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ABSTRACT:

Recording an ever-changing urban environment in a structured manner requires sensor deployment planning. In case of mobile 
sensor platforms, this also includes verifying the terrain navigability. Solving both tasks would usually require different 
application-specific data structures and tools. In this work, we propose a theoretical framework that provides a uniform 
representation for spatial information as well as the tools required to combine, manipulate and visualize it. We provide an 
efficient implementation of the framework utilizing octree-based evidence grids. Our approach can be used to solve complex 
tasks by combining simple spatial information sources, which we demonstrate by providing simple solutions to the aforementioned 
applications. Despite the use of a volumetric approach, our runtimes are within the range of minutes.

1. INTRODUCTION

The rapid technological development in the last decades has
led to the emergence of a variety of geospatial services. The
ever-increasing digitization has contributed its part to make
them available at any time, anywhere. As a result of these newly
created business areas and the low technological entry barriers,
it is appealing even for medium and small companies to carry
out large-scale data collections. This is possible in a cheap
and efficient way, since powerful sensor systems can already
be implemented with inexpensive consumer hardware. Besides
stationary sensor systems, this also allows the realization
of mobile sensor platforms such as person-carried sensor
backpacks and measurement vehicles.

The structured acquisition of the environment presents a
number of challenges, since recording the entire space of
interest requires considering a variety of constraints. In the
case of a measuring vehicle this would involve to record all
streets and places as completely as possible while keeping
the redundancy as low as possible, as this is a waste of
measurement time, storage space and later on processing power.
It may be required to visit certain points of interest as well as to
avoid others, for example due to mandatory privacy regulations.
It may also be necessary to exclude areas, which are difficult to
reach or leave by the measurement vehicle.

Solving the structured acquisition problem both with respect to
sensor deployment and surface navigability requires the fusion
of different kinds of spatial information. In this work we
propose a theoretical framework that allows to derive a task
specific space of interest from a multitude of spatial information
sources. We define a mathematical representation for spatial
data and present the tools required to analyze, manipulate and
visualize it. Furthermore, we describe how it can be realized
in an efficient way by utilizing octree-based evidence grids.

∗Corresponding author

          
      

  

     

         
          
           
         
           
        
           
         
           
         
          
         
            
        
        
         
            
        
            
         
        

  

       
          
        
          
        
            
        

We demonstrate the flexibility of our approach on the freely 
available MLS2 - TUM City Campus dataset.

2. RELATED WORK

2.1 Spatial Analysis of Urban Areas

The term spatial analysis summarizes a multitude of activities 
with a common goal of information gain at global, regional 
to local scales by utilizing different kinds of sensors. In the 
context of urban environments, a gain in knowledge about 
the characteristics or the change over time of the area under 
consideration is derived from the available data. Information 
like that can be utilized e.g. to support urban planning or 
development tasks. Herold et al. (2003) use aerial photography 
and satellite data for the analysis of urban growth on the 
example of Santa Barbara, California. Based on satellite image 
time series, Myeong et al. (2006) quantify the carbon storage, 
distribution and change of urban forests. As summarized in 
a review by Yan et al. (2015), airborne LiDAR can be used 
for urban land cover classification. Furthermore, there are 
approaches that deal with multitemporal data, especially in 
the context of change detection. Examples include the works 
of Hebel et al.  (2013) and   Aijazi et al. (2013), which utilize 
airborne LiDAR data and mobile LiDAR data, respectively. 
To the best of the authors’ knowledge, there is no work that 
attempts to store and process spatial information in a generic
way such as the one proposed in this work.

2.2 Occupancy Grids

Occupancy grids are able to represent three-dimensional 
environments in a memory efficient way, even if those contain 
complex geometries. Moravec et al. (1985) proposed to 
use a two-dimensional occupancy grid in order to map an 
indoor environment with ultrasonic sensors. Each grid cell 
along a plane at sensor level contains a probability in order to 
describe the degree of occupancy of the encompassed space.
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The approach produces a quite accurate representation of the 
environment, considering the wide angled conical shape of 
the ultrasonic beam. An approach utilizing an octree to store 
binary occupancy information in order to represent arbitrary 
geometries has been proposed by Meagher, (1982). The concept 
has later been enhanced to comprise probabilistic information 
by Payeur et al., (1997).

