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Extraction of IndoorGML Model 
from an Occupancy Grid Map Constructed Using 2D LiDAR 

LEALEM S. TESSEMA1,2, REINER JÄGER2 & UWE STILLA1 

Abstract: Topological semantic indoor spatial data is deemed important for efficient naviga-
tion of mobile robots and humans alike. In an effort to standardize and facilitate interopera-
bility of indoor spatial data, the Open Geospatial Consortium has adopted the IndoorGML 
spatial data model. There has been a research gap identified in the use of such high-level, 
semantically rich spatial data (e.g. IndoorGML) in a Simultaneous Localization and Map-
ping framework. This paper presents an entry-point study towards addressing this research 
gap by presenting a method based on mathematical morphology as a means of extracting 
topological and semantic information from occupancy grid maps. The extracted semantic & 
topological information is translated into an IndoorGML compliant semantic Node-Relation-
Graph and validated against the OGC IndoorGML schema. 
 

1 Introduction 

Along with the advent of SLAM (Simultaneous Localization and Mapping) algorithms, autono-
mous service robots have been gaining popularity which is justified by the availability of numer-
ous consumer assistive robots such as the “Roomba” autonomous vacuum cleaner and the Care-
O-bot from Fraunhofer IPA. Such service robots can be used in a range of scenarios ranging 
from home and personal assistive systems to industrial applications. In order to accomplish their 
task, especially those exclusively operating in an indoor environment, require the use of some 
sort of spatial representation of the environment.   
Indoor map representation and navigation problems have been long addressed by the robotics 
community in light of autonomous navigation of robots. Different map representation models 
have been proposed, such as: feature based maps, semantic maps and topological maps. It is of-
ten the case that algorithms involved in the generation of maps are geared towards producing 
point clouds as end products. A significant challenge with point clouds is that, they do not pro-
vide high level understanding of the environment. High level information in a form of semantic 
or topology information is deemed valuable especially when it comes to applications in Building 
Information Modeling (BIM) and Location Based Services (LBS).  
High-level map representation in SLAM, especially in the case of service robotics facilitates se-
mantic understanding and human-robot interaction. Integration with the Open Geospatial Con-
sortium (OGC) indoor spatial data model standard – IndoorGML could be realized as an imple-
mentation of semantically and topologically rich map information in a SLAM framework. The 
integration of semantic and topologic information for example in the graph based SLAM frame-
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work introduces new challenges and opportunities in implementing optimization algorithms that 
make use of metric and non-metric information.  
Indoor LBS require spatial models that support attribution of semantic properties, contain acces-
sibility information, store spatial relationships and serve for the function of multi-modal naviga-
tion. The complex nature of indoor scenarios added to the diversity of users and diverse naviga-
tion modalities asks for a flexible and efficient spatial data model that is useful for agents navi-
gating in an indoor environment.  

2 Problem statement 

The robotics community has been highly invested on the use of point clouds or Truncated Signed 
Distance Functions (TSDF) to model 3D geometry. The disadvantage in using such representa-
tions is that they have large memory footprints and they do not inherently provide high level un-
derstanding of the geometric representation (CADENA et al. 2016). The most important aspect of 
high-level map representations relevant to this study is the capability of such representations to 
facilitate interaction between robotic maps, Geographic Information Systems (GIS) and Building 
Information Modeling (BIM) standards. IndoorGML is a standard with a potential to address this 
issue of interoperability. CADENA et al. (2016), after providing an elaborate discussion on state of 
the art in high-level map representation, formulates that “. . . no SLAM techniques can currently 
build higher-level representations, beyond point clouds, mesh models, surface models and 
TSDFs.” Based on this premises this paper presents an entry point study, which later on expands 
to the use of IndoorGML models in a SLAM framework.  
Occupancy grid maps are primarily intended to be used for robot navigation related tasks, 
whereas with the introduction of the IndoorGML standard, the usability of occupancy grid maps 
could be further extended as sources of up to date indoor spatial information that is usable to 
applications in indoor GIS and pedestrian navigation.  
The IndoorGML standard highlights the importance of indoor sub-spacing. Sub-spacing is im-
portant to represent the geometric properties of an indoor space. An example for a need for sub-
spacing is a situation where an indoor space has a large and complicated corridor structure where 
the representation of such space as a single unit might hide meaningful geometry which could be 
useful for navigation tasks.  

