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ABSTRACT:

This work proposes an approach for semantic classification of an outdoor-scene point cloud acquired with a high precision Mobile 
Mapping System (MMS), with major goal to contribute to the automatic creation of High Definition (HD) Maps. The automatic 
point labeling is achieved by utilizing the combination of a feature-based approach for semantic classification of point clouds and a 
deep learning approach for semantic segmentation of images. Both, point cloud data, as well as the data from a multi-camera system 
are used for gaining spatial information in an urban scene. Two types of classification applied for this task are: 1) Feature-based 
approach, in which the point cloud is organized into a supervoxel structure for capturing geometric characteristics of points. Several 
geometric features are then extracted for appropriate representation of the local geometry, followed by removing the effect of local 
tendency for each supervoxel to enhance the distinction between similar structures. And lastly, the Random Forests (RF) algorithm 
is applied in the classification phase, for assigning labels to supervoxels and therefore to points within them. 2) The deep learning 
approach is employed for semantic segmentation of MMS images of the same scene. To achieve this, an implementation of Pyramid 
Scene Parsing Network is used. Resulting segmented images with each pixel containing a class label are then projected onto the 
point cloud, enabling label assignment for each point. At the end, experiment results are presented from a complex urban scene and 
the performance of this method is evaluated on a manually labeled dataset, for the deep learning and feature-based classification 
individually, as well as for the result of the labels fusion. The achieved overall accuracy with fusioned output is 0.87 on the final 
test set, which significantly outperforms the results of individual methods on the same point cloud. The labeled data is published 
on the TUM-PF Semantic-Labeling-Benchmark.

1. INTRODUCTION

1.1 Motivation

Increasing need for fast and accurate 3D spatial data (e.g. for
designing HD maps for autonomous driving) has led to rapid
development of Mobile Mapping Systems (MMS) in terms of
accuracy and scanning density, which further enabled extensive
research in the topic of 3D scene semantic classification.
The course of development of MMS is thoroughly described
regarding different aspects of the technology in several recent
reviews (Tao , Li, 2007, Puente et al., 2013).

Our work offers a solution for semantic classification of
outdoor-scene point clouds by utilizing combination of
feature-based approach for semantic segmentation of point
clouds with deep learning approach for semantic segmentation
of images. The major goal is an output with enhanced
classification accuracy, compared to the outputs of individual
methods applied for the same task.

For these purposes, two types of classification are performed
upon data collected with an MMS (Figure 1): 1) Feature-based
approach is applied as in (Sun et al., 2018, Xu et al.,
2018): firstly, point cloud is organized into a supervoxel
structure for capturing geometric characteristics of points,
followed by defining local context for each supervoxel for
gaining contextual information. Secondly, several geometric

Figure 1. High precission mobile mapping system and sensors
used (3D Mapping Solutions GmbH)

features are extracted for appropriate representation of the local
geometry, followed by removal of the effect of local tendency
for each supervoxel in order to enhance distinction between
similar structures. And lastly, Random Forests (RF) algorithm
is applied for assigning labels to supervoxels and points within
them. 2) Deep learning approach is employed through semantic
segmentation of MMS images of the same scene. To achieve
this, Pyramid Scene Parsing Network (Zhao et al., 2017) is used
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and resulting segmented images with each pixel containing a
class label are then projected into the point cloud, enabling
classification for each point. At the end, fusion of the point
clouds from the same urban scene, classified with these two
methods is presented as experiment result and the performance
of our method evaluated on a manually labeled dataset.

1.2 State of the art in classification of laser scanning point
clouds

To provide semantic infomation from data acquired by MMS,
different methods for data classification, segmentation and
object recognition are developed over the time and described
in the literature (Guan et al., 2016, Ma et al., 2018). According
to (Mei et al., 2018), these methods can rougly be devided into
three groups: feature-based methods, deep learning methods
and semi-supervised learning methods.