Hornung et al. (2013) extended this approach with a lossless 
compression strategy based on probability clamping, which 
allowed for a fast adaption to a changing environment. Due to 
the versatile usability and an open-source implementation, this 
approach has gained huge popularity under the name OctoMap. 
Based on the theoretical foundation of this work, Gehrung et 
al. (2016) proposed a concept for occupancy representation on 
a global scale. In addition, an algorithm for iterative refinement 
has been proposed in order to reduce discretization artifacts 
inherent to the technology as well as to speed up the generation
of the occupancy octree (Gehrung et al., 2018).

3. DENSITY FUNCTIONS FOR INFORMATION
REPRESENTATION

3.1 Motivation

Information can be classified by the nature of values that are 
assigned to a variable. For nominal information these values 
have no inherent order, whereas for ordinal information an 
order exists, but the distance cannot be quantified. If both an 
order of individual values and a distance measure for the values 
of a variable exist, information is denoted to be of cardinal
nature. Examples for nominal, ordinal and cardinal information 
would be colors, letters in an alphabet and regular numbers. 
Whenever an urban environment is recorded, either by a sensor 
system or a human being, the resulting information falls into 
one of the above-mentioned categories.

In order to transform a nominal or ordinal variable into a 
cardinal one, its actual value is compared to a desired one. If 
both values match, 1 is assigned to the new cardinal variable, 
otherwise 0 Once all information has been transformed to.
be of cardinal nature, otherwise very different information can 
be combined and processed numerically using a distinct set of 
algebraic operations.

Combining nominal information such as the visibility from a 
given point and cardinal information like proximity to a surface 
can, for example, be condensed into new information that 
represents the space that can be safely navigated by an UAV 
while the latter has an uninterrupted line of sight to the area of 
interest. Such information can than directly be used for tasks
such as path planning.

3.2 Formal Definition

Information structured in the way mentioned above can be seen 
as the value (or intensity) of this information that is in relation 
to a distinct point in space. Since this is a function of the 
location, we decided to refer to it as a density function or in 
short, a density. The term is inspired by the real-valued density 
functions used in the mathematical branches of Stochastics. 
Therefore, we formally define a density function as

3d: R → R, d(x) = i

         
      
     

          
         
            
         
            
       
           
        
   

 

            
         
          
           
       
         
          
          
        
            
           
         
         
  

    

         
         
         
        
        
      

       

      
          
  

         
         

     

           
    

  Figure 1. Example of a three-dimensional density 
function, an information whose intensity is location-

specific, visualized by color-coded volume slices.

3where x ∈ R is a location in three-dimensional space in
an arbitrary reference frame. The density, or intensity of 
the information for a given position x is denoted by i. In 
order to prevent one source of information from superimposing 
another, it is defined that i ∈ [0, 1]. An illustration for a
location-sensitive information with variable intensity can be 
seen in Figure 1. A selection of density functions that are 
beneficial to the structured acquisition of the environment are
proposed in Section 4.

3.3 Representation

In the context of this work, a density function is always defined 
over an observed space that has fixed boundaries. Therefore, 
the latter can also be interpreted as a volume. Assuming 
that regions with the same density can be grouped together, a 
good trade-off between computational resources and accuracy 
is an octree with dynamic resolution. The dynamic aspect 
is important because it allows the non-discrete function to be 
resolved as accurately as possible, but as roughly as necessary. 
Following a well established practice regarding evidence grids 
used in works such as the one of Hornung et al. (2013), octree 
cells are considered to be independent of each other. The octree 
is generated using iterative refinement, such as presented by 
Gehrung et al. (2018), since it is less resource intensive than
normal ray casting.

3.4 Algebraic Operations on Densities

In order to derive new information from existing density 
functions, a set of basic algebraic operations is required. 
Operations applied to density functions are defined as being 
point-wise operations. This means that the operation applied 
to intertwine two densities corresponds to the same operation
applied to the intensities from both densities:

(da ◦ db)(x) := da(x) ◦ db(x) (1)

Therefore combining two non-discrete density functions 
reduces to applying this combination to a scalar for each point
x ∈ X .

