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ABSTRACT:

In this work, we report a novel way of generating ground truth dataset for analyzing point cloud from different sensors and the validation
of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D
voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate
a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize
the annotated reference point cloud, by which all the points are organized by 3D grids of multi-resolutions. When automatically
annotating the new testing point clouds, a voting based approach is adopted to the labeled points within multiple resolution voxels, in
order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods
are developed for aligning point clouds obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily
create new annotated 3D point clouds of different sensors of the same scene directly by considering the corresponding labels of 3D
space the points located, which would be convenient for the validation and evaluation of algorithms related to point cloud interpretation
and semantic segmentation.

1. INTRODUCTION

In the past decade, the automatic 3D scene analysis using point
clouds has attracted increasing attentions in research fields of
photogrammetry (Vosselman and Maas, 2010), remote sensing
(Lefsky et al., 1999), computer vision (Buch et al., 2011), and
robotics (Rusu et al., 2009). For the dense and accurate 3D scene
analysis and interpretation, especially in the context of urban ar-
eas, plenty of algorithms and approaches have been developed
for a wide variety of applications such as semantic interpretation
(Weinmann et al., 2015, Landrieu and Simonovsky, 2017, Vossel-
man et al., 2017), segmentation (Rabbani et al., 2006, Vo et al.,
2015), registration (Aiger et al., 2008, Yang and Zang, 2014, Ge
and Wunderlich, 2016, Theiler et al., 2014), object recognition
(Schnabel et al., 2007, Yao et al., 2011, Niemeyer et al., 2014, Al-
doma et al., 2012, Yu et al., 2016). For any proposed algorithms
and methods, satisfying experiments and convincing evaluations
are always non-trivial and crucial steps to validate the feasibility
and performance of the proposed method. To conduct such ex-
periments and evaluations, the benchmark dataset or the ground
truth are normally required. In fact, lots of efforts have been paid
to the generation of the benchmark dataset in the community of
point clouds processing, for example, the ISPRS Benchmark Test
on Urban Object Detection and Reconstruction, containing chal-
lenging aerial laser scanning point clouds for 3D object recon-
struction (Rottensteiner et al., 2014), semantic 3D benchmark for
classification having large-scale terrestrial point clouds of various
urban, suburban, and rural scene (Hackel et al., 2017).

However, for the majority of the benchmark that published, they
only focus on data obtained from one type of sensor, for exam-
ple photogrammetric or LiDAR point clouds. However, for test-
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ing the generality, in many cases we need to test the proposed
method on datasets acquired by more than one kind of sensors at
the same scene, for example, the LiDAR points and TomoSAR
points. Thus, for the testing scene, if the ground truth can be used
for automatically annotating new datasets acquired from other
sensors, it will contribute a lot to the validation of the general-
ity of the proposed methods, and provide an possibility of fusing
the datasets of multiple sensors. To this end, we present a novel
strategy for generating annotated dataset for new point clouds
from different sensors based on the labeled 3D grid structure.
Instead of directly labeling the 3D points with time consuming
manual work, multi-resolution 3D voxel grids for the testing site
are generated. On the basis of a set of basic labeled reference
points (i.e., point clouds with low density and easier to be stored
and manually annotated), we can generate a 3D labeled space of
the entire testing site with different resolutions. To be specific,
the voxel structure is applied to voxelize the annotated reference
point cloud (see Fig. 1b), by which all the points are organized by
a 3D grid. Then, a voting based strategy is adopted to the voxels
of multiple resolution levels, in order to assign a semantic label
to the 3D space represented by the voxel. Lastly, robust line- and
plane-based fast registration methods are developed for aligning
point clouds obtained via various sensors. Benefiting from the la-
beled 3D spatial information, we can easily create new annotated
3D point clouds of different sensors of the same scene directly
by considering the corresponding labels of 3D space the points
located, which would be convenient for the validation and eval-
uation of algorithms related to point cloud interpretation and se-
mantic segmentation. In Fig. 1c, we illustrate an example of the
reference MLS point cloud we used.
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Figure 1. (a) Real scene of the TUM main entrance from Google Maps, 2018. (b) Voxelized 3D space. (c) Labeled reference MLS
point cloud.