3 Related work 

3.1 IndoorGML 

SRIVASTAVA et al. (2018) developed a methodology to convert CAD drawings of indoor building 
data into IndoorGML. They extended the IndoorGML core module to handle semantic infor-
mation. Their approach relies on the availability of CAD DXF floor plan. Similarly, PANG et al. 
(2018) proposed a method to extract a building’s indoor space information based on simple in-
door space boundary calculation on an already existing BIM and GIS models. On the other hand, 
DÍAZ-VILARIÑO et al. (2017) investigated a method to extract IndoorGML model from point 
cloud data acquired from a SLAM based 3D mapping system (laser scanner); their approach 
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made use of the sensor trajectory computed from the mapping system along with region growing 
and adjacency analysis to extract semantic information and reconstruct the scene.  
DIAKITÉ et al. (2017) discuss a set of recommendations for the OGC IndoorGML standard with 
the intent of improving the standard in future versions. They primarily investigated problems 
related to the space subdivision concept in IndoorGML. It is pointed out that the current version 
(1.3) of the standard fails to address the context of furnished 3D indoor environments. The au-
thors propose a multi-criteria approach (Geometry-driven, Topology-semantic-driven and navi-
gation driven criteria) towards automatic subdivision of space cells. 

3.2 Extraction of Topology from Occupancy Grid Maps  

JOO et al. (2010) propose a method for automatic generation of topological maps from occupancy 
grid maps using virtual door detection. Their method is implemented in two phases where virtual 
doors are detected from the occupancy grid using adaptive curvature estimation of corner fea-
tures in the first phase and the topological structure extracted from the first phase is optimized by 
the use of a genetic algorithm in the second phase. Despite the homogenous nature of the envi-
ronment where their experiments were carried out, the authors claim that their approach has a 
high degree of accuracy.    
Image processing techniques could be used to extract high-level information from occupancy 
grid maps (FERNÁNDEZ-MADRIGAL & BLANCO CLARACO 2013; ELFES 1989). Alternatively, a 
learning based approach using artificial neural networks and Bayesian integration has been suc-
cessfully implemented by THRUN & BÜCKEN (1996) for the same purpose. They used an artifi-
cial neural network to interpret sonar sensor reading into an occupancy grid map whereas the 
topological map is generated by splitting the metric map into sub-regions by identifying critical 
points on a Voronoi diagram that are closest to an occupied grid cell within a given neighbor-
hood and connecting these points to the corresponding occupied grid cell by critical lines which 
represent doorways. Even though this approach perfectly fulfills its purpose when it comes to 
navigation, it lacks the semantic labeling aspect where indoor spaces are labeled as transition 
spaces (corridors and doors) and rooms. 
POTUGA & ROCHA (2012) implemented an image processing based approach similar to the 
methodology adopted in our study. Their work in general deals with obtaining a global topologi-
cal abstraction from a preexisting occupancy grid map. The topological structure is basically 
extracted from the skeletonization of free space which results in a Voronoi diagram. Corner 
points on the Voronoi diagram are considered as nodes and the lines between such nodes consti-
tuted the edges of the graph. One major drawback of this approach when it comes to the Node 
Relation Graph concept of IndoorGML is that the graph constructed this way does not portray 
the actual semantic & topological relationship of the primal space. For instance, there is no 
means of telling which nodes are rooms, corridors or doors.  
To summarize, research in the extraction of topological information from occupancy grid maps 
could be categorized in to two as machine learning based and image processing based approach-
es. Our approach belongs to the later and incorporates both topological and semantic indoor in-
formation as per the IndoorGML standard.  
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4 Method 

4.1 Simulation & Data Acquisition  

Our study presents a set of methods to extract 2D IndoorGML model from an occupancy grid 
map generated by a simulated indoor robot fitted with a 2D LiDAR sensor. In order to generate 
the occupancy map, a particle filter based open source SLAM algorithm known as “gmapping” 
(GRISETTI et al. 2007) is used as a black box. The simulation is carried out in the ROS-GAZEBO 
robot simulation environment where two scenarios, a simple hypothetical 3D floor plan and the 
popular “Willow garage” floor plan were used. The data was acquired by driving a robot fitted 
with a 2D LiDAR in the simulation environment.  

