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ABSTRACT:

This paper presents an approach which uses a PointNet-like neural network to detect objects of certain types in MLS point clouds. 
In our case, it is used for the detection of pedestrians, but the approach can easily be adapted to other object classes. In the first step, 
we process local point neighborhoods with the neural network to determine a descriptive feature. This is then further processed 
to generate two outputs of the network. The first output classifies the neighborhood and determines if it is part of an object of 
interest. If this is the case, the second output determines where it is located in relation to the object center. This regression output 
allows us to use a voting process for the actual object detection. This processing step is inspired by approaches based on implicit 
shape models (ISM). It is able to deal with a certain amount of incorrectly classified neighborhoods, since it combines the results of 
multiple neighborhoods for the detection of an object. A benefit of our approach as compared to other machine learning methods 
is its low demand for training data. In our experiments, we achieved a promising detection performance even with less than 1000 
training examples.

1. INTRODUCTION

The observation and perception of the surrounding environment
is a major requirement of an autonomous car and many driver
assistance systems. One task is the detection of potential ob-
stacles or moving objects and, for instance, the utilization of
that information to prevent collisions. For some use cases, the
detection and classification of objects of distinct types is ben-
eficial. For example, in order to control and safely operate an
autonomous driving car, the behavior of pedestrians and other
road users is of particular interest. Such information can be
seen as an important input for risk assessment of the current
driving situation. Only if an autonomous driving car is aware
of object classes such as pedestrians and cyclists, it can keep an
extra distance to these, taking into account that they are espe-
cially vulnerable and can change their moving direction more
rapidly than most other road users.

The focus of this paper is on processing of LiDAR sensor data,
since LiDAR is an established sensing technique to support and
enable autonomous driving. LiDAR sensors are capable of di-
rectly gathering geometric information of the surrounding envi-
ronment. For that reason, they are particularly useful to deter-
mine the position and moving direction of other objects in re-
lation to the sensor system. In addition, they often have a large
field of view (360◦ for rotating LiDAR scanners) and operate
independent from natural or other external light sources. In
comparison to cameras, LiDAR sensors typically have a lower
resolution, which means that they provide a lower local data
density. In another aspect, the data acquisition by moving and
scanning LiDAR sensors (MLS) typically results in unstruc-
tured 3D data, whereas cameras produce 2D image data in a
fixed matrix structure. In view of these different data struc-
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tures, LiDAR sensor data is typically more difficult to handle
than image data.

Common approaches for object detection and object recogni-
tion rely on handcrafted features. These features are extracted
locally from the data and used by a classifier in order to deter-
mine if the local subset of data is part of an object of a cer-
tain type. For LiDAR data, which are most commonly repre-
sented as 3D point clouds, typical handcrafted features either
use some general information of the 3D points themselves (e.g.,
the height above ground) or depend on relations to neighbor-
ing points. Generally speaking, such features describe the local
neighborhood of a point. In some cases combinations of multi-
ple features are used. In recent years, deep learning and neural
networks have offered alternatives to overcome the dependence
on handcrafted features. In contrast to classical approaches,
handcrafted features are replaced by learned ones.

In this paper, on the one hand, we follow the classical approach
of describing points using their local point neighborhood. On
the other hand, we use features learned by a neural network
with a PointNet-like architecture (Qi et al., 2017a) instead of
handcrafted features. The neural network is then also used to
perform parts of the object recognition itself by classifying the
point neighborhoods and determining where they are located on
a certain object in relation to the object center. These results of
the neural network are used as a basis for a voting process to
detect objects of a certain type in the processed data.

2. RELATED WORK

This section is divided into three parts. First we quote other
work related to handcrafted point features in general. Then we
summarize some related existing approaches for the detection
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of distinct objects in point clouds. The last part of this section
gives a short overview on modern deep learning approaches for
3D point cloud data.

2.1 Local point features

There exist different types of handcrafted features for 3D points
and 3D point clouds which are often designed for a specific
task. We mention only a few of them that are relevant in the
context of this paper. For example, Johnson and Hebert (1999)
proposed Spin Images as a feature descriptor for object recog-
nition in 3D data. Spin images are based on the surface normal
of a point and on the support of the spin image. The support is
defined as all neighbors in a certain distance whose estimated
normal directions do not exceed a certain maximum angle to the
normal vector of the point of interest. To determine a spin im-
age, a cylindrical two-dimensional coordinate system is defined
using the surface normal of the point of interest. The points of
the support are grouped into bins and counted based on their
coordinate in the cylindrical coordinate system.

