
38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018 

355 

Traffic sign detection and recognition 
with convolutional neural networks 

ALEXANDER HANEL
1
 & UWE STILLA

1 

Abstract: Traffic sign detection and recognition in street scene images of a vehicle camera 
allow to localize the traffic signs in a street scene image and to classify them with regard to 
their semantic meaning for the car driver. In this contribution, a method is described to de-
tect traffic signs in a street scene image by evaluating image patches, sampled by a sliding 
window approach, with a convolutional neural network detector. Robust shape fitting is per-
formed on the image patch of a positive detection to obtain the exact position of the traffic 
sign shape in the patch. A second convolutional neural network is applied to the image 
patches centred on the fitted shapes to classify the meaning of these traffic signs. The net-
works are trained and tested with samples of traffic signs and other street scene objects from 
the GTSRB and GTSDB datasets. The results have shown that models for traffic sign detec-
tion and recognition can be trained with an overall accuracy of more than 90 % obtained for 
a test set. The position of a traffic sign, known from shape fitting, has been shown to be an 
important a-priori knowledge to select the appropriate image patch to ensure a high accura-
cy of the subsequent traffic sign recognition. 
 

1 Safer roads by traffic sign warnings 

Modern advanced driver assistance systems are an important contribution to increase the safety 
on roads. An assistance system using traffic sign recognition can warn a car driver against a 
speed limit by means of optical hints (EURO NCAP 2013), for example. As well as a human driv-
er, an assistance system needs to extract information from the environment around the car. Cars 
can therefore be equipped with sensors to perceive the environment. As the upcoming drive way 
and the traffic signs applicable for that way are in front of the vehicle, a front-looking sensor is 
suitable for traffic sign detection and recognition (e.g. LARSSON & FELSBERG 2011). Due to 
small costs compared to a Radar or LiDAR sensor (ETKBMW.COM), often an optical mono-
camera is the first choice for this task. 
Such a camera observing the environment acquires typically an image of the street scene includ-
ing the street, traffic signs, buildings, traffic participants and further static and dynamic objects 
(Fig. 1). There exist algorithms for object detection which use the complete image of the street 
scene as input (e.g. REDMON et al. 2016). Other algorithms require an image patch centered on 
the object which should be detected (red rectangle in Fig. 1) as input (e.g. SERMANET & LECUN 

2011). In the second case, the input image patch can be obtained by a sliding window approach 
sampling from the street scene image, for example.  
Traffic sign detection and traffic sign recognition have different objectives (ZHU et al. 2016): the 
objective of traffic sign detection is to decide whether the input image, or the image patch, shows 
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a traffic sign or another arbitrary object. In contrast, the objective of traffic sign recognition is 
typically to classify the meaning of a traffic sign, given an image patch from which it is known 
to show a traffic sign (e.g. German Traffic Sign Recognition Benchmark dataset, STALLKAMP et 
al. 2012). 

 
Fig. 1:  Example image of a street scene recorded by a front-looking mono-camera. The image is an 

excerpt from the Cityscapes dataset (CORDTS et al. 2016), which can be used to train machine 
learning algorithms in the domain of advanced driver assistance systems, for example for traffic 
sign recognition 

In a recent work, ZHU et al. (2016) propose a method for simultaneous detection and recognition 
of traffic signs using a neural network-based deep learning approach. Their method provides the 
bounding box, a pixel-wise mask and the class label for each detection. Several examples (in 
supplementary material provided by these authors) show that the bounding boxes of partly oc-
cluded traffic signs tend to be smaller than the sign in the image is. Using the pixels of the mask 
to extract the shape contour of the traffic sign will therefore be prone to errors.  
HANEL & STILLA (2018) have recently proposed a method to calibrate a vehicle camera on public 
roads, where the exact shape of a traffic sign in the image has to be known precisely. Their 
method derives image points along the shape of a sign and the corresponding metric 3D position, 
for example known from governmental regulations, as reference points for calibration.  
In this contribution, a method for traffic sign detection and recognition is proposed, which deliv-
ers the correct shape of the sign in the image simultaneously. A sliding window approach is used 
to sample image patches from a street scene image. The samples are evaluated by a traffic sign 
detector, which is realized by a neural network-based deep learning approach. Deep approaches 
have shown to provide a higher accuracy than shallow learning approaches, as for example ZHU 
et al. 2016 mention. Mean shift clustering is used to reduce multiple detections of the same traf-
fic. Such multiple detections with slightly different positions and sizes are typical for a sliding 
window approach (COMASCHI et al. 2013). The shape of the traffic sign in the image is obtained 
by fitting an appropriate geometric primitive (e.g. an ellipse for circular traffic signs) with RAN-
SAC followed by a least-squares adjustment. The extracted shape is used to refine the image 
position of the patch, which is then used by another deep learning approach to classify the mean-
ing of the traffic sign.  
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2 Stepwise traffic sign detection and recognition 