4.2 IndoorGML 

The OGC IndoorGML standard is developed as an application schema of the Geography Markup 
Language (GML) with an intension to facilitate the representation and interoperability of indoor 
spatial data for the purpose of indoor navigation. One of the intended application area for In-
doorGML is in the localization of features in indoor space. It is meant to address requirements 
for representing spatial components and constraints defined by architectural components such as 
rooms, corridors and doors and the respective relationships among these components. The stand-
ard defines indoor constraints based on the notions of cellular space, semantic representation, 
geometric representation, topological representation and multi-layered representation (LEE & LI 
2012).  
Since the main purpose of the standard is to provide a framework for indoor spatial data oriented 
towards navigation, the semantics aspect of indoor space is also dealt from the point of view of 
indoor navigation where indoor cells are classified into navigable and non-navigable cells (LEE 
& LI 2012). Although IndoorGML supports both geometric and topological information, we fo-
cus on the network representation of cellular space, which in our case is to be extracted from 
occupancy grid maps. By network representation, it implies topological relationship which also 
might contain some level of semantic information. IndoorGML proposes the use of a Node-
Relation Graph (NRG) to represent topological relationships such as adjacency and connectivity. 

Fig. 1:  A simple hypothetical 3D floor plan (left) and the Willow garage dataset (right) 
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In order to represent a cellular (geometric) indoor space in to a graph structure, the IndoorGML 
standard makes use of the theory of Poincaré duality. In Poincaré duality applied to indoor space, 
a room is to be represented as a point and the adjacency between rooms (shared 3D wall or 2D 
line) is to be represented by an arch connecting the two spaces. The standard identifies two sorts 
of adjacency properties, connectivity and accessibility.  
The notion of Node-Relation Graph lends itself to the idea of graph data structure commonly 
known in mathematics and computer science. A graph generally represents relationships between 
pairs of objects commonly called nodes or vertices. This relationship is represented by a set of 
pairwise connections between nodes referred to as edges. A formal definition of a graph is given 
by MARCHAND-MAILLET & SHARAIHA (2000) as: A graph 𝐺 ൌ ሺ𝑉, 𝐸ሻ is a set of vertices V with 
their inter-relationships given by the set of arcs E. If an orientation is associated with any arc, 
the graph is said to be directed otherwise G is an undirected graph.  In this paper, when we only 
assume undirected graphs where the set of all possible relations between nodes is given by:  
 

𝑯 ൌ ራ 𝐶ሺ𝑣௜, 2ሻ
ே

௜

 ;  𝐺 ⊂ 𝑯                                                  ሺ1ሻ 

Where 𝑉 represents the set of all vertices 𝑉௜  and all possible edges are represented as pairwise 
combination of all vertices (nodes). An instance of H which represents a particular configuration 
space of an indoor environment - G is a set of nodes and edges in dual space.  

4.3 Image Operations on Occupancy Grid Maps 

The concept of occupancy grid maps as a probabilistic tessellated space representation of spatial 
information was first introduced by ELFES (1989). A formal definition of occupancy grid map is 
given as: “An occupancy field 𝑂ሺ𝑥ሻ is a discrete-state stochastic process defined over a set of 
continuous spatial coordinates 𝑥 ൌ ሺ𝑥ଵ, 𝑥ଶ … 𝑥௡ሻ while the occupancy grid is a lattice process, 
defined over a discrete spatial lattice”. Each occupancy grid cell "𝑐" is associated with a binary 
random variable 𝑠ሺ𝑐ሻ with a Bernoulli distribution (FERNÁNDEZ-MADRIGAL & BLANCO CLARA-