3.4.1 Inversion In order to inverse the semantic meaning of
a density function, the invert operation has been defined as

(da)(x) := 1.0 − da(x), (2)

where the operation corresponds to the inversion of the value at 
the midpoint of the interval.
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3.4.2 Sum and Difference The sum and difference between
two densities is defined as

(da ⊕ db)(x) := da(x) + db(x) (3)

and

(da 	 db)(x) := da(x)− db(x) (4)

Both operations can lead to results which are outside of the
interval of [0, 1], so normalization is required.

3.4.3 Product Two different kinds of product have been
specified. The product between density functions is specified
as

(da ⊗ db)(x) := da(x) · db(x). (5)

Since both values are within the interval of [0, 1], the result also
is. The second product is defined between a density function
and a scalar s in order to allow weighting:

(s⊗ da)(x) := s · da(x). (6)

The result requires normalization if the scalar is less than zero
or larger than one.

3.4.4 Maximum In order to create a composite of two
densities, the maximum operation is specified. For every
location in both densities, the maximum value from either
density a or b is chosen. This is specified as

max(da, db)(x) := max
(
da(x), db(x)

)
. (7)

The result is already normalized.

3.4.5 Normalization Since simple clamping of the value
would lead to a potential loss of information, a scaling
technique similar to histogram equalization has been chosen in
order to normalize density functions.

inorm =
i− imin

imax − imin
(8)

           
           
       

        
        
           
       
         
        
            
         
          
           
           

The spread between the lowest imin and highest value imax in 
a density function is determined and used to scale each value i
in order to get the normalized value inorm.

3.4.6 Realization based on Octrees Since densities are 
represented as octrees with dynamic resolution, applying an 
operation to all points of a density functions reduces to the 
much more computational effective process of intertwining 
voxels. However, the structures of two different octrees are 
rarely identical.  Utilizing an approach described by  Gehrung 
et al. (2019), an octree with a structure that represents a 
combination of both octrees involved in the operation is 
generated. The result is then stored within this octree. During 
the operation, whenever a voxel has no counterpart in the other 
octree, a voxel with a higher resolution is chosen as a substitute.

   

    

          
         
          
           
         
          
       
          
        
       
   

  

        
        
           
         
           
        
            
        

4. EXEMPLARY DENSITY FUNCTIONS

4.1 Derivation from Occupancy Information

All densities in this work are derived from an occupancy 
grid loosely based on the theoretical foundation proposed by
Hornung et al., (2013), either by analyzing it in a specific 
way or by applying a form of convolution. It uses an 
octree with dynamic resolution in order to represent the 
degree of occupancy for each observed location. Due to the 
strong similarities between the representation of occupancy 
and density functions, occupancy can also be interpreted as a 
density and therefore integrates seamlessly into our framework. 
The following sections demonstrate how densities can be
derived from occupancy information.

4.2 Navigable Surfaces

The navigable surfaces density ds that describes planar 
horizontal surfaces defines where a mobile sensor platform 
can move. This may not only include streets, but also other 
surfaces such as parking spaces and undeveloped areas. The 
density is derived from the occupancy density do by means of 
convolution. The structure of both octrees representing do and
ds is defined to be identical. The density value of each voxel x
of the navigable surfaces density is determined as follows:

ds(x) =

∑
n∈M(x)

do(n)

|M(x)| −

∑
n∈N(x)

do(n)

|N(x)| (9)

The neighbors M along all four cardinal directions in the
occupancy density are determined. In terms of octree
neighborhood search, it does not matter whether or not a
neighbor is of smaller, equal or bigger size. The occupancy
values do of these neighbors are added and normalized by the
number of neighbors. The density value of the top neighbors N
is determined and subtracted from the result in order to penalize
surface voxels with occupied space on top. The value of each
voxel is already normalized.

The resulting density contains all horizontal planar surfaces,
albeit not all of interest, since also floors, ceilings and roofs of
building are part of it. An example scene with these surfaces can
be seen in Figure 2(a). Based on these, a flood-filling algorithm
is used to determine which surfaces are navigable. In order
to select the correct subset of interconnected planar surfaces, a
starting point is required. The density obtained after applying
the flood-filling algorithm can be seen in Figure 2(b).