Achievements of deep learning methods without hand-crafted
features, especially Convolutional Neural Networks (CNN)
in image segmentation (Garcia-Garcia et al., 2017) inspired
similar techniques for 3D point clouds classification. Several
suggested methods perform segmentation by feeding a designed
CNN with 3D tensors (Lai et al., 2014). The most significant
challenges of 3D deep learning, such as large computation
time and increased chance of overfitting due to the costly and
therefore limited training samples have led to an alternative
strategy of applying neural networks to 2D tensors, gained
by projecting the point clouds onto a 2D image plane.
Segmentation is then performed on such images and predicted
labels are assigned to points in a point cloud via back-projection
(Lawin et al., 2017, Boulch et al., 2018).

2. METHODOLOGY

The applied methodology consists of five major parts. 1) In
the first part the feature-based method (Method 1) is applied
and supervoxel-based classification is gained. In order to obtain
point-wise classification, the label of the nearest supervoxel is
assigned to each point. 2) Deep learning method (Method 2) is
employed through semantic classification of images from three
MMS cameras via neural network PSPNet. 3) Evaluation of
both methods individually is done against the first part of the
test data (Test 1) and performance of each method regarding
each class are considered for the next step. 4) The second
part of the test data (Test 2) was also individually classified by
each of the methods. However, the decision about the class
labels is made upon the performance of each method in the
evaluation against data in Test 1. In this way, a certain amount
of unbiasedness is achieved. 5) At the end, an evaluation of
the finally classified Test 2 data is done and the results are
compared to the results of the individual methods for the same
point set. An overview of the method is given in the Figure 2
and elaborated regarding individual methods in the following
subsections.

2.1 Feature-based point cloud classification

Firstly, a method for classification of the laser scanning
point clouds with previous over-segmentation via
supervoxel-structures is used as proposed by (Sun et al.,
2018). To achieve 3D partitioning in the form of supervoxels,
voxel seeding is performed within a regular grid and these are
considered as centers of the supervoxels. Then, the connections
of voxels are estimated and used as condition for grouping

Figure 2. Workflow of the proposed method

them together within certain neighborhoods. The connectivity
is estimated by calculating the distance D in feature space as
(Sun et al., 2018):

D =

√
wcD2

c + ws
D2

s

R2
seed

+ wnD2
n , (1)

considering Dc, Ds and Dn - the distances in Euclidean,
color and normal spaces, respectively, whereas wc, ws and
wn are the weighting factors. However, in this work only
spatial distance and normal vectors are considered as a criteria
for creating supervoxel structures. Since this method utilizes
geometric features, an appropriate representation of local
geometry is necessary. For this purpose, 3D shape features
are introduced, first by deriving respective eigenvalues λi,
i ∈ {1, 2, 3}, and after that by calculating linearity, planarity,
scattering, omnivariance, anisotropy, eigenotropy and local
curvature, as proposed in (Weinmann et al., 2015). Additional
features are considered as follows: height-features, orientation
features, radiometric features, as well as features gained by
subtraction the local context of each supervoxel to enhance
differentiation between similar structures. The latter is referred
to as the detrending process, during which the local tendency of
each supervoxel is calculated in feature space by considering
the neighboring supervoxels and expressed through feature
histogram of the local tendency VLT . It is then subtracted
from the feature histogram of a considered supervoxel VS . The
detrended geometric feature histogram is then obtained with:

V = VS − VLT (2)
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The final feature histogram VF is obtained by weighted
combination of V and VS :

VF = {VS , k · V } (3)

where weight k is a weight for each local tendency, estimated
by the number of supervoxels in the local context. After
geometric features are calculated for all supervoxels, supervised
classification with RF algorithm is performed (Breiman, 2001)
to assign semantic labels to supervoxels and points within them,
based on the extracted features.

2.2 Image segmentation

In our work, the approach of gaining point-cloud images
via backprojection and feeding these into a neural network,
encountered in related work, is omitted. Instead, image
data from three MMS cameras are segmented with Pyramid
Scene Parsing Network (PSPNet) (Zhao et al., 2017), which
successfully copes with one of the greatest challenges of FCNs
- capturing of the global scene context and including that
information in class prediction. For this purpose, PSPNet
incorporates a pyramid pooling module, as one of the main
contributions of that proposed architecture. In order to extract
the feature map of the input image from the last CONV layer
of a CNN, PSPNet uses pretrained ResNet (He et al., 2016)
with dilated strategy (Yu , Koltun, 2015) for the receptive
field expansion. The feature map is passed further as the
input to the pyramid pooling module, in which scene context
information is collected via four levels of a pyramid. Each
of the pyramid levels are pooling kernels of different sizes:
1×1, 2×2, 3×3 and 6×6, respectively. In that way, features
from different sub-regions are gathered on each pyramid level.
Global prior information, captured from pyramid levels, is
fused with the original feature map, yielding an improvement
compared to global pooling (Liu et al., 2015) in capturing
the scene context and incorporating that information in image
segmentation process.