CO 2013; ELFES 1989). One advantage of occupancy grid maps is that they seamlessly fit into 
Bayesian particle filter based recursive estimation algorithms; on the other hand their huge stor-
age requirement makes them infeasible options for mapping large scale environments (FERNÁN-

DEZ-MADRIGAL and BLANCO CLARACO 2013). 
For the sake of simplicity, we describe the occupancy mapping approach in the case of mapping 
with a known pose (THRUN et al. 2005; FERNÁNDEZ-MADRIGAL & BLANCO CLARACO 2013). 
The posterior to be estimated under this assumption is the map given by the conditional probabil-
ity 𝑝ሺ𝑚|𝑧ଵ:௧, 𝑥ଵ:௧ሻ for each pixel grid cell 𝑚௜ and all sets of measurements and poses up to time 𝑡. 
The posterior becomes tractable if the individual distributions on 𝑚௜ are estimated rather than on 
the whole joint probability. Assuming that the individual grid cells are independent from each 
other, the posterior could be simplified as a product of its marginal given by: 

𝑝ሺ𝑚|𝑧ଵ:௧, 𝑥ଵ:௧ሻ ൌ 𝑝ሺሼ𝑚௜ሽ௜
ேห𝑧ଵ:௧𝑥ଵ:௧ሻ ൎ ෑ 𝑝ሺ𝑚௜|𝑧ଵ:௧, 𝑥ଵ:௧ሻ

ே

௜

                              ሺ2ሻ 
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After successive application of Bayes rule, the conditional independence assumptions given by 
𝑧௧ ⊥ 𝑧ଵ:௧ିଵ| 𝑥௧, 𝑚௜ and 𝑚௜ ⊥ 𝑥ଵ:௧ enable the formulation of the log odds of the posterior 
𝑝ሺ𝑚௜|𝑧ଵ:௧, 𝑥ଵ:௧ሻ as: 

𝑙௧ሺ𝑚௜ሻ ൌ 𝜏௧ሺ𝑚௜ሻ െ  𝑙௢ሺ𝑚௜ሻ ൅ 𝑙௧ିଵሺ𝑚௜ሻ                                             ሺ3ሻ 

Where: 

𝑙௧ሺ𝑚௜ሻ ൌ ln
௣൫𝑚௜ห𝑧ଵ:௧, 𝑥ଵ:௧൯

௣൫൓𝑚௜ห𝑧ଵ:௧, 𝑥ଵ:௧൯
  , the log odd of the posterior to be estimated;  

𝜏௧ሺ𝑚௜ሻ ൌ  ln
௣൫𝑚௜ห𝑧௧, 𝑥௧൯

௣൫൓𝑚௜ห𝑧௧, 𝑥௧൯
 , the inverse sensor model of a 2D LiDAR for a given grid cell; 

𝑙଴ሺ𝑚௜ሻ ൌ  ln
௣ሺ௠೔ሻ

௣ሺ൓௠೔ሻ
 , represents a-priori information about the map occupancy; 

 𝑙௧ିଵሺ𝑚௜ሻ ൌ ln
௣൫𝑚௜ห𝑧ଵ:௧ିଵ, 𝑥ଵ:௧ିଵ൯

௣൫൓𝑚௜ห𝑧ଵ:௧ିଵ, 𝑥ଵ:௧ିଵ൯
, the previous occupancy state of the grid cell; 

4.3.1 Mathematical Morphology 

Occupancy grid maps can be transformed into binary images that represent occupied space as 
black pixels and free space as white pixels by thresholding. This enables the use of morphologi-
cal operations to manipulate the geometric content based on the contents of neighboring pixels 
defined by a structuring element. In this sub-section we understand occupancy grid maps as sim-
ple binary images with values 1 as foreground pixels and 0 as background pixels. Onwards, we 
make use of formal definitions of morphological filters and operations given by BURGER & 
BURGE (2009).  
 