By the sliding window approach, image patches are taken from an image with a higher geometric 
resolution (called ‘complete image’ in the following). In the scope of this contribution, the com-
plete image is typically a street scene image. Each patch shows a different part of the complete 
image; the patch is shifted over the complete image and the complete image is resized to consid-
er traffic signs at different image positions and with different sizes in the image. The deep net-
work architecture (Fig. 2) of the traffic sign detector uses such an image patch as input sample. 
In contrast to architectures, which use the complete image as input, the sliding window approach 
allows to reduce the computational effort when tracking traffic signs in an image series by evalu-
ating only the local neighbourhood around the predicted image position of a traffic sign in a sub-
sequent image in contrast to evaluating the complete subsequent image.  
 

The traffic sign detector classifies each sample in either the class traffic sign or other objects. 
The architecture of our network as described in the following is a variation of the traffic sign 
detector architecture described by WU et al. (2013): the input sample with a fixed resolution of 
32 x 32 pixels and RGB color channels is first convolved with different kernels to extract fea-
tures. The “ReLu” activation function ensures the non-linearity property of the network to pre-
vent that the network behaves just like a single-layer perceptron.  Max pooling in the second and 
third layer reduces the resolution of the feature maps created by the previous convolutions. 
Dropout is applied to the third layer to avoid overfitting. The following layers are designed to 
classify the input patch based on the extracted features: the output of the feature extraction layers 
is flattened, followed by three fully-connected (FC) layers in which the number of neurons is 
reduced step-by-step. The last FC layer has two output neurons, one for each of the two classes 
to distinguish. Softmax loss is used. In contrast to by WU et al. (2013), we use no branching (for 
details on branching see the description of the traffic sign recognition architecture), but increase 
the depth of the classification part. ZHU et al. (2016) have mentioned that deeper networks per-
form better. According to these authors, branching could also increase the performance, but at 
the cost of a higher computational effort.  
The detector model is trained with a set of positive and negative samples. Image patches showing 
one traffic sign are called positive samples, while image patches showing arbitrary objects like 
buildings or vegetation are called negative samples. The class of an image patch with unknown 
content is predicted after training by feeding the patch together with the trained model into the 

Fig. 2:  Architecture of the convolutional neural network used to distinguish between traffic signs and 
other objects shown in an image patch taken from a street scene image. 
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neural network. Output of the prediction are the probabilities for both classes; the image patch is 
assigned to the class with the higher probability.  
Image patches from slightly different positions and sizes in the complete image are likely to 
show the same object. Therefore, it can be expected that several of such neighboring patches will 
be detected as traffic sign. To link all detections belonging to the same traffic sign, the detections 
are grouped to a single detection by mean shift clustering (FUKUNAGA & HOSTETLER 1975). Each 
detection is hereby represented by the central point of the image patch. Mean shift clustering 
groups the central points of all detections into several groups using the Euclidean distance as 
criterion to distinguish different groups. The size of the image patch belonging to a single detec-
tion is determined by the mean size of the patches of all contributing detections. An advanta-
geous property of mean shift clustering is that it does not require the number of clusters to be 
determined manually, being therefore able to handle a varying number of traffic signs in differ-
ent complete images.  