2. METHODOLOGY

Conceptually, the implementation of our proposed method con-
sists of three core steps: the voxelization of the reference dataset
and the extraction of primitives, the primitive-based registration,
and the voxel-based 3D labeling. In the first step, the refer-
ence data set is manually labeled and voxelized into the 3D grid
structure with cubics. Simultaneously, geometric primitives (e.g.,
lines or planes) are extracted from the reference dataset and the
testing point cloud, respectively. Combining the labeled refer-
ence dataset and the voxel structure, the 3D space covering the
testing dataset can be labeled. In the second step, the primitive-
based registration is conducted between the reference dataset and
the testing point cloud, in order to align them into a same coor-
dinate frame. In the last step, the multi-scale 3D labeled voxel
space is applied to the aligned testing point clouds, labels of the
points in the testing point cloud are assigned via the multi-scale
voting strategy. The processing workflow is sketched in Fig. 2,
with the key steps of involved methods and sample results illus-
trated. The detailed explanation of each step will be introduced
in the following sections.

2.1 Annotation of the reference dataset

The annotation of the reference dataset is a crucial step in our
work. Normally, the acquired measurements (e.g., point cloud)
have a large amount of points, which is a challenge for the manual

annotation. However, in our method, it is not necessary to label
all the points of the reference dataset. Instead, only those points
representing or covering the 3D space should be labeled. Thus, in
fact, there is no limitation for the type of reference dataset (e.g.,
point clouds, mesh, or BIM model). In our case, the original
reference dataset (i.e., MLS point cloud) is considerably down-
sampled, in order to facilitate the manual labeling.

2.2 Voxelization and geometric primitive extraction

2.2.1 Octree based voxelization For labeling the 3D space
covering the reference dataset, the reference dataset is voxelized
with multiple resolutions. Here, we utilize the octree-based vox-
elization to decompose the entire point cloud with 3D cubic grids.
As discussed in many of our former studies (Boerner et al., 2017,
Xu et al., 2017c), the main reason of using the octree structure
is that the nodes of an octree structure have explicit linking re-
lations, which facilitate the traversal for searching the adjacent
ones (Vo et al., 2015, Xu et al., 2017b). Besides, benefiting from
the structure of the octree, it is also quite easier for us to generate
the multi-resolution voxel spaces. In Fig. 3, we provide an illus-
tration about the generated 3D labeled voxel spaces of different
resolutions.

2.2.2 Primitive extraction To label the testing point cloud
with the given labeled 3D space, it is needed to align the coor-
dinate frame of the testing point cloud to that of the labeled 3D
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Figure 2. Workflow of generating new labeled point cloud by
using labeled 3D space.

Figure 3. (a) and (b) Labeled 3D space with resolutions of 0.5 m
and 1.0 m.

space. However, since they are normally different types of dataset
and obtained via various sensors. Thus, traditional point-based
registration algorithms may work not so well. Considering that
in the same scene, the basic geometric structures of the buildings
are always consistent (Boerner et al., 2018), we developed the
strategy of using geometric primitives to align these two coordi-
nate frames. Here, the primitives we used include lines (Koch et
al., 2016) and planes (Xu et al., 2017a)

The ways of extracting 3D lines have been widely reported. For
example, the 3D lines can be reconstructed from a set of images
using the method of (Hofer et al., 2017) or (Jain et al., 2010).
While for extracting 3D lines from LiDAR point clouds, methods
are reported in (Lin et al., 2017) or (Hackel et al., 2016), aim at
extracting boundaries and contours of the point cloud. As for the
extraction of planes, there are also plenty of work like (Xu et al.,
2017a, Nguyen et al., 2017, Dong et al., 2018). The benefits of
using 3D lines and planes lie on less heavy computational cost
than points, because such primitives always represent important
structures of the environment for finding correspondences (esp.

Figure 4. (a) Point cloud and (b) extracted planar primitives.(c)
Point cloud and (d) corresponding linear primitives.

in urban scenes, which are rich of straight edges), which can re-
duce the number of candidates. Besides, primitives have more
dimensions for limiting the degree of freedom which can make
the estimation of transformation more robust. Especially for the
case of urban scenes, buildings have flat facades, the registration
is easier in 2D if corresponding planar structures can be found. In
Fig. 4, an illustration of the extracted lines and planes from the
corresponding photogrammetric point clouds are given.

2.3 Primitive-based registration

The registration of the reference and test point clouds can be ex-
pressed by a simple 3D similarity transformation T = (Tr,Tt, s),
with Tt, Tr and s defining the parameters of the transformation
as a 3D translation vector, a 3× 3 rotation matrix and a scale. In
the following, we will briefly introduce the line- and plane-based
registration methods.