Dilation: 𝐼 ⊕ 𝐻 ≡ ሼሺ𝑝 ൅ 𝑞ሻ|∀ 𝑝 ∈ 𝐼, 𝑞 ∈ 𝐻ሽ 

Erosion: 𝐼 ⊖ 𝐻 ≡ ሼ𝑝 ∈ 𝑍ଶ|ሺ𝑝 ൅ 𝑞ሻ ∈ 𝐼, ∀ 𝑞 ∈ 𝐻ሽ 

Opening: 𝐼 ○ 𝐻 ൌ ሺ𝐼 ⊖ 𝐻ሻ ⊕ 𝐻 

Closing: 𝐼 ⦁ 𝐻 ൌ ሺ𝐼 ⊕ 𝐻ሻ ⊖ 𝐻 

Skeletonization is the process of converting foreground pixels in to strings of single pixels which 
capture the geometric essence of the foreground pixel components in the image. Skeletonizing an 
occupancy grid map leads to the representation of free space by a string of pixels which capture 
the geometric nature of the free space. In this regard, we have made use of Blum’s Medial Axis 
Transform (MAT) (BLUM 1967) to construct skeletons of from occupancy grid maps. Such rep-
resentation of free space is often referred to as generalized Voronoi graph (diagram). 
One drawback of using morphological filters is the specification of the structure and dimension 
of the structuring element which needs to change as per the texture of the image to be used. The 
use of a suitable parameter depends on a prior knowledge of the environment such as width of 
doorways and corridors. In addition, certain morphological operators with a square structuring 
element work best on Manhattan like environments and perform weakly on other environments. 
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4.3.2 Morphological Segmentation (Watershed Transform) 

The watershed transform borrows the notion of a watershed and catchment basin from physical 
geography. In geography, a watershed is an area of land that marks the boundary of a catchment 
basin. A catchment basin on the other hand represents the area of land where water drains off 
into a common pour point. Generation of a watershed or catchment is commonly performed from 
a digital elevation model in geography. 
In image processing, the watershed transform is commonly used along with the distance trans-
form. The result of a watershed transform in MATLAB is a label matrix which represents indi-
vidual catchment basins where the watershed ridge pixels have a value of zero (GONZALEZ et al. 
2009). One major drawback of watershed based segmentation is that without the use of interac-
tively provided markers, the result could be over-segmented due to noise and other local irregu-
larities.  

4.3.3 Region Adjacency Graph (RAG) 

Once the occupancy grid map is converted in to a symbolic image (segmented & labeled), the 
next step would be the extraction of the topological relationships among the labeled image com-
ponents. The result of such operation is a region adjacency graph that stores spatial adjacency 
information. This final graph structure corresponds to IndoorGML’s NRG and is later translated 
in to an IndoorGML file and was validated against the OGC IndoorGML schema online.  
In order to extract a RAG from a symbolic image, horizontal and vertical adjacencies (4-
adjacency) between pixels with different labels are detected and these are added as new edges to 
the adjacency graph being constructed. In this study, we have made use of the algorithm pro-
posed by SHAPIRO (1996) for the extraction of region adjacency from a labeled occupancy grid 
map.  

5 Results 

5.1 Experiment I 

In the first experiment, we investigated the results of binary connected component labeling after 
elementary morphological operations were performed on an occupancy grid map. The method 

Fig. 2:  Watershed transform (c) on an occupancy grid map (a) and the corresponding distance trans-
form (b). 

(a) (b) (c) 
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implemented for this experiment is presented in Tab. 1. In steps 1 and 2 the input occupancy map 
is binarized and the walls are further articulated by a dilation operation. Steps 3 to 6 deal with the 
extraction of doors. Finally, the region adjacency is computed by the method mentioned in sec-
tion 4.3.3. As shown in Fig. , the algorithm performs well in the hypothetical (simple) dataset. 
Whereas in Fig. (b), it is shown that the applied method fails to cope with the scale and complex-
ity of the Willow garage dataset. From the results, one could understand that the fundamental 
factor that contributes to the success or failure in this approach is the homogeneity and complexi-
ty of the environment. 
 

 

 

 

Fig. 3:  Occupancy grid maps and their corresponding NRG extracted using connected component 
labeling. (a) On a hypothetical environment and (b) On the Willow garage dataset. 

(a) (b) 
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Tab. 1: Method for the extraction of NRG based on connected component labeling. 

