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ABSTRACT:

Reconstruction of dense photogrammetric point clouds is often based on depth estimation of rectified image pairs by means of pixel- 
wise matching. The main drawback lies in the high computational complexity compared to that of the relatively straightforward 
task of laser triangulation. Dense image matching needs oriented and rectified images and looks for point correspondences between 
them. The search for these correspondences is based on two assumptions: pixels and their local neighborhood show a similar 
radiometry and image scenes are mostly homogeneous, meaning that neighboring points in one image are most likely also neighbors 
in the second. These rules are violated, however, at depth changes in the scene. Optimization strategies tend to find the best depth 
estimation based on the resulting disparities in the two images. One new field in neural networks is the estimation of a depth 
image from a single input image through learning geometric relations in images. These networks are able to find homogeneous 
areas as well as depth changes, but result in a much lower geometric accuracy of the estimated depth compared to dense matching 
strategies. In this paper, a method is proposed extending the Semi-Global-Matching algorithm by utilizing a-priori knowledge from 
a monocular depth estimating neural network to improve the point correspondence search by predicting the disparity range from 
the single-image depth estimation (SIDE). The method also saves resources through path optimization and parallelization. The 
algorithm is benchmarked on Middlebury data and results are presented both quantitatively and qualitatively.

1. INTRODUCTION

Semi-Global Matching (SGM) (Hirschmueller, 2005) is a com-
puter vision method for finding the correlation of pixel pairs in
stereo images by determining the disparity value. This value
corresponds to the sensor distance in pixels between equivalent
points of an image (corrected by an offset). By doing this across
the image a disparity map can be calculated, which in return can
be converted to a metric depth image. On modern architectures
(GPUs) SGM can be performed in near real-time, allowing for
computation of such maps on a frame-by-frame basis, but at
high computational cost. The applications of disparity map-
ping cover many 3D stereo vision tasks, but is best suited for
those which require quick or instantaneous estimations rather
than precise, post processed depth maps.

Recently, convolutional neural networks (CNNs) have provided
new possibilities in dense matching. (Zbontar et al., 2016) pro-
poses a deep learning-based matching method based on CNNs
(MC-CNN) by substituting handcrafted cost functions, such as
Census or Mutual Information, by training a network on pairs of
small image patches with known ground-truth disparity maps.
(Luo et al., 2016) learns informative image patch representa-
tions by employing a siamese network which extracts marginal
distributions over all possible disparities for each pixel. An-
other branch in deep learning methods tackles disparity map
computation from single views. The task of single-image depth
estimation is ambiguous and NP-hard. However, tremendous
results have been achieved with recent deep learning-based ap-
proaches by training a network with RGB and corresponding
depth map pairs to regress pixel-wise depth predictions for
single-view RGB images. The ability to estimate dense depth
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maps requires a huge amount of training data, usually obtained
from stereo image sequences (Geiger et al., 2013), RGB-D
video streams (Silberman et al., 2012) or synthetic datasets
(McCormac et al., 2017).

Despite the vast progress in producing reasonable depth maps
from single views there are still deficits in the preservation of
depth discontinuities and planar surfaces, as well as a high
error-proneness of textured or illuminated planar objects (Koch
et al., 2018). Although the results of current single-image depth
estimation methods are not comparable with the results of clas-
sic stereo approaches, they can still provide valuable scene in-
formation that can in turn help improve and accelerate stereo
matching methods.

This information can be exploited in an effort to reduce the time
and operations needed to perform SGM. By interpreting the in-
put from a monocular-depth estimating neural network, bound-
ary estimations can be derived allowing for a restriction of the
disparity range (inverse depth range) that needs evaluation. This
significantly reduces the number of necessary operations while
still preserving the accuracy of output depth maps, allowing for
faster computation across a wide variety of scenes.

