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ABSTRACT:

In this work, we propose a classification method designed for the labeling of MLS point clouds, with detrended geometric features
extracted from the points of the supervoxel-based local context. To achieve the analysis of complex 3D urban scenes, acquired points
of the scene should be tagged with individual labels of different classes. Thus, assigning a unique label to the points of an object
that belong to the same category plays an essential role in the entire 3D scene analysis workflow. Although plenty of studies in this
field have been reported, this work is still a challenging task. Specifically, in this work: 1) A novel geometric feature extraction
method, detrending the redundant and in-salient information in the local context, is proposed, which is proved to be effective for
extracting local geometric features from the 3D scene. 2) Instead of using individual point as basic element, the supervoxel-based local
context is designed to encapsulate geometric characteristics of points, providing a flexible and robust solution for feature extraction. 3)
Experiments using complex urban scene with manually labeled ground truth are conducted, and the performance of proposed method
with respect to different methods is analyzed. With the testing dataset, we have obtained a result of 0.92 for overall accuracy for
assigning eight semantic classes.

1. INTRODUCTION

In the past decade, automatic 3D scene analysis using LiDAR
point clouds has been a challenging task in research fields of pho-
togrammetry (Vosselman and Maas, 2010), remote sensing (Lef-
sky et al., 1999), computer vision (Buch et al., 2011), and robotics
(Rusu et al., 2009). As a generally utilized data type, LiDAR
point clouds can be acquired through different acquisition tech-
niques such as terrestrial laser scanning (TLS), mobile laser scan-
ning (MLS), and airborne laser scanning (ALS). ALS datasets are
usually used for large scale scene description and analysis, with
a relatively low point density. However, for dense and accurate
3D scene analysis and interpretation, especially in the context of
urban areas, TLS and MLS, which have higher scanning density
and more stable carrier platform (e.g., static scanning stations of
TLS), are considerably more reliable.

Point clouds obtained via TLS, which have normally a high point
density and a corresponding high spatial resolution, show a great
potential of being used as datasets for interpreting 3D scenes in
urban areas. However, the utilization of this kind of datasets also
meets some problems in the meantime. For example, due to the
fixed measuring station of one single scan, there are massive dif-
ferences of point density between regions, resulting from the ob-
servation distance from the targets to measurement center. As a
contrast, possessing an ultra-high point density and spatial reso-
lution, the point cloud of MLS has a relatively evenly distributed
point density, due to the movement of the scanning platform. Fur-
thermore, multiple measurement stations are not mandatory when
conducting a mobile laser scanning, so that the complex registra-
tion process can be avoided to some extent. Therefore, for further
3D analysis of large scale urban scene, especially for acquiring
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3D dataset of street views and building facades, MLS is consid-
ered to be the primary choice. However, to achieve the analysis
of complex 3D urban scenes, acquired points of the scene should
be tagged with individual labels of different classes. Thus, as-
signing a unique label to the points of an object belonging to the
same category plays an essential role in the entire 3D scene anal-
ysis workflow. Although plenty of studies in this field have been
reported, this work is still a challenging task.

To this end, we propose a classification method designed for the
labeling of MLS point clouds, focusing on detrended geometric
features extracted from points of supervoxel-based local contexts.
The following are the contributions that are specific to this work:
1) A novel geometric feature extraction method, detrending the
redundant and in-salient information in the local context, is pro-
posed, which is proved to be effective and efficient for extracting
local geometric features from the 3D scene. 2) Instead of us-
ing individual point as basic element, the supervoxel-based local
context is designed to encapsulate geometric characteristics of
points, providing a flexible and robust solution for feature extrac-
tion. 3) Experiments using complex urban scene with manually
labeled ground truth are conducted, and the performance of pro-
posed method referring to different features is analyzed. In Fig.
1, we illustrate an example of the MLS point cloud we tested and
the classified point cloud with different semantic labels.

2. RELATED WORK

Classification as well as semantic labeling of point cloud, which
aims at assigning a unique class label to each 3D point of the in-
put point cloud, is a very important issue for urban remote sens-
ing. Typically, the classification of point clouds involves two core
steps: feature extraction and semantic classification. Based on
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Figure 1. (a) Real scene of the TUM main entrance from Google Maps, 2018. (b) MLS point cloud colored with respect to height. (c)
Classified point cloud of the test scene with eight different semantic labels .

the derived various features, classifiers can be applied to assign a
label to each point.