 
Fig. 6(b) (bottom) shows the region adjacency graph generated from the labeled symbolic image 
of the willow garage dataset. In such a graph the nodes actually represent the centroid of the cor-
responding labeled component. It is for this reason that all the edges appear to converge to the 
center of the largest component, which is the corridor in this case. Due to this phenomenon it is 
not possible to represent the actual topological & geometric structure of the environment using 
the method described in Tab. 1. Furthermore the door detection (step 5) which uses XOR opera-
tor on 𝐼௢௣௡ 𝑎𝑛𝑑 𝐼௘௥ௗ results in incorrect regions due to the effect of the morphological thickening 
that also affects other regions of the image. 

5.2 Experiment II 
In the second experiment, we addressed the limitations discussed in experiment I. Furthermore, 
we made use of the watershed segmentation method to further subdivide the corridor so that the 
actual geometric structure of the environment could be preserved. For the detection of doors, we 
adopted a new method that makes use of the medial axis transform. The skeletonization of pixels 
representing empty space (white) results in what is known as the generalized Voronoi diagram. 
A generalized Voronoi diagram is the generalization of the ordinary Voronoi diagram of points. 
In this particular case the generalization would be in the use of the medial axes as seeds (instead 
of points). On the other hand, the complement of 𝐼௢௣௡ was also skeletonized and the intersection 
(step 3 on Tab. 2) of these and the Voronoi pixels were considered to be transition spaces (door-
ways). 
 

 

 

 

Method: NRG from Connected Component Labeling 

1. Binarize occupancy grid map 
𝐼௕௜௡ ൌ  𝑏𝑖𝑛𝑎𝑟𝑖𝑧𝑒ሺ𝐼௢௖௖, 0.85ሻ  

2. Morphological erosion  
𝐼௘௥ௗ ൌ  𝐼௕௜௡ ⊖ 𝑆𝐸   

3. Morphological Opening 
𝐼௢௣௡ ൌ  𝐼௘௥ௗ ○ 𝑆𝐸  

4. Connected component labeling 
𝐼௟௔௕௘௟ ൌ  𝑙𝑎𝑏𝑒𝑙ሺ𝐼௢௣௡ሻ  

5. Binary XOR to detect doors & label doors 
𝐼ௗ௢௢௥ ൌ 𝑙𝑎𝑏𝑒𝑙ሺ𝐼௢௣௡ 𝑋𝑂𝑅 𝐼௘௥ௗሻ  

6. Reintroduce doors in the symbolic image (join the two labels) 
𝐼௟௔௕௘௟ ൌ  𝐼ௗ௢௢௥  ⋃  𝐼௟௔௕௘௟  

7. Generate region adjacency graph 
𝐺ோ஺ீ ൌ  𝑟𝑒𝑔𝑖𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦ሺ𝐼௟௔௕௘௟ሻ  

8. Write 𝐺ோ஺ீ  to IndoorGML as NRG 
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Tab. 2: Method for door detection using skeletonization 

 
The detection of doors plays a major role in the semantic labeling of the whole grid map. After 
all the candidate doors were detected as per the method shown in Table 2, the NRG was initial-
ized as a node only graph with the centroid of the door pixels. The connectivity information was 
added incrementally by introducing the labeled image from the watershed segmentation. In order 
to identify rooms and corridors, a rule was formulated where non-door nodes with a degree of 
two or more are labeled as a transition (corridor) spaces as shown in Table 3, step 6. 

 
Fig. 4:  Detection of door pixels using intersection of complementary skeleton pixels 𝐼௦௞௘௟ (yellow) 

and 𝐼௩௢௥ (gray) 

Once the RAG was generated from the union of the labeled image which is a result of the water-
shed segmentation and the labeled door image, further refinement of the graph was carried out by 
introducing topological constraints based on a-prior knowledge. Cyclic sub-graphs which are 
caused by the over-segmentation during watershed transformation were removed by applying 
these constraints in a post processing stage. Cyclic corridor-corridor-corridor sub-graphs were 
modified in a similar fashion as described inTab. 4. Reflexive node relationships were also used 
as a constraint to avoid door-door and room-room adjacencies. Edges representing such connec-
tions were simply deleted from the NRG. We have also imposed a constraint to remove “dan-
gling” (degree = 1) corridor nodes as this conflicts with our definition of a corridor, which is a 
node in the NRG with a degree of at least 2. 

