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ABSTRACT:

With the rapid development of subpixel matching algorithms, the estimation of image shifts with an accuracy of higher than 0.05
pixels is achieved, which makes the narrow baseline stereovision possible. Based on the subpixel matching algorithm using the
robust phase correlation (PC), in this work, we present a novel hierarchical and adaptive disparity estimation scheme for narrow
baseline stereo, which consists of three main steps: image coregistration, pixel-level disparity estimation, and subpixel refinement.
The Fourier-Mellin transform with subpixel PC is used to co-register two input images. Then, the pixel-level disparities are
estimated in an iterative manner, which is achieved through multiscale superpixels. The pixel-level PC is performed with the
window sizes and locations adaptively determined according to superpixels, with the disparity values calcualted. Fast weighted
median filtering based on edge-aware filter is adopted to refine the disparity results. At last, the accurate disparities are calculated
via a robust subpixel PC method. The combination of multiscale superpixel hierarchy, adaptive determination of the window size
and location of correlation, fast weighted median filtering and subpixel PC make the proposed scheme be able to overcome the
issues of either low-texture areas or fattening effect. Experimental results on a pair of UAV images and the comparison with
the fixed-window PC methods, the iterative scheme with fixed variation strategy, and a sophisticated implementation using global

optimization demonstrate the superiority and reliability of the proposed scheme.

1. INTRODUCTION

Recovering the depth from stereo imagery is one of the cricual
problems in photogrammetry. In conventional earth observation
systems, for estimating elevation of the ground surface, one or
more pairs of stereo images acquired by satellites or aircraft
with a wide photogrammetric baseline are utilized, and the
base to height (B/H) ratio of these stereo pair ranges from
0.6-1.0 (Morgan et al., 2010). Theoretically, a large B/H
ratio is required, ensuring the accuracy of forward intersection
for the elevation estimation. However, for the pair of stereo
images with a wide baseline, it means that all the two images
are acquired with totally different viewing angles. In such a
situation, during the imaging process, 3D objects are recorded
on the 2D image plane with different projection directions,
which will generate different 2D patterns on the image for the
same 3D object. This will hence increase more difficulties
when identifying corresponding pixels in the image matching
process (Delon , Rougé, 2007). Moreover, in the urban area, tall
man-made infrastructures (e.g., skyscrapers or TV tower) will
occlude lower neighboring objects (Xu et al., 2013), which will
generate occlusions and shadows in the stereo images, making
the matching of images more difficult.

To tackle those problems, the stereovision constructed by a
narrow baseline could be one of the alternatives (Delon ,
Rougé, 2007). Precise and robust disparity estimation is
highly demanded for narrow baseline stereo as the disparity
precision greatly affects the height estimation. Fortunately,
the developments of subpixel matching algorithm have enabled
the estimation of image shifts with an accuracy higher than
0.05 pixel (Sabater et al., 2011, Tong et al., 2015), which

makes the narrow baseline stereovision feasible. On the other
hand, several challenges should be addressed to make disparity
estimation accurate enough. The low-texture areas provide less
information for matching and make the subpixel estimation
unreliable especially in the case of small window size. In
addition, when the correlation window strides across the depth
discontinuities, the matching process suffers from the fattening
effect that object boundaries are not reconstructed correctly.
In this case, in addition to the subpixel matching algorithm,
an effective matching scheme is also indispensable for narrow
baseline stereo. In (Morgan et al., 2010), narrow baseline
stereo matching was performed using a robust PC method with
a fixed-scale matching window. In the work of (Takita et al.,
2004, Arai , Iwasaki, 2012), a coarse to fine strategy based on
image pyramid is adopted to improve the matching accuracy
from the integer level to a subpixel level. While in the work
of (Li et al., 2016), a hierarchical and adaptive framework is
developed for the disparity estimation of UAV images, with a
fixed variation strategy of window sizes and step size.