2.3.1 Line-based registration The 3D line-based registration
follows a modification of a methodology for aligning individual
indoor and outdoor 3D building models (Koch et al., 2016). Un-
like aligning non-overlapping image-based 3D reconstructions
from different views, the 3D models to be aligned are captured
from different sensors but represent identical structures from sim-
ilar viewpoints. After extracting 3D line segments from LiDAR
points LL =

{
l1L, ..., l

n
L

}
and images LI =

{
l1I , ..., l

m
I

}
as ex-

plained in Section 2.2.2, the transformation T aligning LL to LI

can be estimated by minimizing perpendicular distances between
k corresponding 3D line segments of both line sets

T = argmin
T

k∑
i=1

d
(
liI , π

(
liL, T̂

))
, (1)

where π
(
l, T̂
)

projects a line segment l with T̂, and d (lI , lL)
computes the length of the perpendicular of two 3D line segments
extended to infinity.

In order to find line correspondences, planar characteristics of
urban environments are exploited by first extracting a set of 3D
planes in both line sets in a RANSAC-based scheme. These 3D
planes mainly contain 3D lines representing façade boundaries
and openings like window and door frames, which are suitable
geometrical matching structures. For each detected 3D plane,
corresponding inlier 3D lines are projected to these plane hy-
potheses for generating 2D binary images. The matching step is
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finally conducted in 2D, by exhaustively comparing all 3D plane
hypotheses using chamfer matching on all 2D binary images.
Corresponding 3D planes share identical geometrical structures
and therefore result in a low chamfer score. The identification of
corresponding 3D plane hypotheses solves the 3D rotation, while
the 3D translation is given by the result of the binary matching.
This prior transformation can be applied to LL and correspond-
ing 3D lines in LI can be detected in the 3D space by a simple
nearest neighbor search. These 3D line matches are finally used
to refine the transformation T using Equation 1.

2.3.2 Plane-based registration The 3D plane-based registra-
tion is a modification of the methodology for aligning 3D build-
ing scenes in urban areas (Xu et al., 2017a). The matching be-
tween corresponding plane sets is conducted by finding a triple of
planes, forming a 3D corner in the urban scene, which is used as
a constraint to define a coordinate frame determining six degrees
of freedom. Normal vectors of three planes forming the corner
are firstly calculated. Afterwards, the coordinate frame defined
by this corner is estimated by a cross product of normal vectors.
Based on a pair of corners from different scans, we can define the
transformation to align one scan to another, which consists of the
estimation of rotations and the determination of translations.

As stated in (Xu et al., 2017a), in theory, if we can find the cor-
responding corners standing for the corresponding plane sets, the
correct transformation can be calculated. For this purpose, we as-
sume that if the majority of the planes in one scan can be matched
to another scan, the transformation parameters are estimated op-
timally. Similar to the line-based registration, a RANSAC-based
strategy is adopted, sampling a triple of planes from two scans
concurrently in each random selection round. These planes should
be non-parallel and their corresponding coordinate frame will be
estimated. In RANSAC process, we apply the estimated transfor-
mation parameters to transform all the selected planes in the tar-
get scan, and count the number of matched planes. The triple of
planes having the largest number of matched planes are identified
as the optimal corresponding plane sets, and used for estimating
the final transformation parameters. For rotations, the angle dif-
ferences α, β, and γ of the rotation matrix Tr are calculated by
comparing the vectors of axis in corresponding coordinate frames
Fs and Ft. Then, is obtained as follows:

Tr = Fs
−1 ∗ Ft (2)

For the translation, the intersecting points ~P of triples of planar
patches are used as the reference:

~P =(| ~Nx
~Ny

~Nz|)−1[( ~Xx · ~Nx)( ~Ny × ~Nz)+

( ~Xy · ~Ny)( ~Nz × ~Nx) + ( ~Xz · ~Nz)( ~Nx × ~Ny)]
(3)

The translation matrix Tt is calculated as follows:

Tt = ~Pt − ~Ps (4)

By applying Tr and Tt to coordinate frame of the testing dataset
can be aligned to the reference dataset.

2.4 Voxel-based 3D labeling

To avoid directly labeling 3D points of testing point clouds, the
annotated 3D space with labels is used. More specifically, the 3D
voxel-grids with different resolutions are generated with merely
a subset of the point cloud in order to further label the testing
dataset. Here, a simple voting approach is applied to label the

voxels in the grid with only basic labeled points. Multiple reso-
lution can be achieved by means of changing parameter settings
the division levels in the process of octree based voxelization.