2.1 Feature extraction

The extraction of features for further classification is a process of
abstracting local geometric information of points within a local
neighborhood and encapsulating them into feature vectors (Guo
et al., 2014). Generally, there are two influential factors for ex-
tracting features: 1) Selection of an appropriate neighborhood for
each element (i.e., point) in order to describe local geometric fea-
tures; 2) Extraction of discriminative features with appropriate
descriptors and abstraction of features as feature vectors.

The selection of the neighborhood is indispensable for describing
the detailed information around a certain point (Weinmann et al.,
2015). For different purposes, various objective details relying on
all the points within the chosen neighborhood are required. Com-
monly used definitions of neighborhoods can be categorized into
two types: single-scale neighborhoods and multi-scale neighbor-
hoods. The first one means extracting features from a fixed scale
of neighborhoods, while the second one uses flexible scales of
neighborhood. Most commonly used single-scale neighborhood
definitions are the spherical (Lee and Schenk, 2002) or cylindrical
(Filin and Pfeifer, 2006) neighborhood. Furthermore, the neigh-
borhood around a point can be also defined by a fixed number

of k nearest neighbors, in which the distance between two points
can be either 3D distance (Linsen and Prautzsch, 2001) or 2D
projective distance (Niemeyer et al., 2014). Moreover, Wein-
mann et al. (2015) propose an approach, which relies on indi-
vidually optimized neighborhoods in 3D scenes for both feature
extraction and contextual classification. Dong et al. (2017) use
a feature selection strategy to improve the accuracy of 3D point
clouds classification in a multi-scale neighborhood. With various
form and size of neighborhoods defined, identical features from
multi-scale neighborhoods are separately extracted to implement
further feature encoding. Through the different classification per-
formances, features are weighted. Yu et al. (2016) implement a
multi-layer feature generation model consisting of various levels
of octree partition structure to detect certain object cars. Besides,
in (Wang et al., 2015), point-based hierarchical clusters are gen-
erated with a Latent Dirichlet Allocation (LDA) model, in which
cluster features are derived in order to classify objects of different
sizes.

For the extraction of discriminative features, local shape descrip-
tors carrying valuable information of objects are representative
solutions of parameterizing features. Apart from the original 3D
coordinate, echo and intensity information, there are also possi-
bilities to enrich point attributes for describing features. RGB
colors (Al-Manasir and Fraser, 2006) and thermal information
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(Weinmann et al., 2013) can be acquired from 3D point clouds.
Besides point attributes, the local and global environment should
be taken into consideration as well. On the basis of the spatial in-
formation of all 3D points, both the global and local features can
be calculated. Therefore, an appropriate way of describing these
features with mathematical formulations is normally required. To
tackle this problem, some representative feature descriptors are
developed in recent decades (Yu et al., 2013) such as 3D context
shape (Frome et al., 2004), Signature of Histogram of Orienta-
tions (SHOT) descriptor and its variants (Salti et al., 2014), and
Fast Point Feature Histogram (FPFH) (Rusu et al., 2009). How-
ever, since all the mentioned descriptors mainly rely on detailed
geometric properties of objects and rarely concentrate on inte-
grated structure features, noise can hardly be resisted, and a ro-
bust geometric topological relationship is missing. Consequently,
a method aiming at characterizing the geometric structure of ob-
jects is proposed. Considering no distribution of detailed geome-
tries and textures but analyzing eigenvalues of 3D coordinates of
point clouds with a proper definition of neighborhood, essential
geometric and topological relationships are obtained. In this re-
gard, eigenvalue based geometry (Jutzi and Gross, 2009, Chehata
et al., 2009) is one of the representatives. Through eigenvalues of
the coordinate tensor, 3D characteristics of shapes are character-
ized.