Inspired by these ideas, in this study we proposed a
novel hierarchical and adaptive scheme for precise disparity
estimation. The proposed scheme is based on multiscale
superpixels and PC, with which we can reduce the influence
of low-texture areas and fattening effect. Here, the challenge
of low-texture areas is solved by a multiple-window strategy
through multiscale superpixels in a hierarchical structure, with
their reliability checked. While the fattening effect is addressed
by adaptive determination of window size from the shape
of superpixel, and using weighted median filtering based on
edge-aware filter. The remainder of this paper is organized
as follows. Section 2 provide a detailed explanation of our
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proposed method. Section 3 presents the experiments and give
a discussion and analysis of the derived results. Section 4
concludes the paper and plans future work.

2. METHODOLOGY

The implementation of the proposed hierarchical and adaptive
disparity estimation scheme consists of three main steps: image
coregistration, pixel-level disparity estimation, and subpixel
refinement. In the first step, Fourier-Mellin transform with
subpixel PC is used to obtain the global similarity transform
model between two input images. Then, the pixel-level
disparities are estimated in an iterative manner, which is
achieved through multiscale superpixels. In each iteration,
simple linear iterative clustering (SLIC) method (Achanta et al.,
2012) is adopted to segment the input image into superpixels
of different numbers. The pixel-level PC is performed
with the window sizes and locations determined according to
superpixels. A reliability check is implemented to ensure the
robustness of low-texture areas. Subsequently, the pixels with
the same superpixel label are filled with the same disparity
values, and a shifting strategy updates the disparities. Finally,
fast weighted median filtering based on an edge-aware filter
is adopted to refine the disparity results. In the last step, the
accurate disparities are calculated via the subpixel PC method
using singular value decomposition and unified random sample
consensus (SVD-RANSAC) (Tong et al., 2015). The overall
workflow is illustrated in Fig. 1, and the detailed explanation
on each step will be introduced in the following subsections.
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Figure 1. The workflow of the proposed hierarchical and
adaptive disparity estimation scheme

2.1 Image coregistration with Fourier-Mellin transform

In order to achieve precise disparity estimation, the input
images should be first aligned to eliminate the inconsistencies in
addition to the disparity information. As the proposed scheme
can directly estimate 2D displacement, the epipolar constraints
is not strictly required. Feature-based or area-based registration
methods (Zitova , Flusser, 2003) can alternatively be performed
to reduce the search range and perspective distortions. In
this study, as the narrow baseline stereo images have the
similar viewing angle, the image registration method with
Fourier-Mellin transform (Reddy , Chatterji, 1996) is employed
to globally coregister the right image frame to the left via a
similarity transform model.

Iteration 4

Iteration 3

Figure 2. Multiscale SLIC superpixels in different
iterations.

Image registration with Fourier-Mellin transform can account
for translation, rotation and scale change between the images
if these exist, and can be applied in the case of large
motions without prior knowledge. Through the Fourier-Mellin
transform, which corresponds to the log-polar mapping of the
spectral magnitude, the rotation and scaling estimation can
be represented as the translation estimation in an equivalent
coordinate system. For accurate translation estimation, the
SVD-RANSAC subpixel PC method is adopted.

2.2 Pixel-level disparity estimation

A novel hierarchical and adaptive framework is proposed to
reduce the influence of low-textured areas and border regions.
Different from the conventional manner that using image
pyramid (Takita et al., 2004) or using fixed step size and
window variation strategy (Li et al., 2016), the multiresolution
and multiple-window PC is achieved via the multiscale
superpixel segmentation. In each iteration, SLIC segmentation,
window size, and location determination, pixel-level PC,
reliability check, filling, shifting and fast weighted median
filtering are implemented in order. In the next iteration, the
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Figure 3. Determination of the window size and location
of correlation.

number of superpixels is set to an increasing value to make
the window size and step size of correlation gradually smaller,
until it is up to a specified maximum number of iterations. We
implement four iterations in this study.