Class-assignment from labeled pixels to each point in the
point cloud is enabled through the precise calibration of MMS
sensors. Therefore, relative position of all cameras and laser
scanners on the used platform (Figure 1) are known and they
operate synchronized in time. This enables precise matching
of images and scans of the same scenery. Following time
synchronization, a projection

f : R3 → R2 (4)

is performed, by calculating homogeneous coordinates for each
3D point of the current scene for the purpose of right pixel-label
assignment.

Xc =

[
R T
0 1

]
Xw (5)

x = K[I|0]Xc (6)

where K is the camera calibration matrix, Xc, Xw are
point coordinates in camera and world coordination system,
respectively and x are pixel coordinates of each projected 3D
point. For determination of laser scanning points visible from
each camera position, Hidden Points Removal is applied (Katz
et al., 2007).

2.3 Fusion of classification outputs

In this section a further elaboration of the fusion step is
provided and illustrated in Figure 3. Succeeding point-wise
classification of the point cloud with both mentioned methods
(Figure 2), our final result is a fusion of two classified point
clouds, which yields a possibility for a wide field of analyses.

Figure 3. Overview of the method for fusion of feature-based
and DL classification

Obtaining the final, fusioned output involves four major parts.
1) Firstly, classification outputs from a) the feature-based
method (Method 1) and b) the deep learning method (Method
2) are obtained individually, by applying the methodology
described in previous sections. 2) Following that, an evaluation
of the two methods is done against the Testset 1 and based on
their performance, one of the two methods is chosen to deliver
labels for each of the classes in the final step. 3) Afterwards,
the classification of the Testset 2 by each method individually
is done and finally 4) the class labels are chosen according to
performance of each method in step 2. In case of contradiction,
e.g. Method 1 voted for the class ”vegetation”, while for the
same point a class ”building” is assigned by the Method 2,
the preferred is the label of a class which has had higher F1

score in the evaluation against the data in Testset 1. The final
output is the result of the labels fusion on the Testset 2. This
output is then evaluated against the ground truth data and the
result of evaluation is compared to the individual results of
Method 1 and Method 2 on the same dataset. The reliability
of the predicted class labels is assessed through redundancy of
resulting labels considered for each point. Segmentation results
from images of different cameras are compared and weighted
against each other and against the results of the feature-based
method. It is important to note that the comparison of the labels
achieved with Method 1 and Method 2 is only done for the
points considered by both methods, which are the points visible
from MMS cameras. This is an example of how feature-based
method compensates for the limitations of DL-based one.

3. EXPERIMENTS

3.1 Datasets

Data acquisition for the practical part of this thesis was done
with the high-precision MMS from 3D Mapping Solutions
GmbH (Gräfe, 2007, Gräfe, 2009) (Figure 1) in the area of
about 50 000m2 around the Technical University of Munich
- in Gabelsbergerstrasse, Arcistrasse, Theresienstrasse and
Luisenstrasse. The two laser scanners operate with a frequency
of 200 profiles in a second and with the repetition rate accuracy
for each point of approximately 0.5mm.
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Figure 4. Examples of images recorded with MMS front
cameras

Figure 5. Nadir view over the complete point cloud dataset:
raw data colored by height

Such performances enable very high resolution of the point
clouds, with an approximate resolution of 2500 points per
m2 within a distance of 3m, assuming the driving speed of
72 km/h (Gräfe, 2018). As a result of lower driving speed,
the point density of the dataset used for experiments in this
thesis was around 14.500 points per m2 within a distance of
3m. Due to the rotated position of the scanners relative to
each other, a certain time difference in recording the same point
is present. All sensors are calibrated and co-registered into a
common coordinate system with the center in the IMU.