2.2 Classification using extracted features

There are several typical strategies for the classification task.
Point-based classification is one of the classic solutions, in which
each point will obtain a label during the classification process
(Weinmann et al., 2015, Hackel et al., 2016). In contrast, the
segment-based classification, pre-clustering or segmenting the
point cloud into primitives with homogeneities (Yao et al., 2011,
Yu et al., 2015, Guinard and Landrieu, 2017), is also drawing
increasing attentions due to its advantage of separating individ-
ual objects from the scene simultaneously. However, no matter
what kind of strategy is used, classifiers always play an essential
role for the final classification performance. Support vector ma-
chines (Lodha et al., 2006, Secord and Zakhor, 2006), adaBoost
(Lodha et al., 2007), random forest (RF) (Chehata et al., 2009),
conditional random field (Lim and Suter, 2009), and deep neural
networks (Vetrivel et al., 2017, Landrieu and Simonovsky, 2017)
are the representatives of the commonly used classifiers.

2.3 Voxel-based point clouds classification

Recently, voxel-based data structures are also becoming popu-
lar for the point cloud processing instead of using conventional
points based data structure to cope with non-uniform point den-
sity and large-scale dataset. Voxel structures like octree (Vo et
al., 2015) can simplify the dataset and suppress the outliers and
noise with rasterized representation. It can also define neighbor-
ing relations of generated voxels as well as points within them
simultaneously, facilitating the neighbor search. For exploring
the potential of the voxel structure, voxels can be further clus-
tered into supervoxels through algorithms like voxel cloud con-
nectivity segmentation (VCCS) (Papon et al., 2013) algorithm.
As a consequence, neighboring voxels are grouped together via a
local graph so that a supervoxel is generated. Supervoxel struc-
ture can better and precisely preserve the boundary position of
the segments, tending to an oversegmentation of the complete
segments. Considering that the supervoxel structure has already
pre-clustered voxels with homogeneous properties such as nor-
mal vector, spatial distance or even color information, the edges

of objects are well detected and a supervoxel is thus an appropri-
ate neighborhood for extracting features. Moreover, supervoxels
can also be further grouped into local patches considering a given
neighborhood (Wang et al., 2015, Yu et al., 2015), by which ge-
ometric features in a local vicinity can be delineated in a more
complete way.

3. METHODOLOGY

In Fig. 2, a general workflow of our proposed method is given,
involving five major steps, namely supervoxelization and selec-
tion of local context, segment-based feature extraction, detrend-
ing of geometric features, and supervised classification. In the
initial step, an over-segmentation process is implemented through
the voxel cloud connectivity segmentation (VCCS) (Papon et al.,
2013). Besides, for each supervoxel, a local context is defined,
taking all the directly connected neighbors into consideration. In
the second step, local geometric features of each supervoxel as
well as its connected neighbors within the local context are cal-
culated. Afterwards, for each supervoxel, a local tendency is es-
timated in the feature space based on the features of all the neigh-
boring supervoxels in the local context. Then, the geometric fea-
tures of the center supervoxel are detrended by the use of the
local tendency. Finally, for the supervised classification, through
a training stage, a RF classifier is learned to classify objects by
the use of the detrended features in complex urban scenes. The
resultant classes have eight different objects, covering man-made
terrain, natural terrain, high vegetation, low vegetation, buildings,
hard scape, scanning artifacts and cars.

Figure 2. Workflow of our point cloud classification method.

3.1 Supervoxelization and selection of local context

To organize the entire point cloud into a supervoxel structure,
the space is firstly divided into a small 3D cubic grid by means
of octree partitioning, which splits each node into eight equal
child nodes, in order to generate the octree-based voxel struc-
ture. Compared with others point-based neighborhoods, for ex-
ample, kd-tree based points structure, when using voxels as ba-
sic processing unit under an octree structure, there is no need to
handle problems like uneven density resulting from mobile laser
scanning. In fact, the voxelization process can also be regarded
as a down-sampling process, so that the computational cost is
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drastically reduced. Besides, the octree structure is achieved by
the approximate nearest neighbor (ANN) (Muja and Lowe, 2009)
searching algorithm, which largely increases the efficiency of the
neighbor search procedure. For the further generation of super-
voxel structures the VCCS algorithm is adopted to cluster voxels
in terms of geometric as well as spectral distance between seed
and candidate voxels (Papon et al., 2013). In our work, only nor-
mal vectors and spatial distance are considered during supervox-
elization, which shows a better performance at preserving real
boundary of objects than that implemented at the voxel-level.