2. CNN-BASED SINGLE-IMAGE DEPTH
ESTIMATION

Current CNN architectures are capable of implicitly inferring
geometric information solely from RGB images and approach
the problem of depth estimation as a pixel-level regression task.
Since the early work of (Eigen et al., 2014), proposing a deep
learning approach for the task of SIDE, this field has become
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(a) RGB (b) Ground truth (c) (Liu et al., 2015) (d) (Laina et al., 2016) (e) SGM (ours)

Figure 1. Samples (rows) from the Middlebury dataset comparing ground-truth depth maps (b), SIDE predictions (c+d), and SGM
depth maps (e)

increasingly relevant in Computer Vision, leading to ever im-
proving results. As one of the first related works, (Liu et
al., 2015) proposes a deep convolutional neural field (DCNF)
for depth prediction combining CNNs and conditional random
fields (CRFs) in a unified framework on a superpixel level.
By training a CNN on a large dataset of ground-truth depth
maps and corresponding RGB images (Silberman et al., 2012),
the network demonstrates the superiority of deep features over
hand-crafted ones. (Laina et al., 2016) proposes a fully convo-
lutional network (FCN) for depth prediction. The convolutional
layers from pre-trained networks, such as AlexNet (Krizhevsky
et al., 2012), VGG (Simonyan, Zisserman, 2015), or ResNet
(He et al., 2016) are fine-tuned on RGB-D image pairs, while
the fully connected layers are re-learned from scratch. Addi-
tionally, up-convolution blocks are introduced to address the
decrease of resolution of the output maps due to repeated pool-
ing operations. A visual comparison of depth maps generated
with different SIDE methods and a standard SGM for samples
of the Middlebury 2014 stereo dataset (Scharstein et al., 2014)
are shown in Figure 1.

The proposed method is not limited to any particular SIDE
methods and can therefore be combined with various current
state-of-the-art approaches. In the following, the methods of
both (Laina et al., 2016) and (Liu et al., 2015) will both be used
for boundary estimations for mdaSGM.

As stated previously, the disparity value sought by SGM is in-
versely proportional to physical depth. This can be exploited by
converting the depth estimation from the neural network into a
pseudo-disparity estimation. The minimum and maximum of
these pseudo-disparities can then be used to restrict the range
needing evaluation by the SGM algorithm, as depicted in Fig-
ure 2. This task is not trivial, as the network does not always
correctly estimate depth and outliers can still occur. The first
problem is attributed to the neural-net depth estimation itself,
while the second can be approached using optimized boundary
estimation.

Figure 2. Disparity restriction from neural net estimation.
Adapted from: (Hu et al., 2015)

3. PROBLEMS AND LIMITATIONS OF SGM

The problem of tackling disparity range estimation represents
the main goal of mdaSGM. There are, however, other limita-
tions on SGM approached by the method which warrant dis-
cussion.

3.1 Path Indexing

One such problem is the indexing of paths along which the
most-likely disparities are calculated. The standard SGM
method uses eight paths (in some implementations even 16). In
order to evaluate the disparity pairs along all paths, a consistent
indexing system must be conceived to address all pixels from
all paths containing them. The naive approach calculates all
eight full-length paths for all pixels in the master image. This
results in both empty and partially populated paths, as shown
in Figure 3. The proposed method utilizes case-by-case differ-
entiation, only creating indices that will be populated, reducing
computational effort by approximately 20%, regardless of the
disparity range evaluated.
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Figure 3. Problem: evaluation of nonexistent paths.
Adapted from: (Drory et al., 2014)

3.2 Dimensionality

Another problem lies in the high dimensionality and resulting
complexity of the method. The tensor of SGM is ultimately
a 4D matrix (X x Y x Disp x Paths), leading to a fourth de-
gree complexity and long (CPU) runtime. The method ap-
proaches this problem through parallelization, resulting in eight
3D tensors that can be evaluated simultaneously, versus the se-
quential evaluation of a single 4D tensor. This poses the most
significant time-efficiency gain of the method, but is seen as a
more general optimization problem rather than a mono-depth
expansion.

3.3 Resolution

On the neural-net side of the method, the resolution of the
mono-depth maps is another limiting factor. Depending on the
network used, the resolution of the SIDE image can be sub-
stantially lower than that of the input image. This distorts the
mathematical relation between disparity and depth, leading to
a systematic falsification of the output depth maps. Addition-
ally, some mono-depth estimating networks crop the image as
a means of border handling, leading to a further falsification in
scale, as well as a loss in scene content and with it the elimina-
tion of potentially important depth constraints.