The final dataset consisted of 1299 images from three industrial
RGB cameras, two of which were mounted on the front of
the vehicle (resolution 2336 × 1776 px) and one on the back
(resolution 2432 × 2058 px). In total, around 320 million
laser scanning points were acquired in the area by the two
line-scanners. Figure 5 provides an outlook over the collected
point cloud of the entire area and examples of images from
MMS front cameras are provided in Figure 4.

Before proceeding with data processing for the purposes of
experimental work, data was cleaned from outliers by applying
noise suppressing and manual cleaning. A comparison of
data before and after outliers removal is shown in Figure 6.
Significant amount of data is still kept, as well as original
density, with major intention to provide convenient base for
HD-Maps generation.

Further steps were generation of ground truth and data
partitioning into train and test partition as described in
following sections.

(a) (b)

Figure 6. Rendered by height: (a) Raw data with noise (b)
Cleaned data

3.2 Generation of ground truth

In order to achieve precise evaluation of the classification
and for the purposes of training the classifier, an accurate
manually labeled point cloud for the whole dataset was created
as ground truth. The points are assigned with unique labels
from the selected ten semantic classes to describe different
objects in urban area: man-made terrain, natural terrain,
vegetation, building, hard scape, pole-object (traffic signs,
traffic lights included), bicycle, vehicle, man-made object and
human. The definition of classes is based on synchronization
between Cityscapes (Cordts et al., 2016) and ETH Semantic3D
benchmark (Hackel et al., 2017). After the careful annotation,
the entire laser scanning point cloud was divided into train and
test part and 50% of the acquired points were used to extract the
features for the training phase of the RF-classifier (Figure 7).
The second half of the dataset was further divided and the result
of this partitioning are two parts of the test data: one part is used
for setting the class-wise weights based on the performance of
each of the two methods individually (shown in Figure 8) and
the second part is used for evaluation of the final output of the
fusion (in Figure 9).

3.3 Results and discussion

Method 1: Feature-bassed method In the first part of the
experiment, the methodology described in Section 2.1 is put
into practice. For the segmentation part, the voxel size is
finally set to 0.2m and the seed resolution (distance between
seeding voxels) for supervoxelization is set to 0.6m. Such
resolutions are chosen with two main intentions: 1) to gain
neighborhoods large enough to capture the context information
and 2) to obtain satisfying seed resolution for nearest-neighbor
point-wise labeling which followed at the end by finding the
nearest supervoxel of each point. In the classification phase, the
number of trees for training the RF classifier is set to 200, by
observing out-of-bag error in the training stage. Furthermore,
50% of the points in original point cloud were used for training,
while only Testset 1 (around 25% of the total number of points)
was used to test the classification and set the weights for the
fusion.

Figure 10 provides the visual result of the feature-based
classification of the points belonging to the Testset 1. As
visible, there is a large area of man-made terrain, misclassified
as building (enclosed with black quadrilateral). The probable
reasons for such misclassification are that the class man-made
terrain is trained on the area around the campus with only streets
represented as this class. Therefore, the different context of
the area inside of the campus - mostly concrete paver blocks
as opposed to asphalt on the streets, was the probable cause
of misclassification. Similarly, due to the similar geometrical
characteristics and probably because of relatively low voxel
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Figure 7. Training data used for training the RF classifier: part
of the Luisenstrasse, Theresienstrasse and part of the

Arcisstrasse

Figure 8. Testset 1: parts of Luisenstrasse and
Gabelsbergerstrasse and a part of TUM inner courtyard. Used
for deciding between the two methods for labels of each class.

Legend as presented in Figure 7

resolution for capturing the context of smaller objects and
details, parts of buildings were classified as hard scapes (Figure
11). This problem is partially solved through DL-based method,
since it proves better results for most of the classes for points in
camera view, as shown in Table 2.