 
Fig. 3:  Left: Edge of a traffic sign (black circle) and a background object (black rectangle) in a binary 

image patch. Contour points (red, blue, green balls) are along the edges of these objects. Right: 
Ellipse (red circle) fitted with sample points (red squares) selected from the contour points. The 
distance (grey lines) threshold for each contour point from the ellipse defines the inlier set used 
for the final-least-squares ellipse fit 

 
As next step, the shape of the traffic sign in the image patch of each single detection is extracted 
by ellipse fitting. Result of the shape extraction is the position, size and orientation of the ellipse 
in the complete image used as precise location of a traffic sign prior to classifying the meaning 
of the sign. Further, mean shift clustering and shape fitting could be used to recognize false posi-
tive detections (e.g. by a small consensus set, high eccentricity of the ellipse, ...). The method for 
shape extraction is in the following described for circular traffic signs to allow analyses on the 
potential of this approach before further research is done. The method assumes that an image 
patch shows a traffic sign completely. To ensure this, the part of the complete image the patch 
covers can be increased. The ellipse is selected as geometric primitive as a real-world circle is 
projected to an ellipse in an image in general (e.g. AHN et al. 1999). The ellipse is fitted to 
groups of contour points extracted from the binary image patch. The image patch is binarized by 
applying an absolute global intensity threshold to it to separate objects with different unique in-
tensities. The algorithm of SUZUKI & ABE (1985) is used to extract a group of contour points 
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(Fig. 3 left) along the edges of each image region with unique intensity in the binary image. 
Groups with a small number of points are neglected, assuming that the traffic sign is the domi-
nant region with a high number of points compared to other groups in the patch. The RANSAC 
algorithm (FISCHLER & BOLLES 1981) is applied to randomly chosen contour points to select 
iteratively the consensus set of contour points belonging to the edge of the traffic sign shape. The 
inliers are defined by a maximal distance of the contour points to the ellipse in each iteration 
(Fig. 3 right). The largest set of inliers in all iterations is used as consensus set. The number of 
iterations is chosen to have chosen at least one set of sample points without outliers with a prob-
ability of 99 %. The final ellipse parameters are estimated in a least-squares-adjustment using the 
consensus set.  
 

To recognize the semantic meaning of a traffic sign shown in an image patch, another machine 
learning method based on a convolutional neural network is used (Fig. 4). Our network is 
adapted from SERMANET & LECUN (2011). Its architecture can be divided in a feature extraction 
and a classification part as well. In the feature extraction part of our network, the so-called skip 
architecture used by these authors is left out. Thereby, the output of a layer would be branched 
and fed to a later layer by skipping some layers in between, while another branch uses all layers 
in between. More global features of traffic signs could be extracted by using branching. Instead, 
we increase the depth in the classification part, i.e. we increase the number of FC layers to three. 
The number of output neurons in the last layer is determined by the number of classes of traffic 
sign meanings in The German Traffic Sign Recognition Benchmark dataset (STALLKAMP et al. 
2012). 

 
Fig. 5:  Positive samples (taken from the GRSRB traffic sign recognition dataset). Left: Triangle-shaped 

construction warning sign in the shadow. Center: Circle-shaped go straight sign in sunny light. 
Right: Negative sample showing vegetation (extracted from street images from the GTSDB da-
taset) 

Fig. 4:  Architecture of the neural network used to recognize the semantic meaning of a traffic sign 
shown in an image patch. In total, 43 different meanings are considered.  
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3 Dataset and experiments 

The models for the detector are trained with a set of sample patches showing one traffic sign or 
other objects, respectively. Separate models are trained for the following groups of traffic signs 
with different shapes and dominant colours: prohibitive signs (circle, red), mandatory signs (cir-
cle, blue), danger (triangle, red) and others (e.g. right of way, give way). One joint model for 
traffic sign recognition is trained with samples showing traffic signs with various meanings. The 
traffic sign samples (example in Fig. 5 left and centre) are taken from The German Traffic Sign 
Recognition Benchmark dataset (STALLKAMP et al. 2012). This dataset provides traffic sign im-
age patches in various daylight illumination situations (e.g. sunny, shadowy) with a roughly 
frontal view on them, which would be also typical for a front-looking vehicle camera. The nega-
tive samples (example in Fig. 5 right) are extracted by randomly sampling image patches from 
street scene images from The German Traffic Sign Detection Benchmark (GTSDB) dataset 
(HOUBEN et al. 2013). The order of the samples is randomly shuffled, a subset of 80% of the 
samples is used for training and validation. The remaining subset of 20% is used for tests. The 
training is performed with a learning rate of 0.001 and a dropout rate of 0.5. 80 epochs are used 
in training, until there is no remarkable decrease in the loss anymore. The hyperparameter values 
have been obtained by hand-tuning. The proposed method is tested with 900 street scene images 
of the GTSDB dataset, for which the ground truth position and meaning of traffic signs are 
known. 