Method: Door Detection using Medial Axis Transform (MAT) 

1. Skeletonization of boundaries using MAT 
𝐼௦௞௘௟ ൌ  𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛ሺ𝑖𝑛𝑣𝑒𝑟𝑠𝑒ሺ𝐼௢௣௡ሻሻ  

2. Generalized Voronoi graph  
𝐼௩௢௥ ൌ 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛ሺ𝐼௢௣௡ሻ  

3. Intersection of 𝐼௩௢௥ and 𝐼௦௞௘௟ 
𝐼ௗ௢௢௥ ൌ 𝑙𝑎𝑏𝑒𝑙ሺ𝐼௦௞௘௟ 𝐴𝑁𝐷 𝐼௩௢௥ሻ   
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Tab. 3: Procedure for generating IndoorGML NRG from RAG obtained from watershed segmentation 

 

A visual comparison of the NRG with and without the refinement is presented in Fig. 8. The re-
finement of the RAG extracted from watershed segmentation by modifying cyclic sub-graphs as 
per the method described inTab. 4 resulted in a simplification of the graph structure. Fig. 8(b) 
shows the final and simplified semantic-topological map of the Willow garage dataset where the 
ID of each graph node corresponds to the label of the respective region in the binary occupancy 
grid map.  

Tab. 4: Procedure for refining the NRG by modifying cyclic sub-graphs 

Method:  Modify cyclic corridor-door-corridor sub-graphs 
𝑓𝑜𝑟 𝑎𝑙𝑙 ሺ𝑛௜. 𝑡𝑦𝑝𝑒 ൌൌᇱ 𝑑𝑜𝑜𝑟ᇱሻ𝑖𝑛 𝐺ேோீ 𝑑𝑜  
 𝑛௡௛ ൌ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ሺ𝐺ேோீ, 𝑛௜ሻ  
 𝑒௡௛ ൌ  𝐶ଶ௡೙೓

  