Rusu et al. (2008) proposed Point Feature Histograms which
describe the mean curvature at a point and are extracted using
the point itself, its surface normal, its neighbors and the surface
normals of the neighbors. They determine point pairs in the
neighborhood and perform certain calculations for these pairs,
which results in a high-dimensional histogram. The method
was later improved (Rusu et al., 2009) to Fast Point Feature
Histograms, which are computationally more efficient by re-
moving some less effective components of the original point
feature histograms.

Several features for a 3D point neighborhood can be extracted
using the eigenvalues of the covariance matrix (principal com-
ponent analysis). Weinmann et al. (2015) use such eigenvalues
of a optimal neighborhood, which is carefully selected by an au-
tomatic method based on the processed data, to calculate local
shape features like linearity, planarity, scattering, omnivariance,
anisotropy, eigenentropy, and change of curvature.

The approach presented in this paper keeps the concept of ex-
tracting point features which are based on the local neighbor-
hood of 3D points. Instead of using handcrafted features, we
rely on features learned and extracted by a neural network.

2.2 Object detection and recognition using LiDAR data

Many approaches for object detection and recognition in 3D
data first perform a segmentation of the data in order to sepa-
rate potential objects from the background. Typically, clusters
of points are found by a region growing procedure, which are
then regarded as object candidates. After that, the candidates
are evaluated by a classification method based on certain ge-
ometric features. For example, Navarro-Serment et al. (2010)
use a support vector machine as classifier in such an approach.
Support vector machines learn a hyperplane in feature space
which differentiates between the different classes.

Behley et al. (2013) use a combination of several bag-of-words
classifiers which differ in their parametrization of the point fea-
ture descriptors. They also use a hierarchical segmentation ap-
proach to deal with over- and under-segmentation problems.
Bag-of-words classifiers use a dictionary of words which are
associated to classes and described by a feature descriptor. To
classify data, they search in the dictionary for words which best
match the features of the data.

Implicit shape models (ISM) are a variant of bag-of-words ap-
proaches in the sense that the words are not only associated
with a class but also with a relative position of the object of
that class. If multiple matched words point at the same position
and class, that is a strong indication for the actual presence of
an object of that class near that position. Velizhev et al. (2012)
use implicit shape models to detect objects of certain classes in
3D point clouds and use spin images as feature descriptor. In
our earlier work we used ISM for the detection of pedestrians
in segmented LiDAR-data (Borgmann et al., 2017) and later in
unsegmented data of multiple LiDAR-sensors (Borgmann et al.,
2018a). For the latter approach, we performed a data fusion in
the voting space of the ISM. The approach presented in this pa-
per extends that earlier work. We kept the voting process of the
ISM, but replaced the extraction of handcrafted features and the
dictionary of geometric words with a neural network.

2.3 Neural networks and LiDAR data

The recent success of deep learning with neural networks in the
area of image processing led to different approaches to transfer
this concept into the area of 3D point cloud processing. The
main difficulty of such attempts lies in the unordered nature of
point clouds. Images are organized in a fixed pixel-by-pixel
matrix structure, which is ideal for processing by convolution
operations in deep convolutional neural networks. Therefore,
many attempts to transfer this concept to 3D data are based on
converting the unorganized 3D data into a regular data structure.
Socher et al. (2012) use a depth image representation instead
of an irregular point cloud for the task of object classification.
They are able to apply neural networks similar to the ones used
for RGB images and actually include RGB information in their
method. Although it is possible to generate depth images from
most 3D sensor data, this process can be difficult depending on
the involved type of sensor (e.g., a moving LiDAR scanner).
This is particularly the case if LiDAR data of multiple sensors
are fused. In addition, an interpolation and discretization of
3D data to depth image pixels often comes at the cost of an
information loss.

Another ordered representation of 3D data is a voxel grid. Be-
ing the 3D equivalent of pixels, voxels can equivalently be used
in convolutional neural networks for object detection and recog-
nition tasks on 3D data (Maturana and Scherer, 2015; Garcia-
Garcia et al., 2016). One difficulty when using voxels is the
decision what size of voxel one should use. If the size is too
small for the available data density, there is the problem of fill-
ing voxels for which there is no actual data available. If the size
of the voxels is too large, information is lost. Since LiDAR sen-
sors typically have a high data density in short distances and a
lower one in larger distances, this problem becomes even more
evident.