The first network used in development of the method cropped
and resized the input image, leading to these errors and a vastly
incorrect depth map. This could be partially compensated for
by means of multiple rescaling factors, yet proved to be un-
stable. By switching to full-resolution networks with proper
border handling, such as those from Liu and Laina, this prob-
lem has been alleviated.

4. mdaSGM

To approach the limitations mentioned before, an SGM al-
gorithm has been implemented, initially transposed into Python
from Hirschmueller’s 2008 MATLAB script. Since then it has
been comprehensively rewritten from a script into an I/O con-
troller making use use of a newly written library which accom-
plishes SGM. The method is in its essence completely identical
to classic SGM, only with new, variable parameters derived
either empirically from observation or statistically from mono-
depth estimations. The input to mdaSGM is either a single im-
age pair, or an entire dataset. Additionally, the mono-depth es-
timation for the scene is required as an input for each image
pair, forming the final input triplet to the algorithm.

From the mono-depth estimation, the minimum and maximum
disparities are identified and passed as boundary parameters to

the ensuing matching process. Matching is then done using the
optimized parallel approach, returning a full-resolution depth
map of equal quality of standard SGM, given correct boundary
estimations. Accuracy also depends upon the quality of cal-
ibration info, which is required for the depth-to-disparity con-
version. While the earlier mono-depth network with rescaled
mono-depth maps made this calculation unstable, the more re-
cent full-resolution depth maps eliminate this issue.

4.1 Parameters and Constraints

Before the algorithm can be usefully applied to an image pair or
benchmarked on a dataset, sensible boundary conditions must
be established. These conditions are primarily given by the
hyper-parameters of the SGM algorithm. These parameters af-
fect the outcome of matching in distinct ways, meaning they
need to be investigated and constrained to plausible and useful
values. By doing so, the focus of the evaluation can be shif-
ted towards the quality and performance of the algorithm itself.
The main hyper-parameters to be set are as follows:

4.1.1 Aggregation block size Rather than evaluating indi-
vidual elements of the 4D cost matrix (3D with parallelization),
a convolutional summing block is applied across it. The size
of this block determines the homogeneity of the resulting depth
map. If this block is very small, including a reduction to [1x1],
the resulting map displays large amounts of noise. If it is too
large, the image becomes over-blended. This effect is illustrated
in Figure 4, with multiple block sized being applied to the same
image. The optimum for the evaluated Middlebury data appears
to lie between five and seven, and seven will be used as a con-
stant for the following experiments.

4.1.2 Path number and direction The standard SGM ap-
proach utilizes eight paths, yet results show similar quality with
as little as three paths. Given a camera setup along a baseline
parallel to the the pixel coordinate system, as well as perfectly
rectified images, then decent results can be obtained from one
path alone. Due to the fact that all Middlebury images are
precisely calibrated and utilize a baseline exactly in X direc-
tion, the gains of evaluating multiple paths diminish. They do
not vanish entirely, however, as a higher number of paths also
serves to increase homogeneity by reducing the chance of false
matches. This is demonstrated in Figure 5. In benchmarking,
the three path method has demonstrated similar results to the
standard eight. Nonetheless, the use of multiple paths is central
to the concept of SGM, which is why the three, six and eight
path variants will be used for evaluation.

4.1.3 Disparity range This is the most central hyper-
parameter to mdaSGM, since it is the one derived from
additional neural-net information. The naive approach evalu-
ates all disparities from zero or one (zero theoretically implies
infinite distance), through a conservative upper bound. One
of the main goals of mdaSGM is lowering this bound as far
as possible without cutting out true disparity values in the
scene. Figure 6a shows a reference of an ideal SGM disparity
map, depicting a Motorcycle in a garage, made using an
ideal disparity range extracted directly from the Middlebury
information. In the following, several disparity range failure
modes will be discussed using maps of identical intensity
scaling.

