data, which means that the radius
should be chosen in a way that usually only points of one or
maybe a few different objects are part of the same neighbor-
hood. We have analyzed the effects of the neighborhood radius
in our earlier work. For the purposes of this paper, we use 0.5m
as neighborhood radius.

A local point neighborhood has a well defined coordinate frame
which uses the center point as origin and is aligned in a way that
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the z-axis points upwards. The x-axis is perpendicular to the z-
axis. It is also aligned with the line between the central point of
the neighborhood and the viewpoint, pointing away from this
point. The y-axis is defined by the other two axes following the
rules for a right-handed coordinate frame.

The local point neighborhoods are processed by the neural net-
work (see Section 3.3). This network determines the object
class of each processed neighborhood. If a neighborhood is
classified with a high certainty as part of an object of interest, an
additional regression subnetwork estimates the position of that
object’s center in the coordinate frame of the neighborhood.

The output of the neural network is used for the generation of
votes. Such a vote has three attributes:

1. Class of the object for which the vote is being cast
2. Center position of the object
3. Weight of the vote

The first attribute is set using the classification result of the
neural network. The center position of the object is set same
as estimated by the neural network, but transformed from the
(local) neighborhood’s coordinate frame back to the (global)
point cloud’s coordinate frame. The weight is determined using
the following formula:

Wc =
P (c)

n
(1)

where Wc = Weight of object candidate of class c
P (c) = Probability of or confidence for class c
n = Amount of points in neighborhood radius

The parameter n accounts for the local point density and ap-
proximates the number of neighborhoods and votes generated
in the local vicinity. Hence, it balances the effect that more
votes are generated in areas with a higher data density.

The last step of the proposed object detection method is the
search for maxima in the voting space. To achieve this, we con-
sider the votes as object candidates and use their weight as score
of these candidates. This score gets re-evaluated, taking into ac-
count the weight of neighboring candidates for an object of the
same class. Based on the proximity, a portion of the score of
such neighboring candidates is added to each candidate’s score.
After that, a threshold is applied removing all candidates with
a score that is too low. Remaining candidates for the same type
of object in close proximity to each other get merged. The re-
maining candidates are the final output of the object detection
method. To generate bounding boxes for the detected objects,
we consider the neighborhoods whose votes have contributed
to the detection of an object. Finally, the bounding box of each
object includes the central points of all its contributing neigh-
borhoods.

3.2 Estimation of the ground level

The estimation of the ground level and the subsequent distinc-
tion between ground points and non-ground points is based on
a two-dimensional grid which stores the height of the ground
for each grid cell. The process is divided into three steps:

1. Initialization of the ground grid.
2. Validation of each grid cell using region growing based on

a maximum steepness threshold.

3. Determine the distance of each point to a plane defined by
the height values of the three nearest grid cells.

For the initialization of the ground grid, all points of the pro-
cessed point cloud are assigned to grid cells according to their
x- and y-coordinate. Then an initial height value is determ-
ined for each cell. This is achieved by sorting all points ac-
cording to their z-coordinate. To deal with outliers, we use the
z-coordinate of the point at the 0.05 quantile as height value of
the cell.

The following validation step is needed since we cannot assume
that every grid cell actually contains ground points. I.e., we in-
tend to remove cells from the grid which do not include the
ground level. We achieve this by picking a start cell for which
we are reasonably sure that it includes ground points and then
traverse the grid by region growing. The idea is that every valid
ground cell should be reachable from the start cell without vi-
olating a criterion for the maximum steepness of the ground.
Cells which cannot be reached are removed from the grid.

3.3 Topology of the neural network

We use a neural network which, similar to the PointNet ap-
proach (Qi et al., 2017a), directly processes the 3D coordinates
of the member points in the local point neighborhoods. Figure 2
shows the structure of the proposed neural network. The first
part of the network determines a descriptive neighborhood fea-
ture. This feature is mainly the result of the processing of the
3D coordinates in a multi-layer perceptron which uses shared
layers. These shared layers lead to an invariance of the network
with regard to the order of points in the input layer, which is
important due to the unstructured nature of the processed point
cloud. The neighborhood feature can be extended with certain
meta information which are added to provide some basic con-
text information to the processing of the local point neighbor-
hood by the following subnetworks (see also Section 3.4).