Qi et al. (2017a) proposed PointNet, an approach which directly
processes point clouds in a neural network. The data are pro-
cessed as an unordered list of points with their 3D coordinates.
The network learns a symmetric function to generate a global
feature for the complete processed cloud. Such a function does
not depend on the order of the processed data. An additional
sub-network is used to predict affine transformations to deal
with the fact that the position and orientation of the processed
data in the coordinate frame are uncertain but should not af-
fect the results. The global feature is then further processed by
additional layers of the network to generate a classification re-
sult for the whole processed cloud. Their network can also be
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used for semantic segmentation of the points of the cloud. To
achieve this, the global feature is combined with a local feature,
the output of an earlier layer of the network, and then processed
by additional network layers to generate a per-point score for
each semantic category.

Qi et al. (2017b) later added an hierarchical component to their
original PointNet approach. The idea is to first generate local
subsets of the processed data and to extract features for these
subsets using PointNet. A subset is defined by a centroid point
and its neighbors. Then, multiple of the original subsets and
their features are combined to generate a new larger subset,
which is once again processed by a PointNet network for fea-
ture extraction. This process repeats over multiple hierarchical
levels. This resembles the idea of CNN networks to first ex-
tract local features and then group them together into higher
level features. In comparison to the original PointNet, this hi-
erarchical PointNet++ approach is better able to deal with the
non-uniform data density of typical point clouds recorded by
LiDAR sensors.

The approach presented in this paper uses a neural network
which, similar to the one presented by Qi et al. (2017a,b), pro-
cesses an unordered list of points. Instead of using whole point
clouds or well defined large subsets of point clouds, we con-
sider individual points and their neighbors as input to generate
results for the selected individual points. In a sense, this is sim-
ilar to the lowest hierarchical level of the PointNet++ approach
(Qi et al., 2017b). In the PointNet++ approach, neural networks
are used to combine low-level features over multiple hierarchi-
cal levels, resulting in high-level features. Differing from this,
we directly generate a classification result and an object local-
ization for the points whose neighborhoods we process. These
results are then further processed outside of a neural network in
an ISM-like voting process to detect objects of interest in the
processed data. Our approach is able to find all instances of ob-
jects types of interest in the processed data and does not rely on
a prior segmentation of that data.

3. PROPOSED APPROACH

In the following we describe our approach for object recog-
nition in point clouds. As input we assume 3D point clouds.
We also assume that there is some kind of viewpoint informa-
tion available (e.g., the sensor position while recording the data,
the sensor’s trajectory), either for the whole point cloud or for
each 3D point individually. Finally, we assume that one axis of
the coordinate frame is aligned with the direction of gravity or
height. This axis is usually referred to as the z-axis.

The main processing steps of the approach proposed in this pa-
per are shown in Figure 1. As in other approaches (Velizhev et
al., 2012) and our earlier work (Borgmann et al., 2017, 2018a),
we included a ground removal step which is not mandatory
but can be beneficial with regard to the processing time. Typ-
ically, many data points acquired by an MLS system (i.e., a
car equipped with LiDAR scanners) are captured at the ground
level. These ground points are relevant to analyze the terrain
navigability, but can be ignored during the detection of other
road objects. Removing the ground points significantly reduces
the amount of data to process without affecting the results of
object detection.

After the optional ground removal, we determine and prepare
local point neighborhoods. This step is described further in the

Figure 1. Overview of the proposed approach

following section. These neighborhoods are then processed by
a neural network. The network provides two outputs: One clas-
sifies the neighborhood as part of an object of a certain type.
The second output estimates the position of the center of that
object. In this paper, we exemplary focus on the detection of
pedestrians, but the approach can easily be adapted to other ob-
ject classes. The topology of the neural network is described in
Section 3.2.

We use the output of the neural network to generate votes for
objects at specific positions. These votes are comprised of a 3D
coordinate for the object center and a weight. The idea is that
multiple votes originating from parts of an actual object will
accumulate a significant weight at roughly the same position.
In case of local point neighborhoods for which the network
delivers incorrect results, we can assume that their votes are
randomly distributed in space and will not accumulate enough
weight for one position to result in a false positive detection.
This voting process is inspired by implicit shape models (ISM)
and is designed to deal with a certain amount of wrong outputs
of the neural network. More details of this particular processing
step are described in Section 3.3.