If the upper disparity bound is reduced too far, mismatches
and non-matches will occur, resulting in the nearest objects
being distorted or missing from the depth map. This is seen
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(a) [1x1] (b) [3x3]

(c) [7x7] (d) [20x20]

Figure 4. mdaSGM: influence of sum aggregation block size

in Figure 6b, where the parts of the motorcycle nearest to the
camera fail to match (black areas). If the bound is set too high,
calculation costs will rise exponentially and results will also
be negatively influenced, as shown in Figure 6c. This is due to
the the fact that nonexistent disparity ranges are occasionally
assigned to pixel pairs as a result of the coincidental repetition
of gray values. Since cost aggregation is conducted across
entire paths, containing both true and false disparity values, the
outcome is that the resulting arguments of aggregated dispar-
ities are forced to a lower value across the entire image. This
can be interpreted as an equilibrium problem and demonstrates
the importance of setting this boundary value properly.

The inverse holds true for the lower disparity bound. By
beginning naively at zero or one, it is guaranteed that no
lower bound disparities will be missed (meaning objects at or
near infinity). Since objects never lie at infinity, and SGM is
conducted primarily in the near field, it is safe to assume that a
disparity of zero will not occur. It is therefore sensible to have
mdaSGM estimate this lower bound as well, further reducing
operations and processing time needed. An underestimation of
this bound is usually not as critical as with the upper bound,
since the theoretical minimum disparity of one is usually not
far off the true minimum disparity. Nonetheless, the same
shifting effect discussed above can become present if the
underestimation is too large. An overestimation of the lower
bound will in turn lead to the furthest objects in the image
being cut out, as shown in Figure 6d, where the motorcycle is
still visible but the more distant background can no longer be
matched.

With this information it becomes clear that conservative
boundary overestimation is no longer an acceptable solution,
both in terms of quality as well efficiency. During the evalu-
ation, the estimated disparity ranges will be compared with the
ground-truth values from information files to determine how
well this estimation is working on each image.

5. EXPERIMENTS

Now that the boundary conditions and main failure modes of
the method are known, several experiments can be conducted.
To prepare, the mono-depth predictions are acquired utilizing
the methods of (Laina et al., 2016) and (Liu et al., 2015) for
each image pair of the Middlebury 2014 benchmark dataset.

(a) 1 path (b) 3 paths

(c) 6 paths (d) 8 paths

Figure 5. mdaSGM: influence of path selection

Disparity maps are then calculated from our baseline SGM im-
plementation (identical to Hirschmueller, 2008), as well as from
the modified mdaSGM method using both Liu and Laina mono-
depth estimations. These can then evaluated in accordance with
different quality metrics and compared to the ground truth dis-
parity maps provided by Middlebury.

5.1 Operations vs. paths

The first adaptive component of mdaSGM is the number of
paths, which is no longer fixed at 8, as with standard SGM,
but rather variable at will. If image pairs are perfectly recti-
fied along a known baseline, a reduction in the number of paths
needing evaluation is conceivable. This simple extension allows
for significant reduction in operations needed, at a negligible
quality penalty. As the number of grayscale operations is linear
with regard to the number of paths evaluated, then reducing this
number will lead logically result in a linear reduction in opera-
tions needed. In testing it has been demonstrated that a reduc-
tion from eight to three paths quickly amounts to a savings of
tens of millions of operations. In the older single threaded ver-
sion of the method this amounts to an equally drastic increase
in runtime, quickly amounting to several minutes. When us-
ing the later multithreaded version of the method instead, this
penalty becomes negligible, as each processor / thread can sim-
ultaneously evaluate its own path.

Figure 7 shows the quality of the resulting disparity maps as a
function of the number of paths evaluated, as denoted by the
average per-pixel disparity error, as well as the ”Bad5” error
metric (percentage of disparities off by 5 or more). It can be
seen that as the number of paths decreases, both the average
pixel error and ”Bad5” error increase, but only very slightly.
Nonetheless, as the quality penalty is negligible when consider-
ing the vast savings in computational efficiency, the three-path
method proves itself to be an efficient approach for faster depth
estimation, or for use on less powerful hardware.