The superpixel segmentation is crucial to the hierarchical and
adaptive framework as we assume that the scene is piecewise
continuous. SLIC superpixel method is selected due to its
computational efficiency and excellent boundary adherence.
Any other content-sensitive superpixel methods can be used.
SLIC is regarded as an adaptation of k-means clustering to
segmentation, in which a weighted distance measure combining
color and spatial proximity is considered. @ As shown in
Fig. 2, multiscale SLIC method decomposes the image into an
increasing number of superpixels in the larger iteration. Each
superpixel represents the corresponding object and adheres well
to object boundaries. According to the shape of the superpixel
segment, the window size and location of image correlation can
be adaptively determined as illustrated in Fig. 3. With regard to
each superpixel segment S(k), the image correlation is carried
out with the template window T'(C}) which is the minimum
bounding box centered at C%. This adaptive determination
strategy is able to minimize the influence of boundary overreach
and fattening effect.

Phase correlation is adopted as the basic matching method
in this study, which is a Fourier-based matching technique
and is considered to be more accurate and effective than
the commonly used area-based methods such as normalized
cross-correlation (Ye et al., 2019). Phase correlation is based
on the well-known Fourier shift property, which states that a
shift of two relevant images in the spatial domain is transformed
into the Fourier domain as linear phase differences. For each
template window T'(C}), assuming that two image functions
g1(z,y) and g2(z,y) that are related by shifts 2o and yo such
that g2(z,y) = g1(x — 20,y —yo). The normalized cross-power
spectrum is given by:

G1(u,v)Ga(u,v)”

Q) = 15 (w, 0) Calu, 0)7]

= exp {i(UCE() + vyo)} (1)

where G1(u,v) and Gz2(u,v) are the corresponding Fourier
transform of g1 (x,y) and g2(x, y), and * denotes the complex
conjugate. In the case of integer pixel shifts, the inverse discrete
Fourier transform of Q(u, v) is a unit impulse function centered
on (xo,yo). Therefore, the pixel-level PC is realized by finding
the peak coordinates of the inverse discrete Fourier transform

of the normalized cross-power spectrum matrix:

(z0,y0) = argmax F~ " {Q} (z,y) 2)

z,Y

where F'~! denotes the inverse discrete Fourier transform.

The low-texture areas and dynamic-variation areas could
significantly deteriorate the results of pixel-level PC in the case
of smaller window size. Therefore, a reliability check similar
to Li et al. (2016) is adopted before the shifting and updating
operation. A decision threshold is adaptively estimated from
the maximum peak correlation value of all the corrections in the
first iteration. The reliability of each disparity from pixel-level
PC is evaluated by comparing the peak correlation value with
the decision threshold. For the reliable correlation, the pixels
with the same superpixel label are filled with the same disparity
values, and a shifting strategy updates the prior disparity map
estimated in the previous iteration using the filled disparity map.
For the unreliable correlation, the prior disparity map stops
updating.

Due to the stepwise problem caused by superpixel filling
and the presence of unreliable measurements, a constant time
weighted median filtering method (Ma et al., 2013) is integrated
for disparity refinement. The weights for median filtering are
constructed using the constant time edge-aware filter, such as
guided filter (He et al., 2013), which reduces the computational
time and respects boundary structures. The weighted median
filtering not only removes outlier errors but weakens the
influence of the fattening effect. A disparity map is obtained
after the weighted median filtering and is propagated to the next
iteration.

2.3 Subpixel refinement

On the basis of the high-quality pixel-level disparity map
generated from the previous step, the subpixel accuracy is
pursued in this step by means of the subpixel PC. The window
size for subpixel PC can be determined according to the results
of reliability check in different iterations in the pixel-level
disparity estimation step. The smaller window size is adequate
if the reliability checks in all iterations pass.