3.1 Local point neighborhoods

We define the local neighborhood of a point as all its surround-
ing points in a certain fixed distance. For the approach proposed
in this paper, a neighborhood defined by a fixed distance is ben-
eficial as compared to k-nearest neighbors, since that would re-
sult in features which would not generalize well for different
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point densities. If there is only a small amount of points in the
local point neighborhood, we do not process it further, since
the information content of such a neighborhood is too low to
produce useful results.

A local right-handed coordinate frame is defined for each of the
processed point neighborhoods, which has its origin at the cen-
tral point of the neighborhood. We orient the coordinate frame
according to the direction of gravitation and the direction to the
viewpoint. The z-axis of the local point neighborhood’s coor-
dinate frame is oriented upwards corresponding to the height
axis. The x-axis is perpendicular to the z-axis and aligned with
the line between the central point and the viewpoint, pointing
away from the viewpoint. The y-axis is then defined to be per-
pendicular to the x- and z-axis with the direction that results in
a right-handed coordinate frame. After that, the coordinates of
all points of the local point neighborhood are transformed into
this local coordinate frame.

Although we defined the local point neighborhood to have a
fixed radius instead of k-nearest neighbors, we need a fixed in-
put size for the neural network. A fixed amount of neighbors is
achieved in two different ways: If we have less than the desired
number of points in the neighborhood, we use padding and add
the missing points which all have the coordinate frame’s origin
as their coordinates. If we have too many points in the neigh-
borhood, we randomly select the needed amount and ignore the
rest. We assume that randomly selecting a meaningful number
of points sufficiently preserves the general shape of the neigh-
borhood and that more sophisticated methods of selecting sub-
sets of points are not required. This random selection of points
effectively normalizes the point density of the local point neigh-
borhood if it is above a maximum. This maximum is implicitly
defined by the input size of the neural network.

Since local point neighborhoods with central points in close dis-
tance typically share many of their member points, they can end
up being quite similar to each other. We expect that this fact
would result in many redundancies in the following processing
steps, unnecessarily reducing the run-time performance. There-
fore we introduce an additional parameter s which allows us
to generate and process only a subset of the possible neigh-
borhoods. Although a more sophisticated selection of interest
points could probably be beneficial, we stick to a simple sub-
sampling method due to the difficult and computationally inten-
sive nature of a selective interest point detection.

3.2 Design of the neural network

The chosen topology of the neural network is shown in Figure 2.
It is inspired by the approach described by Qi et al. (2017a) and
shares the main design ideas with their PointNet network. This
includes the direct processing of the 3D coordinates of an un-
ordered set of points. The network learns a symmetric function
which is invariant to the order of the input vector. As compared
to their layout, our network is simplified in several aspects, re-
ducing its overall complexity.

Since we process local point neighborhoods instead of whole
point clouds or point cloud segments containing whole objects,
the number of points in the input vector is generally small. That
means we can use a smaller amount of hidden layers with less
neurons in each layer. In addition, the input data are given in
a well-defined coordinate system. Thus, we do not need addi-
tional network components to deal with uncertainties in the co-
ordinate frame. This leads to an overall reduction of complexity

in the network, which allows us to work with a smaller amount
of training examples. Additionally, a single labeled object of
interest contains multiple local point neighborhoods, resulting
in a multitude of available training examples. This greatly re-
duces the amount of labeled data which is needed to train the
neural network.

The network is divided into three components. First, we ex-
tract a descriptive feature for the processed local point neigh-
borhood. This feature then serves as input for a classification
and a regression part of the network. The classification part
classifies the local point neighborhood to be part of an object of
a certain class of interest or not. In the latter case, it is assigned
to an additional ”not of interest” class. The regression part de-
termines where the center of the object lies in relation to the
processed local point neighborhood. This part of the network
has to be trained separately for every object class of interest.
Effectively, we end up with multiple regression sub-networks,
one for every object class of interest.