4.3 Proximity and Distance

The proximity density dp function reflects how close a point in
space is to a vertical surface. Voxels are created by sampling
space in a three-dimensional grid. The value for a given voxel is
determined by sampling a cylindrical space around its position
(cf. Figure 3(a)). For each sample, the corresponding value
is extracted from the occupancy density. If it is higher than
the interval midpoint, it is added to the voxel, whereas the sum
is afterwards divided by the number of all samples in order to
normalize it. An example can be seen in Figure 3(e).

The proximity density is required in order to derive the distance
density dd, which is simply the inversion of the former one
and therefore defined as dd = dp (cf. Figure 3(b)). Instead
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(a) (b)

Figure 2. A street scene demonstrating the navigable surfaces density before (left) and after (right) applying flood filling
in order to determine the relevant subset of navigable surfaces. Navigability is encoded in ascending order from blue

(low) to green (medium) all the way to red (high).

         
            
         
        

   

        
           
          
            
          
          
        
           
          
           
            
  

          
           
          
        
          
           
    

    

 

            
          
          
      

of highlighting locations close to vertical surfaces, it highlights 
locations far away from these, as can be seen in Figure 3(f). 
This operation is used for collision avoidance, to identify areas
that are save to navigate even by larger vehicles.

4.4 Invisibility and Visibility

Applications related to sensor management require to determine 
all areas that can be seen from a given location. Therefore, 
space is sampled along a three-dimensional grid and ray casting 
is applied between the given location and the center of each grid 
voxel. Since ray casting is quite slow, the actual implementation 
is based on a modified version of the iterative refinement 
algorithm proposed by Gehrung et al. (2018).  Starting from the 
root node of the occupancy density octree, only voxels that are 
intersected by the line-of-sight are further refined. Once a voxel 
has no children and is considered to be solid, the algorithm 
is terminated and the voxel at the end of the line-of-sight is 
marked as invisible.

The result is the invisibility density di, from which the actual
visibility density dv can be derived by inverting the former one 
using the operation dv = di. This procedure is computationally 
cheaper than determining the visibility density directly, since 
it requires a lot less voxel checks. Figures illustrating both 
densities can be found in 3(c) and 3(d), examples are shown 
in Figure 3(g) and 3(h).

5. DENSITY VISUALIZATION USING HEATMAPS

5.1 Heatmaps

Visualizing a density in the same way as shown in Figure 1 
may be appropriate to convey the general concept of densities. 
However, it is not intuitive enough for interpretation by a 
human observer. Therefore, we suggest a two-dimensional

representation that is colloquially called a heatmap. It is
basically a projection from R3 to R2 where values are added
along the z-axis of the density. The result can also be considered
a density in the sense of Section 3, therefore the same algebraic
operations can be applied. An example can be seen in Figure 7.

5.2 Density Projection using Drill Downs

Generating a heatmap from a density is straightforward. It
requires iteration over a two-dimensional grid with the intended
resolution of the heatmap. For each cell, a drill down through
the octree representing the density is required (cf. Figure 4).
A drill down lists all voxels of an octree along a straight line
which pierces the xy-plane in a perpendicular way at a given
point. The point is the center point of each heatmap cell. In
order to implement the drill down, the octree is traversed from
the root node to its leaf nodes. Inner nodes containing the
point are further traversed whereas leaf nodes that fulfill the
same condition are added to a result list. The values of all
nodes within the result list are added, the sum is assigned as
the cell value. After calculating each cell value, normalization
as described in Section 3.4.5 is applied to the heatmap.

5.3 Interpretation of Heatmaps

The information shown in a heatmap is color-coded. Blue
represents low, green medium and red high values. In addition,
the point cloud is projected into the image. The value of a
heatmap corresponds to the accumulated value along the z-axis
of a density function. For the visibility density function, a high
value means that most of the spots along the axis are visible,
whereas a low value means that most of all spots along the axis
are invisible. Analogously, this also applies to other density
functions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. An illustration of each density (top row) and the corresponding heatmaps (bottom row). The densities and
heatmaps are (a,e) proximity, (b,f) distance, (c,g) invisibility and (d,h) visibility.