Method 2: DL-based classification Contrary to the method
in original proposal by (Zhao et al., 2017), who based their
implementation on Caffe framework (Jia et al., 2014), PSPNet
for image segmentation in scope of this work is based on
the implementation by (Kryvoruchko et al., 2017-2019) in
TensorFlow software library (Girija, 2016). The network
trained on Cityscapes dataset is used and evaluation results on
validation dataset are given in Table 1. Both, training imagery
from Cityscapes dataset, as well as the test data provided by the

Figure 9. Testset 2: a part of the Gabelsbergerstrasse and of the
TUM inner courtyard. served as the final test data for
evaluating the fusion. Legend as presented in Figure 7

Figure 10. Result of the feature-based classification on the
Testset 1

Figure 11. Misclassification of parts of building facade as hard
scape (green-yellow patches)

three cameras of the used MMS system depict urban scenery
and therefore, the learned parameters proved decent efficiency
in the case of the testing image set.

In order to proceed with fusion of the classes and evaluation
considering ground truth labels, the points are reclassified
following the defined ten classes (Section 3.2) and an example
for reclassified images is shown in Figure 12b.

Since a significant redundancy is achieved by providing three
labels for each point visible from the cameras, the final choice
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Classes IoU class
Road 0.972
Sidewalk 0.781
Building 0.888
Wall 0.531
Fence 0.502
Pole 0.342
Traffic light 0.413
Traffic sign 0.607
Vegetation 0.880
Terrain 0.611
Sky 0.923
Person 0.611
Rider 0.302
Car 0.919
Truck 0.698
Bus 0.747
Train 0.651
Motorcycle 0.370
Bicycle 0.622
Score Average 0.651

Categories IoU
Sky 0.917
Human 0.630
Vehicle 0.885
Flat 0.976
Object 0.432
Construction 0.882
Nature 0.885
Score Average 0.801

Table 1. PSPNet performance on Cityscapes validation set:
Left: Class - wise; Right: Category - wise

of unique labels was completed by evaluating the predicted
labels resulting from each of the three sets of images. This
evaluation was performed against the ground truth for the
Testset 1, shown in Figure 8. In this part of the test data,
various objects are present, such as vegetation, classic city
scapes with vehicles and buildings, as well as the part of the
inner courtyard with objects particularly challenging for the
classification. Based on F1 score, which combines precision
and recall, labels are combined and weighted for the second
part of the evaluation. More precisely, labels for each class
were chosen from the image set which proved the highest F1

score for the corresponding class. Such labels are finally used
for fusion with the feature-based method for classification. It
is important to point out that these evaluation results relate
only to the classified points. Since the field of view of
the MMS cameras is limited, a significant amount of points
is ”unseen” and therefore not classified. The feature-based
method, however, is able to classify all the points. Therefore
DL method can only contribute to the final classification for the
points visible from camera.

Fusion In this part of the experiment, final DL point labels
are combined with point labels gained through feature-based
classification. For this purpose, decision is made for the points
considered by both methods, which are the points in the field of
view of MMS cameras and classified by DL. Methods 1 and 2
are compared regarding their F1-scores, as shown in Table 2.

PPPPPPPPPClass

Method Method 1 Method 2 (DL)
(Feature-based) (Deep Learning)

F1 score
man-made terrain 0.840 0.931
natural terrain 0.259 0.080
vegetation 0.421 0.433
building 0.618 0.857
hard scape 0.263 0.014
pole objects 0.011 0.321
bicycle 0.006 0.246
vehicle 0.620 0.858
man-made object 0.031 0.040
human - 0.164

Table 2. Comparison of F1 scores of both methods, calculated
in evaluation against the Testset 1. Bold: the highest score for

each class

Figure 12. Classes from segmented images of the front-left
MMS camera projected onto the Testset 1. Upper image shows
the original classification scheme and image below point cloud

reclassified for evaluation

Class Precision Recall IoU F1-score
man-made terrain 0.958 0.762 0.738 0.849

natural terrain 0.231 0.094 0.072 0.134
vegetation 0.245 0.800 0.231 0.375
building 0.674 0.772 0.562 0.720

hard scape 0.787 0.135 0.130 0.230
pole objects 0.001 0.046 0.001 0.002

bicycle 0.078 0.002 0.002 0.005
vehicle 0.447 0.488 0.304 0.466

man-made object 0.415 0.010 0.010 0.019
human - - - -

Overall Acuraccy 0.721
Kappa 0.553

Table 3. Evaluation of the feature-based method against the
Testset 2 for all points in that dataset