3.3 Object recognition during post-processing

The output of the neural network is used to fill a voting space
with weighted potential positions of objects of interest. To
achieve this, we consider each local point neighborhood for
which the classification part of the network results in a confi-
dence level above a certain minimum, indicating a certain ob-
ject class of interest. The regression output is then interpreted
as 3D coordinate for the potential object position and trans-
formed back into the original point cloud’s coordinate frame.
The weight of the positions is determined as follows:

Wc =
P (c)

n
· s (1)

where Wc = Weight of position for object of class c
P (c) = Probability of or confidence for class c
n = Actual amount of points in neighborhood radius
s = Sub-sampling factor of point neighborhoods

n is used to normalize the weight according to the local point
density. This should account for the problem that the density
of MLS point clouds typically decreases with the distance to
the sensor. It contains the actual number of points within the
neighborhood’s radius, i.e., the number of neighbors before the
padding and random removal in the local point neighborhood’s
preparation step. The parameter s relates to the sub-sampling
described at the end of Section 3.1. This parameter is not neces-
sarily needed, but allows to change the ratio of processed local
point neighborhoods without having to adapt other parameters
like the detection thresholds.

Same as in our earlier approaches (Borgmann et al., 2018a), the
voting space can be filled based on multiple sources of infor-
mation. For example, it can accumulate the information within
a multi-sensor system, i.e., the data of multiple sensors that op-
erate in parallel. We use a rating process to decide if a potential
position is regarded as a detected object’s position. During this
process, we find weight maxima in the voting space. This takes
account of the fact that multiple local point neighborhoods vote
for roughly the same position of an object if they actually be-
long to such an object, i.e., if this object exists at that position.
In contrast, incorrect votes will not accumulate weight at a spe-
cific position.
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Figure 2. Chosen topology of the neural network. The network takes n 3D points as input and it outputs a classification
score for k classes and a 3D coordinate of the expected object center. MLP stands for muli-layer perceptron. Batchnorm

is used for all the MLP layers, except the output ones. We use dropout layers with a dropout rate of 0.2 in the
classification and regression part of the network but not in the feature extraction part.

The rating process recalculates the weight of every potential
position based on its current weight and the weight of other po-
sitions for the same object class in close proximity. It adds a
certain percentage of the weight of the positions in proximity
to the weight of the rated position. The percentage of weight
added is defined by the normal distribution depending on the
distance between the rated position and the position in proxim-
ity:

Rp =Wp +
∑
k∈K

Wk · e−
Dpk

2

2σ2 (2)

where Rp = Rated weight of position p
Wp = Original weight of position p
K = Positions with same class as p in radius 2σ
Wk = Weight of position k
Dpk = Euclidean distance between positions p and k
σ determines the width of the normal distribution

After the recalculation of the weights, a threshold is applied and
every position below that threshold is ignored. The remaining
positions are regarded as detections of objects of the certain
class. Since typically multiple positions for the same object
remain, we find such clusters and merge the positions in each
cluster in order to keep only one position per object.

4. EXPERIMENTS

We conducted several experiments to evaluate the capabilities
of the presented approach and to quantify the influence of dif-
ferent parameter settings. In these experiments, we used Li-
DAR data recorded by a multi-sensor vehicle, and we focused
on the detection of pedestrians. We have presented the mea-
surement vehicle in detail in an earlier work (Borgmann et al.,
2018b). In addition to multiple cameras, it is equipped with two
Velodyne HDL-64E LiDAR sensors which provided us with the
data for the experiments. The point clouds generated by both
sensors are provided in the same common coordinate frame,
which is achieved by GNSS/IMU-based direct georeferencing.
In the context of the experiments, a single point cloud is de-
fined as the data recorded by one LiDAR sensor within 0.1 s,
which quite accurately corresponds to one rotation of the sen-
sor’s scan head. The sensors perform 1.3 million measurements

per second distributed over 64 scan lines. So each individual
point cloud consist of 130,000 measurements. Since there are
measurements in the direction of the sky, for instance, not all
measurements provide meaningful results (3D points). The ac-
tual point clouds typically consist of around 110,000 points, de-
pending on the vehicle’s surroundings.

We used parts of two different data sets for the evaluation.
One contains recordings of an urban environment with multiple
pedestrians on sidewalks or street crossings. These data have
been recorded around the site of the TUM (Technische Univer-
sität München) while the vehicle was driving in traffic1. The
other one contains a staged sequence with a person moving be-
tween the fields of view of both LiDAR sensors of the vehicle.
This second sequence was recorded at the site of Fraunhofer
IOSB while the vehicle was either slowly moving or station-
ary. We performed a data fusion in the voting space while pro-
cessing this second data set. For the evaluation of the results,
pedestrians in both data sets have been labeled manually.