5.2 Operations vs. disparity range

As with the number of paths, the disparity range also has a
profound impact on the number of operations. Unlike with
the path number, however, the impact of the disparity range
cannot be as easily mitigated with multithreading. Figure 8
shows the decrease in operations as the bounds move from
naive overestimations toward ground-truth bounds. The impact
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(a) Good bounds (b) Upper bound too low (c) upper bound too high (d) lower bound too high

Figure 6. Effect of incorrect disparity bounds
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Figure 8. Number of operations as a function of disparity range

of poorly selected bounds is shown previously in Figures 6a
and 6d. It can be summarily stated that the minimum number
of operations is achieved if and only if the disparity bounds
correspond exactly to ground-truth. This is nearly impossible,
which is why excellent mono-depth estimation is absolutely
key to optimizing mdaSGM.

5.3 Disparity range estimation

Since its inception mdaSGM has gone through three permuta-
tions of disparity range estimation. In the following, all three
methods will be discussed and evaluated.

5.3.1 Raw Pixel The first mono-depth disparity range es-
timation method implemented is a raw pixel min/max identi-
fier, simply finding the absolute maximum and minimum val-
ues in the mono-depth image and converting these to pseudo-
disparities. While this method is computationally simple and
generally captures the true disparity range, it demonstrates a
tendency towards overestimation and is unstable with regard to
outliers. In order to tighten the estimated bounds and improve
stability a different method is required.

5.3.2 Median Filter The second method is largely identical
to the first, but employs a convolutional median filter in or-
der to reduce susceptibility to outliers. Experimentation shows
that this method has the effect of squeezing the boundaries of
the disparity range proportionally to the convolution mask size.
This proves helpful in some image sets, yet detrimental in oth-
ers. An additional drawback is the overhead computational time
required in order to conduct median filtering. While an im-
provement over raw-pixel identification, yet another method is
still needed.

5.3.3 Histogram Evaluation The third and final method
developed within the bounds of mdaSGM is one based on the
histogram of the pseudo-disparity maps calculated from the
mono-depth images. By forming these disparity histograms,
a better understanding of the distribution of disparities can be
ascertained, leading to a better boundary estimation. Figure 9
shows mono-depth and ground-truth disparity maps, as well
as their respective disparity histograms. By analyzing these
histograms, outliers can be removed and better boundaries ap-
plied. The method accomplishes this by simply discarding the
upper and lower one-percentiles and selecting the boundaries
as the arguments of pseudo-disparity at these locations of the
histogram.

Applied to a subset of the Middlebury 2014 dataset, the
different boundary approaches result in the boundaries shown
in image Figure 10. The ground-truth disparity boundaries
are shown in black. Method one (blue) sets conservative, yet
wasteful boundaries. Method two (green) shrinks these bound-
aries, yet in doing so occasionally cuts into the true disparity
range and wastes processing time performing median-filtering.
Method three (orange) is less computationally wasteful, and
generally lines up decently with ground-truth disparities. The
method can still fail, but usually only where the other two
methods fail as well. Given its good performance, this method
has been selected as standard for disparity range estimation.
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6. BENCHMARKING

With results from the experiments allowing for a more targeted
matching approach via path number restriction, multithreading
and optimized path estimation, the algorithm has been bench-
marked using the MiddEval v3 Evaluation tool. The results
from this tool are presented for the entire Middlebury 2014
benchmarking dataset, as well as for three individual examples.

6.1 Middlebury 2014 Full Dataset

Table 1 shows the following quality metrics: percentile of pixels
with a ground-truth disparity deviation of more than 1, the equi-
valent percentile for deviations over 5, over 10, as well as the
average per-pixel error and RMSE. Additionally, the number of
operations is also introduced as a metric in order to quantify the
efficiency of the method. The values shown are averages taken
across the entire dataset. With these six metrics, the perform-
ance of the algorithm can be more objectively assessed. The top
block shows three naive SGM approaches, whereby the dispar-
ity range is estimated and set to a fixed span, as well as a fourth
”oracle” method using ground truth disparity ranges from cal-
ibration files. This latter method represents a quasi-optimum,
whereby only truly occurring disparities are evaluated.