Considering that the supervoxelization itself is essentially an
over-segmentation process, thus using merely one supervoxel can
hardly represent the geometric characteristic of an object. To
solve this problem, for each supervoxel, we define a local context
to capture the contextual information of each supervoxel. Here,
the context is defined by the first order neighbors (Wang et al.,
2015), namely the directly connected neighbors of each super-
voxel. In Fig. 3, we provide an illustration about the defined local
context of the supervoxel. On the basis of voxel structures, super-
voxel adjacency can be found in a similar way. Once the neigh-
boring voxels belonging to different clustered supervoxels, the
corresponding supervoxels are marked as ”directly connected”.
Considering supervoxels having limited but flexible extension,
the numbers of connecting are varying. Supervoxel-based con-
texts composed of directly connected adjacent supervoxels are
similar to a variant of flexible scale of neighborhood.

Figure 3. Local context of the supervoxel.

3.2 Segment-based feature extraction

Considering a large amount of the 3D point clouds contain-
ing merely spatial coordinates, we focus thus on the geomet-
ric features. Since supervoxel neighborhood and its adjacent
graph are already aware, an appropriate representation of the lo-
cal geometry is necessary. Therefore, local 3D shape features
(Chehata et al., 2009; Weinmann et al., 2015) are introduced to
tackle this problem. The respective derived eigenvalues λi with
i ∈ {1, 2, 3} within a certain neighborhood can be used to ex-
plore and quantize local 3D shape. The eigenvalues are firstly
normalized into ei with i ∈ {1, 2, 3} by

ei =
λi

λ1 + λ2 + λ3
, i = 1, 2, 3 (1)

Then, the linearity Lλ, planarity Pλ, scatteringSλ, omnivariance
Oλ, anisotropy Aλ, eigenentropy Eλ as well as local curvature
Cλ can be derived according to the method presented in (Wein-
mann et al., 2015), which are nowadays commonly utilized in 3D
point clouds processing. Further more, height, derived normal
direction, and intensity are also introduced as additional informa-
tion for feature extraction. To be specific, in Table 1, we provide
the details about the entire feature vectors we used.

3.3 Detrending of geometric features

3.3.1 Local tendency of supervoxel-based context Al-
though supervoxel structure has already pre-clustered voxels at

Features Definition Category
Linearity Lλ = e1−e2

e1

Planarity Pλ = e2−e3
e1

Scattering Sλ = e3
e1

Eigen feature
Omnivariance Oλ = 3

√
e1 · e2 · e3 (Weinmann et al., 2015)

Anisotropy Aλ = (e1 − e3)/e1 (Chehata et al., 2009)

Eigenentropy Eλ = −
3∑
i=1

eiln(ei)

Local curvature Cλ = e3
e1+e2+e3

Height mean 1
n

n∑
i=1

Zi Height-feature

Height difference Zmax − Zmin (Maas, 1999)
Nx

Normal vectors Ny Spatial feature
Nz (Rabbani et al., 2006)

Intensity Mean intensity Radiometric feature
of all points (Aijazi et al., 2013)

Table 1. List of totally used features.

a lower level, supervoxels tend to oversegment objects into frag-
mented pieces, which results in the dissimilarity between features
of different patches belonging to identical object. Hence, the
decision trees may not be well trained. To tackle this problem,
Wang et al. (2015) utilize the first-order graph around a single
supervoxel and generalize this graph into a local reference frame
(LRF), which shows an impressive performance at car detection.

However, for the complex 3D scene interpretation, there are
usually various kinds of objects to be detected and the accu-
rate boundaries between objects are necessary to be identified in
the meantime. Besides, according to the analysis conducted in
(Guinard and Landrieu, 2017), for local descriptors, even for the
same kind of objects, the contribution of each vector in the gen-
erated feature histogram are varying. This will result in ambigu-
ities of the generated features for two different kinds of objects,
for example, the natural ground surface and man-made ground
surface. Both of these two objects have quite similar geometric
characteristics (e.g., linearity, planarity, and normal vectors), and
the only obvious difference between them is the smoothness and
roughness of their surfaces. For the achieved features histogram,
we can conduct a procedure enhancing the useful features vectors
with a better saliency and suppressing the trivial feature vectors.