The SVD-RANSAC subpixel PC method (Tong et al., 2015)
is adopted due to its high reliability and strong robustness. The
SVD-RANSAC method integrates the advantages of using SVD
algorithm to converts the translation estimation problem to
one dimension and using RANSAC algorithm for robust linear
fitting. After calculating the normalized cross-power spectrum
matrix as in Equation (1), we extract the phase difference
in each dimension from the masked and filtered normalized
cross-power spectrum matrix using SVD and 1-D unwrapping.
The slopes of the unwrapped phase angles of the left and right
dominant singular vectors are estimated using the RANSAC
algorithm and converted to the subpixel shifts.

Similar to the pixel-level disparity estimation, the subpixel
disparity map is further refined through mismatch removal
based on the matching uncertainty measures outputted from the
SVD-RANSAC method as well as weighted median filtering.

3. EXPERIMENTS AND RESULTS
3.1 Experimental data

In order to demonstrate the performance of the proposed
method, a subset pair of successive images with a B/H ratio of
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Figure 4. UAV test images and image coregistration.
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Figure 5. Results of disparity estimation in the (a) pixel-level steps and (b) subpixel refinement step of the proposed
scheme.

lower than 0.1 is adopted as shown in Fig. 4. The images were
captured by unmanned aerial vehicle (UAV) with a NIKON
D800 digital single-lens reflex camera. The imaging scene is
an urban area with a number of buildings, which is suitable to
investigate the influence of fattening effect. Image registration
with Fourier-Mellin transform was carried out to estimate the
global similarity transform between two images, and the right
image was accordingly warped. After image coregistration, the
parallax disparities resulted from the relative height variation
mainly lie in the y-direction. Therefore, only the y-direction
disparity maps are displayed.

3.2 Evaluation of subpixel matching accuracy

To evaluate the subpixel matching accuracy of the
SVD-RANSAC algorithm we used, we conducted experiments
using simulated data generated from the UAV images, with
the approach given in (Tong et al., 2015). The baseline PC
based methods we compared include Stone’s (Stone et al.,
2001), Leprince’s (Leprince et al., 2007), and PEF (Nagashima
et al., 2006). In these experiments, two dominant error
sources of corruptions, affecting the performance of PC are
analyzed. The first experiment is the Aliasing experiment,

referring to an effect that results in different signals becoming
indistinguishable during sampling. While the second one is the
Noise experiment, which is to test the robustness of methods
when data is contaminated by noise coming from both the
ground disturbance and optical systems.

For the Aliasing experiment, the corresponding results of
various PC methods in terms of the mean value (MV) and the
root mean square errors (RMSE) as a function of o are shown
in Fig. 6. Here, o denotes the standard deviation of a Gaussian
filter that controls the amount of aliasing. While for the Noise
experiment, the corresponding results of various PC methods
regarding the MV and the RMSE as a function of V,, are given
in Fig. 7. Here, V,, stands for the normalized variance of noise
added. As seen from the figure, it is clear that in the presence of
both aliasing and noise, the SVD-RANSAC method can always
outperform other PC methods, providing a similar but better
performance as the Leprince’s method. To be specific, in the
result of Aliasing, the MV and RMSE are always less than 0.02
pixels. Whereas in the result of Noise, the MV and RMSE can
be less than 0.2 pixels even with the V;, reaching 0.04.
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Figure 6. Results of the Aliasing experiment: (a) MV and
(b) RMSE.
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Figure 7. Results of the Noise experiment: (a) MV and (b)
RMSE.

3.3 Results of disparity estimation

Fig. 5 plots the results of the proposed disparity estimation
scheme based on multiscale superpixel and PC in the pixel-level
step and subpixel refinement step. It can be found from
the coarse-to-fine process in Fig. 5(a) that the details of the
disparity map are gradually recovered and the messy areas are

consistently decreasing with the rising number of superpixels
in the successive iterations. This confirms the feasibility of our
hierarchical and adaptive framework constructed via multiscale
superpixel and fast weighted median filtering. The disparity
map generated from the previous iteration propagates good
initial values to the next iteration and finally provides a satisfied
condition for the subpixel refinement. Visual investigation of
Fig. 5(b) shows that the final disparity map after the subpixel
refinement mainly reflects the height difference between the
buildings, and the depth discontinues accord well with the
object boundaries.