From a first glance it can be seen that the ”Bad1” percentage
is smaller for mdaSGM (for both SIDE methods) than for any
of the three naive SGM approaches. Only the optimum ”or-
acle” method performs better, which is to be expected since it
is making use of ground-truth data otherwise not available to
the algorithm. When proceeding to the ”Bad5” metric, it can
be seen that values become slightly higher than for the naive
approach, a trend which continues over to ”Bad10”. This im-
plies that, while mdaSGM calculates more disparities correctly
than the standard method, once disparities are no longer cor-
rect, their deviations tend to become slightly higher. It should
be noted, however, that these average values are detrimentally
affected by individual bad examples, where both SIDE methods
return vastly incorrect disparity estimations. In the following
section, these problems will be further elaborated upon.

Another notable difference in the output quality is the depend-
ency on the respective SIDE method used in calculation. Ac-
cording to our evaluation, depth predictions using the method
of (Liu et al., 2015) provide more accurate disparity ranges than
the method of (Laina et al., 2016). This is reflected in all six
metrics, leading to the conclusion that the Liu method is better
suited for mdaSGM than Laina (though it should be noted that
neither method was originally designed for this task).

With regard to calculative efficiency it is also shown that
mdaSGM (with Liu SIDE predictions) consistently performs
better than the naive approach, with the exception of SGM(1-
40). As most datasets have upper disparity bounds of at least 60,
this method usually return very inaccurate disparity maps, as
shown by the metrics in the top row of the table. A better com-
parison can me made to SGM(1-100), which will usually cap-
ture the entire disparity range of the scene. Even here, mdaSGM
+ Liu offers greater calculative efficiency. Figure 11 summarily
compares the relation of performance and operational complex-
ity between the baseline SGM with fixed disparity ranges and
dynamic disparity ranges from mdaSGM for the entire data-
set. The figure demonstrates a decent compromise between the
number of operations and resulting quality for both mono-depth
prediction methods utilized in mdaSGM.

6.2 Analysis of Individual Image Pairs

Beyond analyzing the average quality metrics from MiddEval
it should also be discussed where the method does a good job
of estimating and calculating disparities, as well as where it
fails. By understanding the main failure modes of the method,
further considerations for SIDE methodologies, as well as im-
provements for mdaSGM itself, can be made. To this end, three
examples will be analyzed.

6.2.1 ”Piano” An example of good disparity estimation and
calculation is given by the ”Piano” image pair. For this image
pair, the ground-truth disparity range is given with [9-54], while
the mono-depth estimation is [3-57]. This implies that the SIDE
method (in this case Liu) correctly estimates the depth span and
thus the disparity range of the pictured scene. As a result, the
method returns a good disparity map (Figure 12, top-right) with
”Bad10” error of 5.4%, as well as an average pixel error of 3.3
px. These values lie well under the full-set average of 23.8%
and 9.7 px, respectively. By comparison, a naive fixed-disparity
calculation per SGM(1-200) returns a ”Bad10” error of 11.7%
and an average pixel error of 8.3 px. This is attributed to the
effects of overestimation as discussed in section 4.1.3.
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Table 1. Quantitative comparison of baseline SGM and mdaSGM applied on the Middlebury 2014 stereo benchmark. Disparity ranges
for baseline methods either fixed or have access to ground truth disparity maps. mdaSGM utiziles dynamic disparity ranges. Results

are listd w.r.t. to different error metrics

Method Bad 1 ↓ Bad 5 ↓ Bad 10 ↓ Avg. Err ↓ RMSE ↓ NOPS ↓
(in %) (in %) (in %) (in px) (in px) (in mio)

SGM(1-40) 75.5 40.3 28.6 10.4 16.0 36.1
SGM(1-100) 67.4 22.8 15.5 6.1 12.0 91.7
SGM(1-200) 68.5 26.5 19.9 16.0 35.7 184.4
SGM(oracle) 41.8 19.7 11.5 3.8 7.8 61.4
mdaSGM(Laina) 57.0 41.3 36.0 23.3 32.1 100.3
mdaSGM(Liu) 52.7 31.4 23.8 9.7 17.2 73.7

6.2.2 ”Playtable” On the contrary, the ”Playtable” image
set demonstrates an example of poor disparity map calculation,
owing to a failure mode caused by an underestimation of the up-
per disparity bound, also discussed in section 4.1.3. In this case,
the ground-truth disparity range is given with [6-67], while the
mono-depth estimation returns [1-38], well below the true up-
per bound. The resulting disparity map (Figure 12, center-right)
is therefore spotty, losing information on objects closest to the
camera. This is also reflected in the poor values for ”Bad10”
at 24.1% and average pixel error at 8.8 pix. Here the naive
SGM(1-200) method returns a disparity map with values of
7.6% and 4.1 px, respectively.