Inspired by the Difference of Gaussian operator for edge detec-
tion in the field of image processing, we developed a strategy of
estimating the local tendency of 3D geometry in a local context
for each supervoxel, and then remove the effect of this local ten-
dency, in order to get the salient information of the objects rep-
resenting distinctive details and structures. The local tendency
of the supervoxel context also plays an essential role at precisely
assigning supervoxels near real boundaries of objects semantic
labels. In Fig. 4, we show a 1D illustration about the estima-
tion of the local tendency for the geometry of an object. It is
clear that after the removal of the local tendency, two geometric
shapes with similar structures become more distinguishable.

This operation can also be regarded as an ”high-pass” filtering
which dislodges background geometric information in a local
vicinity and preserve only those ”high frequency” components.
Considering that the eigenvalue based geometric features essen-
tially reflect the geometric structure of the objects, namely those
relatively low frequency components, better distinctiveness can
be achieved if we can combine these two kinds of components
together for describing the geometry of the objects.
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Figure 4. Local tendency of the geometric shapes.

3.3.2 Detrended geometric features The removal of the lo-
cal tendency of each supervoxel is achieved in the feature space.
Here, the feature histogram of the supervoxel SV0 itself is noted
as VSV , while the feature histogram representing the local ten-
dency is given by VLT , which is estimated by all the points in
the local context. Thus, the detrended feature histogram VD is
derived by a difference operation:

VD = VSV − VLT (2)

The final feature histogram VF is defined by a weighted combi-
nation of the VSV and VD:

V0 = {VSV , k · VD} (3)

Here, k stands for the weight given to the local tendency, which
is estimated by the number of supervoxels in the local context. In
Fig. 5, an illustration of the detrending of geometric features is
given. Finally, a 26 dimensional feature histogram is achieved for
supervised classification.

Figure 5. Generation of feature histogram.

3.4 Supervised classification

Once the final geometric features of all the supervoxels in the
whole point datasets are calculated, we use a supervised classi-
fication strategy with classic RF algorithm (Breiman, 2001) to
discriminate supervoxel as well as the points within it with dif-
ferent semantic labels. The RF classifier is a combination of tree-
structured classifiers which are created by a randomizing vec-
tor sampled independently from input vectors (i.e., feature his-
togram), and each decision tree will vote for the most likely labels
to the sample of input vectors (Breiman, 2001). However, the RF
classifier splits at each node with random subset of features which
makes it insensitive to overfitting problems due to the strong law

Figure 6. Two oblique mounted laser scanners of the MLS
system.

Figure 7. (a) Raw point clouds. (b) Preprocessed point clouds.

of large numbers as the number of trees increases. In the train-
ing, the bagging method is used for each feature combination to
generate a training dataset by drawing N examples with random
replacement, where N is the size of the original training set.

4. EXPERIMENTS

4.1 Datasets

The testing area is the Arcisstrasse along the main entrance of
Technical University of Munich (TUM) city campus, which cov-
ers about an area of around 29000 m2 and has been already dis-
played in Fig. 1a. This dataset is original acquired by Fraunhofer
Institute of Optronics, System Technologies and Image Exploita-
tion (IOSB) (Gehrung et al., 2017). The used point clouds are
acquired by two Velodyne HDL-64E mounted at an angle of 35◦

on the front roof of the vehicle. Fig. 6 provides sketch about how
the two scanners are mounted (Gehrung et al., 2017). The origi-
nal raw point clouds are also preprocessed by a statistical outlier
removal for down-sampling and noise suppressing. The number
of points after preprocessing is around 50 million. In Fig. 7, we
illustrate a comparison between the raw and preprocessed point
clouds.

With thousands of scans acquired by the laser scanners along
the Arcisstrasse(Hackel et al., 2016), a scene containing vari-
ous kinds of objects is obtained through the combination of point
cloud of all the scans. For the evaluation process, we also gener-
ate an accurate manually labeled point cloud for the experimental
dataset as ground truth.