 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑒௡௛
௜ 𝑖𝑛 𝐺ேோீ 𝑑𝑜   

  𝑖𝑓ሺ𝑒௡௛
௜ . 𝑤𝑒𝑖𝑔ℎ𝑡 ൌൌ 0ሻ 

   𝑑𝑒𝑙𝑒𝑡𝑒 𝑒௡௛
௜   

  𝑒𝑛𝑑𝑖𝑓 
   𝑒𝑛𝑑𝑓𝑜𝑟 
𝑒𝑛𝑑𝑓𝑜𝑟  

Method: IndoorGML NRG Generation from RAG 
1. Initialize G with door nodes 

𝐺ேோீሺ𝑛𝑜𝑑𝑒𝑠ሻ ൌ 𝑢𝑛𝑖𝑞𝑢𝑒 ሺ𝐼ௗ௢௢௥ሻ  
𝐺ேோீሺ𝑒𝑑𝑔𝑒𝑠ሻ ൌ ∅  

2. Append space nodes from watershed label to G 
𝐺ேோீ ൌ 𝑎𝑑𝑑𝑁𝑜𝑑𝑒ሺ𝑢𝑛𝑖𝑞𝑢𝑒ሺ𝐼௟௔௕௘௟ሻሻ  

3. Reintroduce doors in the symbolic image (join the two symbolic images) 
𝐼௟௔௕௘௟ ൌ  𝐼ௗ௢௢௥  ⋃  𝐼௟௔௕௘௟  

4. Generate region adjacency graph 
𝐺ோ஺ீ ൌ  𝑟𝑒𝑔𝑖𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦ሺ𝐼௟௔௕௘௟ሻ  

5. Add edges to graph 
𝐺ேோீሺ𝑒𝑑𝑔𝑒𝑠ሻ ൌ  𝐺ோ஺ீሺ𝑒𝑑𝑔𝑒𝑠ሻ   

6. Find corridor nodes using degree of node 
𝑡𝑟𝑎𝑛𝑠 ൌ 𝑑𝑒𝑔𝑟𝑒𝑒ሺ𝐺ேோீሺ𝑛𝑜𝑑𝑒𝑠ሻሻ ൒ 2  
൓𝑑𝑜𝑜𝑟𝑠 ൌ 𝐺ேோீ. 𝑡𝑦𝑝𝑒 ് ′𝑑𝑜𝑜𝑟′  
𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟𝑠 ൌ 𝑡𝑟𝑎𝑛𝑠 ⋂ ൓𝑑𝑜𝑜𝑟𝑠  

7. Assign edge weights based on connectivity 
𝑒𝑑𝑔𝑒ሺ𝑛ௗ௢௢௥ , 𝑛ௗ௢௢௥ሻ. 𝑤𝑒𝑖𝑔ℎ𝑡 ൌ െ1  
𝑒𝑑𝑔𝑒ሺ𝑛௥௢௢௠ , 𝑛௥௢௢௠ሻ. 𝑤𝑒𝑖𝑔ℎ𝑡 ൌ െ1  
𝑒𝑑𝑔𝑒ሺ𝑛௖௢௥௥௜ௗ௢௥ , 𝑛௖௢௥௥௜ௗ௢௥ሻ. 𝑤𝑒𝑖𝑔ℎ𝑡 ൌ 0  

C C
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Fig. 5:  Semantic topological map before (a) and after NRG refinement (b). In (b) spurious 
triangular cyclic sub-graphs are removed. 

(b) 

(a) 
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6 Discussion 

In order to acquire an overall accuracy assessment, the final result on Fig. 8(b) was visually 
compared against a manually labeled image, which served as a ground truth. On the ground truth, 
there were a total of 84 doors and 65 rooms identified. A label was considered as accurate or not 
based on a prior definition of doors and rooms. For example, a structuring element of 15 by 15 
was used in the process of door detection, which implies (with a pixel size of 0.1) doorways only 
under 1.5 meters were considered as true doors. And rooms are considered to be nodes with a 
degree of 1. Based on these assumptions, it was possible to achieve an accuracy of 90.5% for 
door detection. 62.5% of the errors (missed & wrong labels) are within the toilet area (highlight-
ed in black rectangle on Fig. 8(b)), where the rooms are significantly small that the applied mor-
phological operations resulted in loss of details. Finally, the room labeling accuracy was at 
90.76% with 66.67% of the errors still lying within the toilet area. Outside the toilet area, there 
were only 2 wrong labels of rooms. Two room nodes that are accessible through more than one 
doorway (node degree > 1) were labeled as corridors and these are not considered as failure cases 
as they comply with the prior definitions of a rooms and corridors. 

7 Summary 

In this paper, we presented a semi-automatic method for the extraction of IndoorGML model 
from occupancy grid maps. Our approach laid out the foundations towards an automatic extrac-
tion of graph based semantic indoor data without the need for a learning based approach. The 
next step in this regard would be manipulation of the mentioned core image processing algo-
rithms such as watershed transform and connected component labeling, in a way that is possible 
to handle arbitrarily scaled environments without manual adjustment of parameters, particularly 
of the structuring element in morphological operations.  
The core of our approach lies on the detection of doors based on the results of medial axis trans-
formation and refinement of the graph structure computed from region adjacency. The results 
presented could be considered as initial attempts to extend the functionalities and usability of 
indoor robot maps for the purpose of extracting meaningful information relevant to BIM and 
GIS. Next, our investigation continues to investigate the same problem in realistic occupancy 
grid maps constructed from real indoor environments. We assume working on a real dataset pos-
es additional challenges especially when it comes to the detection of doors.  
Further investigation in this line of research would focus on the use of hierarchical graph struc-
tures to elegantly handle the subdivision of complex indoor spaces, introduction of multi-layered 
grid maps with additional information layers (such as curvature from point clouds) and introduc-
tion of an IndoorGML model updating procedure based on change detection framework.  
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