In order to train the neural network for all experiments, we
used additional labeled point clouds which are disjoint from
those used for the evaluation itself. In total, 1298 single point
clouds were available for this purpose. Among these, 849 point
clouds actually contain at least one pedestrian. The remaining
ones were used as additional negative training examples. As
explained in Section 3.2, every labeled object and every point
cloud contains a multitude of local point neighborhoods, which
increases the number of usable training examples. 20% of the
available training data were set aside to validate the training
progress. For the training we used an Adam optimizer (Kingma
and Ba, 2014). The loss function for the classification part of
the network was the sparse categorical cross entropy. For the
regression part we used the mean squared error.

All three parts of the network have been trained in parallel. The
classification part was trained using positive and negative ex-
amples. The regression part was trained using only positive ex-
amples. This means that we had more data available to train the
classification part as compared to the regression part. In order to
keep a balance in the amount of training done for both network
parts, we randomly selected a subset of the available classifica-
tion training data in each training epoch. The mean coordinate
of all 3D points of a pedestrian was used as the object center

1http://s.fhg.de/mls2
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while training the regression part of the network. The feature
extraction part was trained alongside the classification and the
regression part.

In our experiments, we included the optional removal of ground
points. Besides this, no additional segmentation steps were per-
formed. We also used the optional sub-sampling mentioned at
the end of Section 3.1 with s = 5, meaning we only generated
and processed a local point neighborhood for every 5th point of
a point cloud.

Figure 3. Top: An example of the output of our approach.
Bottom: For comparison an image which shows the same
situation. Five of the six visible pedestrians are detected.

The missing one is partially occluded by a traffic light
post.

The output of our approach are the positions of recognized
pedestrians. An example of such an output is shown in Fig-
ure 3. Results like this are compared to ground truth data to
determine true positive, false positive and false negative recog-
nitions. These values are then used to determine precision and
recall, which are defined as follows:

Precision =
tp

tp+ fp
(3)

Recall =
tp

tp+ fn
(4)

where tp = True positive
fp = False positive
fn = False negative

For every configuration we performed multiple runs with dif-
ferent recognition thresholds. The results of these multiple runs
can be plotted as a precision-recall curve.

4.1 Neighborhood parameterization

The first set of experiments covers different parametrizations to
define the local point neighborhoods. This includes the three
main parameters:

1. The radius of the sphere around the central point which is
considered as the local point neighborhood.

2. The required minimum number of points in the neighbor-
hood radius.

3. The target number of points in the neighborhood, which is
reached by random selection or padding.

We conducted experiments for each of these three parameters.
The results shown in Figure 4 are discussed in the following
paragraphs.

Neighborhood radius The radius is probably the most sig-
nificant parameter to define the local point neighborhoods. It
greatly influences the presented approach in different ways.
In an ideal case, each local point neighborhood only contains
points which are part of one specific object. If the neighborhood
radius is too large, this is rarely the case if multiple objects are
in close proximity to each other. This effect can decrease the
detection and recognition performance. On the other hand, a
neighborhood with only a small radius does not contain enough
information to allow for good results.

We compared the results of choosing a neighborhood radius of
0.2m, 0.3m and 0.4m. For these experiments the parameter
for the minimum number of points in the neighborhood radius
was set to 10 and the one for the target number of points to 100.
As can be seen in Figure 4a, a neighborhood radius of 0.2m
is too small to achieve usable results. With a radius setting of
0.3m or 0.4m, the results are acceptable and quite similar.

Minimum number of points in neighborhood This thresh-
old acts as a lower bound for the local point density. If the
density is too low, there are generally not enough points in the
neighborhood to reach this threshold. This primarily affects the
performance in high distances to the LiDAR sensor, where the
point density is low and prevents any recognition of objects.
This has a negative impact on the recall rate. Since local point
neighborhoods that contain only a few points do not include
much information, the precision decreases if the threshold for
the minimum number of points is set too low.

The results shown in Figure 4b are consistent with these expec-
tations. We compared values of 10, 20 and 30 for this parameter
and achieved best results with a setting of 20. For these exper-
iments we set the radius to 0.3m and chose 100 as the target
number of points in a local point neighborhood.

Target number of points in neighborhood The target num-
ber of points is a parameter which is necessary since the neural
network requires a fixed input size. Generally speaking, if this
parameter is too low, relevant information gets lost. If its too
high, the target number of points is in most cases achieved by
padding. These additional points provide no additional infor-
mation, but still have an impact on the run-time, which is not
desirable. The results shown in Figure 4c where achieved us-
ing a neighborhood radius of 0.3m and a setting of 10 as the
minimum number of points in that radius.