For giving labels to the points of the aligned testing point clouds
with the labeled 3D space, the position of the testing point is con-
sidered. To be specific, if the point is located in a voxel with a
given label k, then this point will be tagged with label k. For
the labeled 3D space with n multiple resolutions, each testing
point will finally get maximum n different tags. These n tags
will conduct a voting process, the tag having the highest voting
score will be assigned to the point. Here, the use of multiple res-
olution voxel space is designed to deal with the ambiguity caused
by the boundaries and connections between different structural
components. In theory, the smaller the voxel, more accurate the
assignment of testing points will be. Howerver, this requires a de-
tailed manual labels, which increase the workload definitely. The
use of multi-resolution strategy can make a good balance between
the preservation of details and the accuracy of the tags giving to
testing points.

3. EXPERIMENTAL RESULTS

The testing site is the Arcisstrasse along the main entrance of
Technische Universität München (TUM) city campus, covering
approximately an area of 29000 m2. In Fig. 1a, we provide an
overview of the entire scene. To some extent, this scene is a repre-
sentative scenario of the urban area, including rich information of
buildings, vehicles, vegetations, ground surfaces, et al. Here, the
basic point cloud is original acquired by Fraunhofer Institute of
Optronics, System Technologies and Image Exploitation (IOSB)
(Gehrung et al., 2017). The utilized point clouds are acquired by
two Velodyne HDL-64E mounted with an angle of 35◦ on the
front roof of the van. Fig. 5 provides sketch about how the two
scanners are mounted (Gehrung et al., 2017). The original raw
point clouds are also preprocessed by a statistical outlier removal
for down-sampling and noise suppressing. The raw point cloud
is downsampled from 0.5 billion points to 20 million points, in
order to facilitate the manually labeling work. For testing the per-

Figure 5. Two oblique mounted laser scanners of the MLS
system. Figure courtesy of (Gehrrng et al., 2017).

formance of automatically labeling new point clouds acquired by
other sensors, we also generate photogrammetric point clouds us-
ing hand held camera with 500 images via stereo matching based
on the method depicted in (Xu et al., 2018). This photogrammet-
ric point cloud will be annotated by the use of our 3D labeled
space. In Fig. 6, we provide the labeling result of the photogram-
metric point cloud. Comparing with the RGB textured original
point cloud, it is clear that the majority part of this point clouds
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Figure 6. (a) Original testing point cloud and (b) Labeled testing point cloud.

has been correctly labeled. However, there are still some part
wrongly labeled or missed. For example, the area marked by the
black dash box is missing in the labeled results. The original pho-
togrammetric point cloud includes around 33 million points, but
after the labeling only 30 millions point corrected labeled. The
reason of this error is due to the error caused by the registration
process, which will cause a bias of the position of the 3D voxel,
so that the testing points cannot fall into correct voxels or locate
outside the voxel space. In addition, our generated 3D labeled
can also be used to generate annotated MLS point clouds with
ultra high density. In Fig. 7, we display an illustration of the
annotated original MLS point clouds. In this annotated dataset,
the points of each scan have been labeled individually. This work
is collaborated with Fraunhofer-IOSB, and currently this dataset
is already published. In this case, the voxelized 3D space has
fixed resolution and the resolution of the voxel is 0.2m. There-
fore, at the connections between the ground surface and facades,
there are still some obvious ”zig-zag” edges, which can be further
improved by the use of multi-resolution strategy.

Figure 7. Labeled each scan of the MLS dataset.

4. CONCLUSION

In this work, we proposed a novel strategy of automatically gener-
ating ground truth dataset for analyzing point cloud from different
sensors and validation of algorithms. Without directly labeling
the 3D points, a multi-resolution 3D voxel grid for the testing site
is generated, with 3D the entire 3D space labeled based on a sim-
ple annotated basic point cloud. Benefiting from the labeled 3D
spatial information, we can easily create new annotated 3D point
clouds of different sensors of the same scene directly consider-
ing the corresponding labels of 3D space where points located,
which can provide benchmark datasets of various sensors for the
validation and evaluation of algorithms related to point cloud in-
terpretation. Moreover, our proposed voting based approach for
assignging labels to the 3D space can also be used for the purpose
of fusing datasets of multiple sensors, which is also a promising
research topic of the community of remote sensing(Schmitt and
Zhu, 2016).
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