 
Fig. 6:  Multiple detections (blue rectangles) for one traffic sign. The central point (pink dot) obtained by 

mean shift clustering lies above the middle of the sign, leading to a possibly wrong position of 
the image patch for the following traffic sign detection. The fitted ellipse (sharp red circle) 
matches with the shape of the sign and allows therefore to extract the image patch for traffic 
sign recognition at the appropriate position 

4 Results of traffic sign detection and recognition 

The trained models for both traffic sign detection and recognition can obtain high overall accura-
cy values on the respective test set (97.2%, 93.4%). The approximately balanced number of sam-
ples in all classes ensures that the obtained overall accuracies do not result from models deciding 
always for the same class. It can be observed for the test set, that traffic signs with a very similar 
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appearance (e.g. different speed limit signs) are the most challenging ones for traffic sign recog-
nition. Further experiments using the skip architecture mentioned above in the neural networks 
have not shown to result in a higher overall accuracy. 
As expected, traffic sign detection yields typically multiple detections for one traffic sign shown 
in a street scene image (Fig. 6). The larger the traffic sign in the image is, the higher the number 
of detections is. Mean shift clustering is able to reduce the detections to one cluster for large traf-
fic signs (pink dot in Fig. 6). Critical attention has to be payed for remote traffic signs (i.e. small 
in the image), as observations (done using visualisations like in Fig. 6) have shown that adjacent 
small traffic signs might be grouped in one cluster by mistake. Similar observations can be made 
for ellipse fitting, which can be seen as robust for close traffic signs (i.e. large in the image).  
Mean shift clustering and shape fitting as intermediate steps can be seen as useful to reduce the 
number of false positives resulting from traffic sign detection. Applied to the street scene images 
of the GTSDB dataset, the number of false positives would be 20 % higher if these intermediate 
steps are skipped. Hereby, a detection is seen as true positive if its image patch is overlapping 
with more than 50 % of the ground truth bounding box of a traffic sign. The comparison is done 
using the number of false positives instead of the false positive rate, as the high number of image 
patches resulting from the sliding window approach leads to a high number of true negatives and 
would lead to very similar false positive rates, which could be misinterpreted. Further, using the 
intermediate steps leads to a slightly higher number of true positives detections, which could be 
drawn back that adjusting the position and size of the image patch of a single detection, resulting 
from the intermediate steps, leads to a greater overlap with the ground truth label. Consequently, 
the number of false negatives is slightly reduced.  
A further experiment underlines the demand that the image patch of a detection has to be centred 
precisely on the traffic sign for traffic sign recognition: the overall accuracy of traffic sign 
recognition decreases by 20 percentage points, if a test set of image patches is used, which are 
not centred on a traffic sign (randomly shifted by up to 50 % of the patch size), compared to 
using a set of patches, which are centred. 

5 Conclusion 

In this contribution, a method for traffic sign detection and recognition in street scene images 
using two separate convolutional neural networks has been proposed. Detection with different 
models for different groups of traffic signs (e.g. red prohibitive signs, blue mandatory signs) and 
recognition with one joint model for all traffic signs can achieve an overall accuracy of around 
95 % in average on the tested set of image patches. Applying the traffic sign detector to image 
patches extracted from a street scene image using a sliding window approach yields typically 
multiple detections for the same traffic sign. Without clustering multiple detections to a single 
detection and adjusting the position of the image patch by fitting an ellipse (for circular traffic 
signs) to the shape of a traffic sign detection, the number of false positive detections is 20 % 
higher for the test images. Future extensions to the proposed method can be made by integrating 
a traffic sign tracker to reduce the computational effort fort detection by reducing the search 
space for the detector in subsequent images of an image series. Furthermore, a method to fit ad-
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ditional shapes (e.g. rectangle, triangle) to the image patches of positive detections could be inte-
grated to make the method better usable for varying types of traffic signs. 
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