6.2.3 ”Vintage” Complementary to ”Playtable”, the ”Vin-
tage” image pair demonstrates the effect of overestimating the
lower disparity boundary. For this scene, the ground-truth dis-
parity range is given with [8-180], while the prediction is [44-
162]. The disparity map (Figure 12, bottom-right), returns a
”Bad10” error of 13.1% and an average pixel error of 4.0 px.
By comparison, the SGM(1-200) method returns a map with
values of 14.5% and 5.5 px. Even though the lower bound is
significantly off (and the upper bound slightly off), the result-
ing map is still superior than the one from the naive method,
and better than the average across the entire benchmarking set.
Nonetheless it is still inferior to the ”Piano” example, which
can be expected due to the bounds being too tight.

These three cherry-picked examples demonstrate where
mdaSGM and its underlying SIDE predictions perform excel-
lently, adequately, as well as poorly. By understanding this be-
havior, as well as the main failure modes of the method, further
insight can be gained into improving the absolutely critical task
of disparity range estimation.

7. CONCLUSION AND OUTLOOK

Semi-Global Matching is a fundamentally simple yet compu-
tationally costly approach for disparity determination from raw
grey value differences of calibrated stereo images. The result-
ing disparity maps implicitly allow for depth mapping and have
become a common tool in machine vision. The main prob-
lem of SGM and its derivatives still lies in the determination
of which disparity range to evaluate. This range can be con-
servatively overestimated using calibration information, but at
a quality and efficiency penalty. In order to minimize this pen-
alty, mdaSGM presents a method for using ancillary informa-
tion from a neural network, allowing the inference of sensible
disparity ranges. This has led to a significant reduction in the
number of computations required, as well as an improvement in
the quality of results (assuming disparity ranges are overestim-
ated in the classic approach). The method performs adequately
on a CPU, processing a mid sized image triplet in well under a
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Figure 11. Relation between performance and computational
complexity of mdaSGM and baseline SGMs for the Middlebury

2014 Stereo benchmark. Mean and standard deviation are
represented by dots and ellipses

minute, versus over three minutes for standard, overestimated
SGM.

Looking forward, area-based disparity restriction is a topic of
interest. By determining the approximate disparity on a pixel-
wise basis, the length of paths needing evaluation can be made
variable, depending on the area of the image currently being
analyzed. This means that areas of the scene closer to the cam-
era can be evaluated across a higher range than those in the
background, where it is ”known” from SIDE information that
the disparity will be lower. The caveat of this is idea is the
quasi geometry-free, energy-flow nature of the problem, where
the goal is finding as the minimum argument of an aggregated
sum across multiple dimensions. Varying the disparity range
and thus the tensor across the image would prove more difficult
to handle, yet will be the subject of upcoming research. Fi-
nally, adaptation to a GPU framework and object-oriented lan-
guage will have an exponential impact on efficiency, with the
high-dimensioned matrix calculation being well parallelizable
on GPUs with the efficient use of pointers versus variable stor-
age.

Despite being over a decade old, Semi-Global Matching still
holds is weight to this day and new optimizations are continu-
ously being found. With mdaSGM, an optimization for dis-
parity range estimation has been presented, from which both
classic SGM and related machine vision algorithms can profit
going forward.
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(a) RGB image (b) Ground truth disparity (c) Baseline SGM (d) mdaSGM

Figure 12. Qualitative results of mdaSGM on different samples (from top to bottom: Piano, Playroom, Vintage) from the Middlebury
2014 Stereo dataset (Scharstein et al., 2014) showing ground-truth disparity maps (b) and disparity maps derived from the baseline

SGM (c) and mdaSGM (d), respectively. The method of (Liu et al., 2015) was used for mono-depth predictions in mdaSGM
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