 

 

          
         
      
            
          
             
         
            

        
        
           
           
        
           
         
         
       
            
         
         
         
        
       
   

    

           
           
            
           

6. EXPERIMENTS

6.1 Dataset

The case study is based on the MLS2 - TUM City
1Campus which has been recorded by the Fraunhofer Institute 

of Optronics, System Technologies and Image Exploitation
(IOSB). It is an extension of the MLS1 dataset from 2016 by
Gehrung et al. (2017), which has also been enriched with class 
labels by Sun et al. (2018). Both datasets as well as the labels 
are publicly available under a Creative Commons License. An 
overview over the one used in this work is given in Figure 5.

Both datasets have been recorded using the measurement 
vehicle MODISSA (Borgmann et al., 2018). Two Velodyne 
HDL-64E LiDAR sensors mounted at an angle of 25 ° on 
the vehicle front roof have been used to record the vehicle’s 
environment as well as building facades. Eight cameras 
mounted at the roof corners and an IR-camera on a pan-tilt-unit 
can be utilized to texture the LiDAR measurements. The 
dataset includes a sequence of individual scans, with each 
scan covering approximately 0.1 seconds, which roughly 
corresponds to a full rotation of the sensor head. Each scan is 
georeferenced based on navigation data from an Applanix POS 
LV navigation system which utilizes two GNSS antennas, an 
inertial measuring unit and a distance measuring indicator. The 
navigation data has been postprocessed to increase accuracy, 
the dataset itself has been fine-registered utilizing techniques
based on graph-based SLAM.

6.2 Scenario A: Sensor Deployment

In the first scenario, four points of interest (POI) within the 
inner yard of the TUM city campus are considered (cf. Figure 
7(a)). In the first part of the scenario, a sensor location which 
offers a clear view of all four POIs is determined. The simulated

1http://s.fhg.de/mls2

sensor is assumed to have a field-of-view of 360 °. In the second
part, locations for two sensors are chosen in a way that they can
perceive a subset consisting of the POIs 1-3. The decision to
use a subset instead of all points of interest was made in order
to be able to better illustrate the process.

6.3 Scenario B: Surface Navigability

In the second scenario, the ability of the system to determine
the navigability of terrain is be demonstrated. Therefore, the
navigable surfaces density is determined and multiplied with
the distance density in order to describe the space that can be
safely navigated by a mobile sensor platform.

6.4 Runtime

To conclude the case study, the runtimes for all steps in the
process chain are discussed.

7. RESULTS AND DISCUSSION

7.1 Results of the Case Study

Scenario A In order to determine the sensor location, the
fields-of-view of all four points of interest are multiplied with
each other, which corresponds to an and-operation. The
resulting density that contains the common field-of-view can
be seen in Figure 7(b). A resolution of 1 m has been chosen.
The area close to the location of POI number 2 is highlighted
in red, since it is within the field-of-view of all four POIs. On
its right side is another area that is also within view of most of
the points of interest, but not in the one of POI number 3, since
it is shadowed by a row of flag poles. An arbitrary location
within the area highlighted in red is chosen as the position of
the simulated sensor. Figure 7(c) shows the sensor positions
and the visibility of all four points of interest. As expected, all
of them are visible from the chosen sensor position. This is not
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Figure 4. The derivation of a heatmap from a density
represented by an octree. A drill down technique is used

to determine all octree cells that are projected onto a given
heatmap cell.

surprising, since seeing some location A from another location
B also means that location B can be seen from location A.
However, it underlines the capabilities of this framework, since
this information was derived only by combining some very
simple spatial information sources using arithmetic operations.

In the second part, a similar approach has been chosen to
determine the two sensor locations. Pairs of all points of
interest with a direct line of sight are formed. For the subset
under consideration, these are 1,2 and 1,3. For each pair, their
field-of-view is joined with an and-operation by multiplication.
The results are joined with an or-operation, which in this
case is realized by the maximum-operation. The resulting
field-of-view can be seen in Figure 7(d). Two arbitrary locations
in the area highlighted in red are chosen as sensor positions.
Figure 7(e) shows these sensor positions and the visibility of all
three points of interest, which are again clearly visible.