In our experiment, voxel resolution in the voxelization is set to
0.3 m and seed resolution for supervoxelization is set to 1.5 m.
Besides, the number of trees for training RF classifier is set to
200. We use only 50% of the input points cloud for training,
while the other half for the evaluation. The performance of our
method is further evaluated with true positive (TP), false positive
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(FP), true negative (TN), false negative (FN) from the confusion
matrix according to

precision =
|TP |

|TP |+ |FP |

recall =
|TP |

|TP |+ |FN |

(4)

F1 = 2 · precision · recall
precision+ recall

(5)

To further investigate the effectiveness of the proposed detrended
geometric features, we also compared our method with the other
two reference methods. The first one is a variant of the method
reported in (Aijazi et al., 2013), following their strategy we use
geometric features listed in Table 1 instead of the original RGB
colors, surface normals, shape and geometric centers used in their
work. The other one is the method of encoding features proposed
by (Yu et al., 2016) which designs a feature region with local ad-
jacent graph for supervoxels and forms a grouped patch as the ba-
sic unit. Instead of using time consuming FPFH descriptor (Rusu
et al., 2009) for estimate feature vectors, we adopt our geometric
features listed in Table 1. From the classifiers used for supervised
classification, only the RF classifier is used aiming at eliminating
the influence of using different classifiers.

4.2 Results and discussion

Using the porposed segment-based classification for assigning
eight semantic classes (i.e., man-made terrain, natural terrain,
high vegetation, low vegetation, buildings, hard scape, scanning
artefacts, and vehicles) we obtain an overall accuracy of 0.92.
The statistics of the classification results are given in Table 2.

As seen from the table, the proposed detrended geometric fea-
tures can outperform other reference methods with regard to the
overall accuracy. For the F1 measures of all kinds of objects, our
method reveals better performance. Especially for the objects of
low vegetation and hard scape, which are easily to be mixed up
with the natural ground surface and building facades, our pro-
posed method achieved much better results with the F1 measures
larger than 0.6.

As stated in Section 2.3, compared with the classical point-based
classification methods, one of the major advantages of the seg-
ment or primitive based classification method is that they are
more insensitive to outliers and noise existing in the dataset, ben-
efiting from the pre-clustering process. However, the use of su-
pervoxel structures also has some drawbacks. For example, the
resolution of boundaries of the supervoxels will be directly re-
lated to the resolution of the voxels due to the volumetric process,
so that all the boundaries obtained between different objects will
always appear to be a zigzag shape. Thus, the labels of some de-
tails near the edges will be blurred. In other words, the selection
of the size of the voxels is a trade-off between the suppression
of noise and uneven density and the preservation of details. The
larger the voxel, the more details will be smoothed. In Fig. 8, we
show a zoom in view of a part of the testing scene. It is clear that
for the regular boundaries, like the right-angle sides of the corners
formed by the smooth wall surfaces, the supervoxels can find the
boundaries accurately. However, when it comes to the irregular
edges, for example, the edges between the wall and the ground
surface, due to the existence of the French windows, the bound-
aries found by supervoxels are biased. In the final classification

Class Precision Recall F1

Man-made terrain 0.861 0.811 0.835
Natural terrain 0.924 0.914 0.919

High vegetation 0.841 0.987 0.908
Low vegetation 0.056 0.100 0.072

Buildings 0.640 0.834 0.725
Hard scape 0.887 0.022 0.044

Scanning artefacts 0.216 0.105 0.141
Vehicles 0.012 0.013 0.012

Overall accuracy 0.825

Table 3. Evaluation of using Bildstein dataset.

results, these parts also appears zigzag connection influencing fi-
nal accuracy.

Figure 8. (a) Real scene. (b) MLS point clouds. (c) Supervoxels
of the point clouds. (d) Classified sub-scene of test scene.