The neighborhood feature is used in a classification subnetwork
to determine the type of object the neighborhood is likely to be
part of. This classification network uses three fully connected
layers. There is an additional subnetwork to estimate the object
position for object types of interest. One individual instance
of this regression subnetwork is used for each object type of
interest. It outputs a 3D coordinate in the coordinate frame of
the local point neighborhood.

The network uses batch normalization after each layer with the
exception of the output layers and the layers directly before
these output layers. Following the recommendations of (Li et
al., 2019) for the combined usage of batch normalization and
dropout, we only use one dropout layer for each output which
is directly after the last batch normalization layer of that output.

3.4 Integration of additional meta information

Our concept of processing local subsets of the data (local point
neighborhoods) in the neural network has the advantage that
the network does not have to learn much context information
about objects of interest. We try to detect such objects based
on their appearance and not based on their surroundings. This
leads to moderate needs for the amount of labeled data during
the training phase, as we have shown in our earlier work. How-
ever, some context information turned out to be quite beneficial
to improve the detection results. Therefore, we decided to add
at least some context information to the neighborhood features
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Figure 2. The proposed topology of the neural network. The main input are the n 3D points of a local point neighborhood. m meta
information values are a supplemental input. Outputs are classification scores for k classes and estimated 3D coordinates of the

object’s center. Batch normalization is used for all MLP (muli-layer perceptron) layers, except for the layer directly before the output
layer. The last batch normalization of each output is followed by a dropout layer with a dropout rate of 0.2.

processed in the classification and regression subnetworks. In
the context of this paper, we tested two types of such additional
meta information, which are both easy to determine.

The first value to supplement the neighborhood feature is the
distance between the LiDAR sensor and the processed local
point neighborhood (at its center point). The idea is that the
appearance of an object in the data can differ depending on the
local data density. This density, in turn, depends on the distance
between object and LiDAR sensor. Hence, providing this dis-
tance to the classification and regression subnetworks could be
beneficial.

The second value we integrate is the height above ground of the
processed neighborhood. The idea is that certain local features
of an object typically occur only at certain heights on that ob-
ject. For example, the head is usually located higher than the
feet of a pedestrian. In addition, the objects we are mainly inter-
ested in are typically standing or moving on the ground level,
e.g., for traffic safety it is not necessary to detect persons on
balconies. To determine the height above ground, we use the
estimation of the ground level described in Section 3.2 and de-
termine the distance between the ground grid and the processed
neighborhood. For local point neighborhoods in areas which
are not covered by the ground grid, we use the average ground
height of the grid as fallback value.

3.5 Training phase of the neural network

The training phase of the neural network is divided into two
steps. At first, we train the feature extraction and classification
parts of the network. After that, we train one instance of the
regression part for each object type of interest using the feature
extraction part which we have trained in the first step without
modifying it further. For the actual training we apply an Adam
optimizer (Kingma, Ba, 2014) with a learning rate of 0.0004.
To prevent overfitting, we validate the training progress with
separate validation data and stop each training step if no further
improvement can be made for five consecutive training epochs.
As the result of the training phase we keep the weights of the
best performing epoch.

The training data that we use are manually labeled point clouds
of single scans. For each object instance labeled in these point
clouds, the object position, a bounding box, and all points
which are considered as part of the object are known. Since
we process local point neighborhoods in the neural network,
we can generate a multitude of training examples from a single
labeled object. One local point neighborhood can be generated
for each point of an labeled object and used for the training.

This allows us to reasonably work with a moderate number of
labeled 3D objects for the training. In addition, we generate
negative examples for the training by randomly selecting points
in the data to generate local point neighborhoods which are not
part of any labeled object.

Due to the varying point density of MLS point clouds, gen-
erating a training sample for each possible neighborhood of
a labeled object carries the risk that object instances in close
proximity to the sensor are overrepresented due to the higher
point density, whereas object instances in greater distances are
underrepresented in the training samples. This effect could lead
to a neural network whose detection and classification perform-
ance is comparatively low in areas with a low point density.
To compensate for this effect, we increase the weight of train-
ing samples in greater distances, giving them a higher impact
on the training than samples recorded in close proximity to the
LiDAR sensor.