In the upper right part of Figures 7(d) it can be seen that despite
the rather crude resolution of 1 m, the approach is able to predict
the sensor’s field-of-view through a window. However, since
hardly any geometry of the buildings interior was observed
during the recording of the dataset, the visibility calculation
inside buildings are not accurate. This may also lead to false
positives outside of buildings, if there is another window in the
line of sight at the buildings opposite side. The location outside
the window may then be marked as visible, while it is not. This
is considered a general problem related to observability of the
environment using a LiDAR sensor system, but solving it is
within the possibilities of the proposed framework, since it is
capable of considering information about unseen areas in order
to recognize the mentioned situation.

Scenario B. Figure 6(a) shows a heatmap of the navigable
surfaces density. All locations at least 3-4 m away from a
vertical surface are highlighted in red color in Figure 6(b). The

Figure 5. An overview of the MLS2 dataset. The area
highlighted in red has been used to conduct the case study.

fusion of both densities can be seen in Figure 6(c). Only parts
of the navigable surface that are reasonable far away from an
obstacle remain. It can be seen that the area below both rows
of trees (along the diagonal, from bottom left to top right) is
no longer marked as navigable, as soon as the distance to an
obstacle has been considered by the simulation.

It should be noted, however, that the navigability density has an
issue with surfaces rising in a steep angle. As can be seen at the
center of the yard, a sudden increase in altitude causes a break in
the navigable surface. A similar, related effect can be observed
near almost all cars in the center and left part of Figure 6(c).
Since the algorithm for surface extraction is designed to handle
small changes in height, it is able to follow surfaces rising in
a shallow angle. A car as well as other smaller obstacles may
be considered to be such a surface, therefore parts of them are
marked to be navigable. However, this can be remedied by
the fact that the navigability is derived directly from the point
cloud, not from an occupancy density.

7.2 Discussion of the Runtime

The dataset has been broken down into 177 3D-tiles, each
with an edge length of 32x32x32 m. The distribution of the
2 billion 3D measurements on the tiles required 44 s per tile,
the generation of the occupancy density 61 s. Deriving all 26
densities representing intermediate and final results took 93 s
per tile, which corresponds to about 3.5 s per tile and density.
Generating the 8 heatmaps shown in this paper required 17 s per
tile or about 2.1 s per tile and heatmap. All reported results were
generated on a machine with 32 gigabyte of RAM, utilizing an
Intel Core i7 processor with 3.5 GHz and 12 cores. Most of the
algorithms have been parallelized using OpenMP.

8. CONCLUSION AND FUTURE WORK

In this paper we proposed a generic space of interest
representation for spatial information that can be utilized to
solve complex tasks by combining simple spatial information
sources. This is made possible by the uniform representation
of spatial information that allows the simple combination,
manipulation and visualization of the latter. We demonstrated
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(a) (b) (c)

Figure 6. The heatmaps for (a) navigable surfaces (b) distance to vertical surfaces and (c) the resulting navigable
terrain, which is the product of the two former ones after threshold filtering.

         
       
        
          
         
           
          
         
          
          
        
    

         
                
             
           

        
               
      

          
               

             
            
  

          
              

                
           

  

          
              

              
           
  

the possibilities of this framework by finding solutions to 
scenarios from sensor deployment planning and surface 
navigability analysis. There may be more specialized solutions 
to both problems that are more efficient. However, as we 
have demonstrated, the approach presented here has the clear 
advantage that it can solve not only one highly specific problem, 
but a variety of different problems. The method is utilizing 
a volumetric representation of the world, yet the runtime 
is low enough that the immediate environment of a LiDAR 
sensor can be evaluated within a few minutes. Further work 
will include handling of the uncertainties associated with both
measurements and the volumetric representation.
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(a)

(b) (c)

(d) (e)

Figure 7. A heatmap showing multiple points of interests (a). Applying a multiplication to the fields-of-view of all POIs
(b) implies a sensor position (black marker) from which all POIs can be seen (c). In order to deploy two sensors that are

able to see only the POIs 1-3, the fields-of-view of the POIs 1,2 and of the POIs 2,3 are multiplied, the
maximum-operation is used in order to concatenate both results (d,e).
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