Finally, based on these scores, it is decided that during the
second test phase, labels predicted with Method 1 will prevail
for classes natural terrain and hard scape and labels predicted
with Method 2 will be assigned for classes man-made terrain,
vegetation, building, pole objects, bicycle, vehicle, man-made
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Class Precision Recall IoU F1-score
man-made terrain 0.961 0.858 0.829 0.906

natural terrain 0.089 0.000 0.000 0.001
vegetation 0.376 0.096 0.083 0.153
building 0.838 0.488 0.446 0.617

hard scape 0.026 0.000 0.000 0.001
pole objects 0.336 0.160 0.122 0.217

bicycle 0.338 0.155 0.119 0.213
vehicle 0.747 0.671 0.546 0.707

man-made object 0.529 0.062 0.059 0.111
human 0.070 0.068 0.036 0.069

Overall Acuraccy 0.649
Kappa 0.484

Table 4. Evaluation of the DL-based method against the
Testset 2 for all points in that dataset

object and human. The resulting classification is shown in the
Figure 13 and the results after evaluating this output against
the ground truth are provided in Table 5. When compared
to the results of both methods individually (Tables 4 and 2),
significant improvement by obtaining the fusion is evident.

Figure 13. Final classification of Testset 2: nadir view

4. CONCLUSION

In this work, a fusion of two different methods for Mobile
Mapping System (MMS) point cloud classification is proposed.
A thorough class-wise comparison of the classification results
between each of the methods individually and the final result of
fusion is offered. Also, a significant increase in classification
accuracy is demonstrated during this analysis.

Specifically in this work:

Class Precision Recall IoU F1-score
man-made terrain 0.955 0.957 0.916 0.956

natural terrain 0.154 0.033 0.028 0.054
vegetation 0.348 0.647 0.292 0.452
building 0.878 0.884 0.788 0.881

hard scape 0.366 0.013 0.013 0.025
pole objects 0.011 0.175 0.011 0.021

bicycle 0.329 0.156 0.119 0.212
vehicle 0.637 0.776 0.539 0.700

man-made object 0.511 0.064 0.060 0.113
human 0.070 0.068 0.036 0.069

Overall Acuraccy 0.868
Kappa 0.776

Table 5. Evaluation of the final output of the fusion against the
ground truth of the Testset 2

1) Classification of a highly dense point cloud is achieved, 
without large point reduction. Major intention behind this 
approach is to achieve a classification of a point cloud, which 
would have potential to assist the generation of HD-Maps with 
required spatial accuracy.

2) Experiments with supervoxel-based feature extraction 
and classification are utilized for point-wise labeling and 
influence of the local context-based labels regularization 
is analyzed. Such an approach reduces the computing 
requirements significantly, however, with this method only, 
the yielded classification performance is reflected through an 
overall accuracy of merely 0.721 on the entire Testset 2.

3) A deep learning method for semantic segmentation of images 
is utilized to obtain labels for points in a point cloud via 
backprojection of predicted pixel labels onto the point cloud. 
Benefiting from simpler training process and larger available 
training sets, 2D segmentation shows great potential also for 
classification in 3D. Classification of points with this method 
demonstrated better accuracy than the feature-based method 
for the points visible from camera (0.885 compared to 0.724 
on the visible points in Testset 1). The limitation through the 
field of view is one of the major impacts in utilizing solely this 
method for point cloud classification, since the classification of 
the whole data set is impeded due to the MMS construction. 
Nevertheless, an overall accuracy of 0.885 on Testset 1 for 
the visible points, without previous fine-tuning of the neural 
network is quite satisfying.

4) One of the major motivations for this work was assisting 
the HD-Maps generation, in which extracting elements as road 
boundaries, buildings, vegetation and traffic signs are crucial. 
The experiment results on the final classification output show a 
possibility to assist road extraction, with the precision of 0.955 
and IoU 0.916 for this class on the final test set, as well as 
buildings with precision of 0.878 and IoU of 0.788.

The manually labeled point cloud is published 
at TUM-PF Semantic-Labeling-Benchmark, under
http://www.pf.bgu.tum.de/en/pub/tst.html.
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