3.6 Tracking of detected objects

We added a basic tracking component to our approach to be
able to deal with temporarily occluded objects and to better de-
termine the movement (speed and direction) of detected objects.
The tracking is based on a Kalman filter with a constant velo-
city model. Such a tracker is easy to implement to work with
our detection method, since the resulting 3D object coordin-
ates are given in a global coordinate frame and can directly be
used for the tracking. A constant velocity model seems to be a
good fit for pedestrians who can rapidly change their movement
vector. A constant acceleration model may be better suited for
vehicles like cars.

The matching between tracked objects and detected objects is
done by simply comparing their geometric position. This is a
baseline method and, in future work, we plan to supplement it
with a comparison of the features of the local point neighbor-
hoods.

If a tracked object is no longer detected, we keep track of it until
the variance of the tracker for the object position is higher than
a certain threshold. Since this variance describes how accurate
the predicted position of a tracked but undetected object is, it
is a good criterion to decide which objects cannot be tracked
further with sufficient accuracy.

4. EXPERIMENTS

We conducted experiments with several goals: Determine the
performance of the presented approach depending on the local
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Figure 3. Measuring distances to fully visible pedestrians
occurring in the evaluation data

point density, determine the impact of integrating additional
meta information, and determine the performance and bene-
fits of the tracking method. The experiments were conducted
with the focus on the detection and tracking of pedestrians in
an urban road environment.

For the experiments we used LiDAR data which we recorded
using a multi-sensor vehicle. We have presented this vehicle in
detail in an earlier work (Borgmann et al., 2018). In addition to
being a multi-camera vehicle, the vehicle is equipped with sev-
eral LiDAR sensors. However, only one of these sensors was
configured to capture the entire 360◦ vicinity of the vehicle,
and we only used data recorded by this sensor. It is a Velodyne
HDL-64E that performs about 1.300.000 range measurements
per second which are distributed over 64 scan lines. While re-
cording the data used for our experiments, the rotating head of
the sensor was rotating ten times per second, hence a single
360◦ scan contains about 130.000 measurements. Not all of
these measurements result in meaningful 3D points, since some
are directed into the sky, deliver no result due to low scene re-
flectance, or measure parts of the measurement vehicle itself.
After filtering the measured points, an approximate average of
95.000 meaningful scene points remain in the point cloud of
each single scan. The vehicle is also equipped with an inertial
navigation system (INS) which we used for the direct georefer-
encing of the recorded data. As a result, all point clouds share
the same ENU coordinate frame.

The data available for the experiments were divided into three
groups: For the training of the neural network, multiple short
sequences of labeled point clouds recorded in road traffic and a
sequence of a staged scene were used. These training data con-
sist of 1300 labeled point clouds in total. During the training
phase, a second group of 226 additional point clouds were used
to validate the training progress and to detect the occurrence of
overfitting. The third data group was used for the actual eval-
uation: a longer sequence containing 300 labeled point clouds.
This sequence was recorded at an intersection and contains ped-
estrians, bicyclists and other road users in different distances.
The area of these evaluation recordings was neither covered by
the training nor the validation data.

The sequence used for the evaluation contains 941 instances of
pedestrians, additional 1105 instances of pedestrians with oc-
clusions, 307 instances of cyclists and 790 instances of cyc-
lists with occlusions. Unfortunately, cyclists are not part of
the labeled data used for the training. Hence, we were unable

Figure 4. Top: Visualization of an exemplary output of our
approach: detected persons are marked by green dots. Currently

undetected but tracked persons are predicted by a blue dot.
Bottom: The same scene shown in a synchronously recorded

video, with all 3D markings projected to the image.

to train the neural network sufficiently to discriminate between
pedestrians and cyclists. For the purpose of the evaluation, we
made the decision to ignore cyclists completely, neither count-
ing them as true positive, nor false positive, nor false negative
results. For future work, we plan to generate additional labeled
training data to close that gap. Figure 3 shows the distribu-
tion of the pedestrians in the evaluation data with regard to the
measured distance.