3.4 Comparison with other implementations

To further evaluate the performance of the proposed disparity
estimation scheme, we compare the disparity map with
the ones from three other dense matching implementations,
including fixed-window pixel-by-pixel PC, a hierarchical and
adaptive framework with fixed variation strategy (Li et al.,
2016) and MicMac (Pierrot-Deseilligny , Paparoditis, 2006).
For fixed-window PC method, the popular implementation
COSI-Corr (Leprince et al., 2007) is adopted. Two window
sizes, i.e., a larger value of 64*64 and a smaller value of 16*16,
are tested. Unweighted median filtering is additionally applied
to smooth the disparity map as suggested in (Morgan et al.,
2010). For all the implementations, we register the input images
in advance using Fourier-Mellin transform.

Fig. 8 displays the results of the disparity map generated
by the proposed and other dense matching schemes. As
can be seen from the results of fixed-window COSI-Corr
in Fig. 8 (a) and (b), the disparity map suffers from the
influence of either low-texture areas or boundary overreach.
In the case of larger window size, the fattening effect is
serious as the correlation window is likely to stride across
the depth discontinuities. In contrast, the fattening effect is
weakened in the case of smaller window size. However, the
disparity map is relatively noisy as the correlation window
provides inadequate information in the low-texture areas. The
hierarchical and adaptive framework proposed in (Li et al.,
2016) can reduce the influence of the low-texture regions and
boundary overreach to some extent, but the performance is still
unsatisfied in the presence of complicated depth discontinuities
such as in the urban areas, since the fixed variation strategy
of window size and step size is adopted. In addition, it can
be inferred from the above three cases that the unweighted
median filtering has little effect on solving the fattening effect,
although it can filter the apparent mismatches. MicMac
finds the disparity map that minimizes an energy function
using the multi-directional dynamic programming associated
with a multiresolution strategy. A regularization term is
embedded in considering the neighbor information. Therefore,
it provides good results when using small correlation windows.
The proposed scheme achieves the similar performance with
MicMac, which valid the ability to deal with the issues of
both low-texture areas and fattening effect. On the other hand,
the proposed scheme using local matching method possesses
the potential advantage of higher computational efficiency
compared to the time-consuming global optimization matching
methods. Besides, we examine the disparity of five disparity
estimation schemes along a random profile (see Fig. 9). The
curves of the proposed scheme and MicMac are the most similar
ones with each other, which confirms the relative accuracy of
the proposed disparity estimation scheme.
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Figure 8. Disparity map generated by (a) COSI-Corr with
a larger window size, (b) COSI-Corr with a smaller
window size, (c) hierarchical and adaptive framework
with fixed variation (HAFV), (d) MicMac and (e) the
proposed scheme. (f) Original left image.
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Figure 9. Comparison of the disparity along a random
profile (see Fig. 8f).

4. CONCLUSION

In this study, we introduce a novel hierarchical and adaptive
disparity estimation scheme for narrow baseline stereo.

The integration of multiscale superpixel hierarchy, adaptive
determination of the window size and location of correlation,
fast weighted median filtering and subpixel PC make the
proposed scheme be able to overcome the issues of both
low-texture areas and fattening effect. The experimental results
of our scheme on a pair of UAV images outperform those
of the fixed-window PC methods, the iterative scheme with
fixed variation strategy, and are on par with some sophisticated
implementations using global optimization, such as MicMac.
In future work, shadow detection and construction of weights
with other factors will be considered to reduce the sensitivity to
the unexpected image intensity.
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