To further exploit the potential of our proposed feature extraction
method, we also test our classification method on the popular Se-
mantic 3D dataset published by ETH Zürich (Hackel et al., 2017)
for a preliminary validation. It is notable that the Semantic 3D
dataset is a TLS dataset, so that the density of points varies with
the distance from the observation station to the objects. In Tables
3 and 4, we show a evaluation result of using this dataset. In this
experiment, the scan we used for training is Bildstein 3,5. For
evaluation, the scan of Bildstein 1 and Domfountain are used, in-
volving all the eight classes of objects. As seen from the tables,
it is apparent that our proposed method can still achieve good
results, with the overall accuracies reaching 0.825 and 0.934, re-
spectively. It is noteworthy that in this experiments it is failed to
classify the objects of vehicles and low vegetation. One of the
possible explanations is the limited number of the training sam-
ples of these kinds of objects. This is also a common problem
for all the segment based classification methods. For the objects
with sufficient training samples, for example, buildings, man-
made terrain, and natural terrain (see Fig. 9). In Fig. 10, we
can see that the testing scene of Domfountain consists of mainly
buildings, man-made terrain, and high vegetations. As seen from
the figure, it is clear that for our major concerns (i.e., buildings,
roads, and tree), the results of the proposed method still reveals
promising potential of our feature extraction method.

5. CONCLUSION

In this work, we presented a classification method based on de-
trended geometric features capturing both the ”high and low fre-
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Method 1 Method 2 Our method
Class Precision Recall F1 Precision Recall F1 Precision Recall F1

Man-made terrain 0.951 0.932 0.941 0.917 0.936 0.926 0.952 0.943 0.947
Natural terrain 0.781 0.905 0.838 0.799 0.883 0.839 0.839 0.911 0.873

High vegetation 0.858 0.934 0.895 0.895 0.960 0.927 0.931 0.972 0.951
Low vegetation 0.697 0.333 0.450 0.692 0.267 0.385 0.787 0.496 0.609

Buildings 0.878 0.842 0.860 0.915 0.887 0.901 0.933 0.931 0.932
Hard scape 0.707 0.391 0.503 0.864 0.365 0.513 0.844 0.495 0.624

Scanning artefacts 0.489 0.190 0.273 0.663 0.303 0.416 0.747 0.345 0.472
Vehicles 0.798 0.766 0.782 0.840 0.801 0.820 0.827 0.848 0.837

Overall accuracy 0.868 0.893 0.921

Table 2. Evaluation of using TUM dataset.

Class Precision Recall F1

Man-made terrain 0.990 0.992 0.991
Natural terrain — — —

High vegetation 0.857 0.515 0.644
Low vegetation 0.150 0.091 0.114

Buildings 0.910 0.982 0.944
Hard scape 0.838 0.348 0.491

Scanning artefacts 0.310 0.490 0.380
Vehicles 0.379 0.020 0.038

Overall accuracy 0.934

Table 4. Evaluation of using Domfountain dataset.

Figure 9. Classification results of the scene Bildstein.

Figure 10. Classification results of the scene Domfountain.

quency” components of the highly complicated objects in an ur-
ban scene. To be specific, a novel geometric feature extraction
method, detrending the redundant and in-salient information in
the local context, is proposed, which is proved to be effective
and efficient for extracting local geometric features from the 3D
scene. Experiments using complex urban scenes with manually
labeled ground truth are conducted, and the performance of the
proposed method tunning with different features is tested and an-
alyzed. In our testing dataset, a result of 0.92 for the overall ac-
curacy is achieved for assigning eight semantic classes. In our

future work, different from using current hand-crafted features,
we will investigate the possibility to include automatic geomet-
ric feature extraction methods. Many related works using auto-
encoder (Elbaz et al., 2017) as well as neural networks have also
be reported (Landrieu and Simonovsky, 2017). Besides, using
complete segments instead of over-segmented supervoxels is also
a promising solution for dealing with large-scale dataset.
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Yu, X., Liang, X., Hyyppä, J., Kankare, V., Vastaranta, M. and
Holopainen, M., 2013. Stem biomass estimation based on stem
reconstruction from terrestrial laser scanning point clouds. Re-
mote sensing letters 4(4), pp. 344–353.

Yu, Y., Li, J., Guan, H., Jia, F. and Wang, C., 2015. Learning
hierarchical features for automated extraction of road markings
from 3-d mobile lidar point clouds. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 8(2),
pp. 709–726.

Yu, Y., Li, J., Wen, C., Guan, H., Luo, H. and Wang, C.,
2016. Bag-of-visual-phrases and hierarchical deep models for
traffic sign detection and recognition in mobile laser scanning
data. ISPRS Journal of Photogrammetry and Remote Sensing
113, pp. 106–123.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-271-2018 | © Authors 2018. CC BY 4.0 License.

 
278