The output of our approach are the positions of detected and
tracked pedestrians as shown in the example at the top of Fig-
ure 4. These results were compared with the ground truth to
determine the number of true positive (tp), false positive (fp),
and false negative (fn) detections. These numbers were used
to calculate precision and recall, which are defined as follows:

Precision =
tp

tp+ fp
(2)

Recall =
tp

tp+ fn
(3)

4.1 Impact of point density and integration of meta in-
formation

We only considered those pedestrians in the evaluation data
which are not significantly occluded. The detection perform-
ance was evaluated under varying point density as well as con-
cerning the influence of integrating meta information of local
point neighborhoods. Besides that, we did not use the tracking
component for this analysis. We compared four configurations:

• Baseline: Without any consideration of meta information.
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(a) Results for pedestrians in all distances
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(b) Results for pedestrians in less than 20m distance
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(c) Results for pedestrians in more than 20m distance
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Figure 5. (a), (b), (c): Comparison of the four analyzed configurations for different distance intervals. (d) Analysis of the performance
in different distances to the sensor.

• Using the meta information distance to sensor.
• Using the meta information distance to ground.
• Including both distance to sensor and distance to ground.

In addition, we took the distance between the recorded pedestri-
ans and the LiDAR sensor as an indicator for a high or low point
density, and we analyzed the influence of this parameter on the
detection performance. Hence, we evaluated the capability to
detect pedestrians in different distances.

The results of this evaluation are shown in Figure 5. With re-
gard to integrating the meta information, we achieved mixed
results: The distance to ground meta information is clearly be-
neficial and increases the detection performance at all distances,
as shown in Figure 5a. To get a better impression, we split
this evaluation considering only short distances (Figure 5b) and
long distances (Figure 5c). The distance to sensor meta inform-
ation, on the other hand, has an adverse effect on the detection
method, performing worse than in the baseline configuration.
This also shows up in the configuration which uses both dis-
tance to sensor and distance to ground. A possible explana-
tion is that integrating the meta information distance to sensor
causes the training of the network to no longer generalize well
for objects in different distances. Hence, the training data, to a

much higher degree, has to cover objects of interest in all rel-
evant distances. This also means that a much larger amount of
training data would be necessary. We consider these costs as
too high for the potential improvements.

With regard to the detection performance in different distances
(i.e., different point densities), Figure 5d shows that our ap-
proach performs very good up to distances of about 14m and
still reasonably well up to distances of about 22m. In distances
beyond that, the detection performance decreases rapidly. This
is also shown when comparing the performance separately for
the detection of pedestrians in the distance interval up to 20m
(Figure 5b) and beyond that (Figure 5c).

4.2 Benefit of including a tracking component

To analyze the benefit of the tracking component with respect
to the detection of occluded objects, we compared the perform-
ance of the configuration using the distance to ground meta in-
formation with and without tracking. The result of this evalu-
ation is shown in Figure 6. For the evaluation, we considered
fully visible as well as partly occluded pedestrians labeled in
the ground truth data. A difficulty is that the ground truth con-
tains no labels for pedestrians which are completely occluded
in that scan. Since such instances can only be predicted and not
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Figure 6. Comparison of results with and without tracking.

be detected, the clear advantage of including the tracking com-
ponent would be even more apparent in this evaluation if these
labels were available. We therefore conclude that even a basic
tracking component is beneficial and clearly recommended.

5. CONCLUSION AND FUTURE WORK

We improved our existing approach for the detection of objects
in point clouds of single MLS scans that have a varying and
sparse point density. Our approach uses a neural network and
a subsequent voting process to detect objects without the need
for a preceding hypothesis generation step. The neural network
processes the data subdivided into local point neighborhoods, of
which the network uses the member points as input. In the con-
text of this paper, we extended the input by providing the net-
work with meta information on the processed neighborhoods to
improve its performance. This has beneficial effects in case of
one tested meta information (distance to ground), but adverse
effects for another one (distance to sensor). We also included
a basic tracking component, based on a Kalman filter, to our
approach. This significantly increased the performance with re-
gard to objects which are temporarily occluded. We compared
the performance of our detection method in different distances,
which correspond to different local point densities. For the
sensor used in our specific experimental system, we achieved
a satisfactory performance for the detection of pedestrians in
distances up to 22m.

For future work, we plan to integrate additional sensors into
the processing. We think that a combination of LiDAR-based
detection and tracking with a camera-based local examination
can provide useful additional information, e.g., about the road
safety awareness of pedestrians. We also intend to improve
the matching of tracked and detected objects in the proposed
tracking component. Currently, we only consider the geometric
proximity for the tracking, but it would for sure be beneficial
to generate tracks by assigning the extracted features of local
point neighborhoods.
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