4.2 Number of training examples

One advantage of our approach is its low demand for training
data. We tested the limits of this capability by reducing the
number of examples during training. For this experiment we
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Figure 4. Precision-recall curves for different parametrizations of the local point neighborhoods

used a neighborhood radius of 0.3m, 20 as the minimum num-
ber of points in that radius and 150 as the target size of the
neighborhood. We trained three networks with this configura-
tion: One used all 1298 point clouds available for its training,
the other one only 500 randomly selected training point clouds,
and the third one only 100 which were randomly selected out
of the previous 500. For all three networks, we still used 20%
of their respective training data for validation purposes.
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Figure 5. Results for different numbers of labeled point
clouds used for training

The results of this experiment are shown in Figure 5. As ex-
pected, a smaller amount of training data has a negative impact
on the performance of the proposed method. At least for the
case of only using 500 labeled point clouds, we are still able
to achieve acceptable results. In case of only using 100 labeled
point clouds for training of the network, the results are still us-
able, but it may be beneficial to reduce the complexity of the
neural network. Generally speaking, the network complexity
should scale with the amount of available training data.

4.3 Sub-sampling factor

At the end of Section 3.1 we described a simple sub-sampling
which allows us to reduce the amount of local point neighbor-
hoods to be considered. This reduction is meant to reduce the
processing time. For the previous experiments, this parameter
was set to 5, meaning for every 5th point a local point neighbor-
hood has been generated and analyzed.

In this experiment, we want to quantify the effect that the sub-
sampling has on the quality of the results. We tested four differ-
ent settings for this parameter: 3, 5 (our previous baseline), 10
and 20. For the other settings, we used a neighborhood radius
of 0.3m, 20 as the minimum number of points in that radius
and 150 as the target size of the neighborhood.
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Figure 6. Results for different settings of the
sub-sampling parameter.

Figure 6 shows the results of this experiment. While lower val-
ues for the sub-sampling only have a small impact on the re-
sults, the impact increases significantly if this parameter is set
to 10 or 20. This can be explained by the point density and
the amount of points for a pedestrian in the data. Especially
in larger distances, the point density is low and a pedestrian
is typically represented by less than 100 points. In case of a
sub-sampling parameter of 20, approximately only 5 local point
neighborhoods are generated for such a pedestrian. Under these
conditions, the potential influence of even a single neighbor-
hood for which the neural network outputs a wrong result is
high and leads to a false positive or a false negative detection.

Generally speaking, the maximum sub-sampling has to match
the data density in the processed data. If this density is high,
higher values for the sub-sampling are possible without reduc-
ing the quality of the results. In addition, the potential benefit
with regard to the processing time is higher in such cases.
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5. CONCLUSION AND FUTURE WORK

We presented a novel approach which uses a neural network to 
process the 3D coordinates of points in local point neighbor- 
hoods, and which combines the output of this neural network 
with an ISM-like voting process to detect, recognize and locate 
objects of interest. The usage of local point neighborhoods is 
inspired by classical feature extraction methods for point clouds 
which often generate per-point features based on their relation 
to neighboring points.

Processing local point neighborhoods in a neural network has 
several benefits: On the one hand, the local point neighbor- 
hoods are comparatively small allowing for less complex neu- 
ral networks which also require less training data. On the other 
hand, they are able to generate local features and classifications 
without having to rely on a previous explicit segmentation. The 
ISM-inspired voting process allows to overcome the low infor- 
mation content of the local point neighborhoods by combining 
the results of multiple of such neighborhoods.

We evaluated the presented approach in a set of experiments 
which were focused on the detection of pedestrians and tested 
the influence of certain parameters on the results. We also quan- 
tified the limits of the approach with regard to the amount of re- 
quired training data and were able to achieve good results even 
with very limited amounts of training data.

In future work we want to add a hierarchical object recogni- 
tion to our approach which not only recognizes objects them- 
selves, but also locates certain parts of the objects. Such parts 
of objects can constitute a suitable source of information for an 
enhanced situation analysis. In the example of pedestrians, rel- 
evant body parts could be hands, feet and head. In addition, we 
want to add a tracking component to our approach to be able to 
keep track of detected objects over multiple point clouds in a
sequence.
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