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ABSTRACT:

Visual SLAM algorithms allow localizing the camera by mapping its environment by a point cloud based on visual cues. To obtain
the camera locations in a metric coordinate system, the metric scale of the point cloud has to be known. This contribution describes a
method to calculate the metric scale for a point cloud of an indoor environment, like a parking garage, by fusing multiple individual
scale values. The individual scale values are calculated from structures and objects with a-priori known metric extension, which can
be identified in the unscaled point cloud. Extensions of building structures, like the driving lane or the room height, are derived from
density peaks in the point distribution. The extension of objects, like traffic signs with a known metric size, are derived using projections
of their detections in images onto the point cloud. The method is tested with synthetic image sequences of a drive with a front-looking
mono camera through a virtual 3D model of a parking garage. It has been shown, that each individual scale value improves either the
robustness of the fused scale value or reduces its error. The error of the fused scale is comparable to other recent works.

1. METHODS FOR CAMERA LOCALIZATION AND
MAPPING

A vehicle can be guided along a route on public roads with knowl-
edge about the map of the route and a continuous comparison of
the planned and the actual position of the vehicle along the route
(Grewal et al., 2007). Therefore, the car has to be equipped with
an electronic system obtaining the actual position of the car. An
electronic system available in a high number of cars offered on
the market bases on a GPS receiver. In this case, the metric po-
sition of the car in the map can be computed from GPS measure-
ments.

Guiding a vehicle in more complex environments, like in dense
urban areas or in indoor environments, has to rely on another type
of electronic system, as the GPS signal may not be available or
provide only a low position accuracy (Cui and Ge, 2003). An
electronic system becoming available in more and more cars of-
fered on the market in recent years is based on a camera (Statista,
2013), which perceives the environment around the car. In this
case, the position of the car has to be localized by matching the
environment perception obtained by the camera with the map. A
common way to represent the environment perceived by a camera
are point clouds obtained by matching visual cues across multiple
images (Ros et al., 2012).

Several groups of methods are available for environment mapping
and localization of a mono camera. Multi-view stereo methods
(Hartley and Zisserman, 2003) map the environment for exam-
ple by a point cloud generated from a high number of images.
As these methods rely on known interior and exterior orienta-
tions of the camera (Furukawa et al., 2015), are they designed
to create the point cloud of the environment from the images and
not to estimate the unknown orientations of additional images.
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Visual odometry methods (e.g. (Nister et al., 2004)) are de-
signed to estimate the trajectory of a moving camera by matching
point features between image pairs in an image sequence. The
focus is put on a short processing time capable to handle contin-
uously new images, with negative influence on the consistency of
the trajectory and the map (Scaramuzza and Fraundorfer, 2011).
Similarly, structure from motion methods obtain a map and the
camera trajectory from an image series (e.g. (Fitzgibbon and
Zisserman, 1998)), but include an optimization step for the map
and the trajectory, often by a bundle adjustment. Neither the in-
terior orientation, nor exterior orientations of the camera have to
be known a priori. Visual simultaneous localization and mapping
(V-SLAM) methods provide also a map and the camera trajec-
tory (e.g. (Lemaire et al., 2007)) without the need of a priori
knowledge. Instead of structure from motion, V-SLAM is capa-
ble to work in real-time, an important property for use in vehi-
cles. Compared to the also real-time capable visual odometry, V-
SLAM methods can achieve a higher precision and consistency
of both map and trajectory by using additional constraints like
loop closures (Scaramuzza and Fraundorfer, 2011).

Point clouds of the environment can be grouped depending on
the available a priori information as follows (Heyden and As-
trom, 1996) (Bebis et al., 2010): if the interior orientation of the
camera is not known, a point cloud is projective. If the interior
orientation is known, the point cloud can be called Euclidean with
a scale ambiguity. If both the interior orientation and metric scale
information are known, the point cloud can be called Euclidean
with metric scale or Euclidean with absolute scale. In the last
case, localization using the camera returns the metric position of
the car in the map.

The metric scale can either be provided by the visual sensor per-
ceiving the environment or by additional knowledge. In a cali-
brated multi-camera system, the metric scale is available by the
known baseline between the cameras (e.g. (Nister et al., 2006)).
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(Clipp et al., 2008) present an approach to obtain the metric scale
for a multi-camera system with non-overlapping fields-of-view.
For a mono camera, (Song et al., 2016) present an approach to
obtain the scale if the height of the camera above the ground plane
is known. In a vehicle driving on an uneven road, there might
be rotations around the pitch axis, causing height changes of the
camera relative to the ground. (Scaramuzza et al., 2009) present
an approach to obtain the metric scale for a wheeled vehicle mov-
ing in a plane, if the distance of the camera from the rear axle of
the vehicle is known. Their approach is independent from rota-
tions around the pitch axis, but still requires known information
about the camera mounting in the vehicle.

In this contribution, a method to calculate the metric scale for an
Euclidean point cloud using a priori information about the envi-
ronment recorded with a mono camera is proposed; the a priori
information is taken from typical elements in the environment; in-
stalling special equipment, like a calibration pattern is not neces-
sary. A priori information about the camera mounting is not nec-
essary, as well. Typical elements, like dominant building struc-
tures shown in the reconstructed point cloud or objects shown in
images of the environment are used to derive Euclidean distances
in the point cloud. The a priori information provides the metric
size of these distances, allowing to compute the metric scale and
to obtain the Euclidean point cloud with metric scale.

The remainder of this paper is organized as follows: The method
to calculate the scale is presented in section 2. Experiments with
point clouds created from synthetic image sequences are described
in section 3. The results of the scale calculation are shown and
discussed in section 4. The paper ends with a conclusion in sec-
tion 5.

2. METRIC SCALE CALCULATION FOR POINT
CLOUDS

In order to calculate the metric scale of an Euclidean point cloud
captured with a calibrated monocular camera, a priori knowledge
about the metric size of dominant structures in the environment or
the objects in it can be used. The key is to find distances dcloud in
the Euclidean point cloud corresponding to the dominant strctures
or objects and to compare them against the corresponding metric
distances dreal, which are known a priori. The scale factor s is
then computed straight-forward by (equation 1)

s =
dreal
dcloud

(1)

where s = calculated scale
dreal = metric distance
dcloud = Euclidean distance in the point cloud

The metric scale is obtained in a two-step process, which is be-
ing described in the following. In order to handle arising scale
drift during environment mapping, the process should be applied
repeatedly during environment mapping and is therefore based
on local parts of the point cloud, not the complete one. Hereby,
scale change addresses the gradual change of the scale of an in-
teratively created point cloud over time. A local part is a subset
of all 3D points of the point cloud, which is calculated from the
images between two selected keyframes, e.g. determined by the

ORB-SLAM2 (Mur-Artal and Tardós, 2017) algorithm the au-
thors are using to create the point cloud. In the first step, the scale
is calculated by two independent approaches. The first approach
evaluates peaks in the density distribution of the 3D points in the
point cloud along a specified axis, the second approach evaluates
unique points on reference objects seen in images of the environ-
ment. Individual scale values from multiple appropriate distances
in both approaches are averaged. In the second step, the inde-
pendently calculated scale values from the density-based and the
object-based approach are fused to a combined scale value.

2.1 Gravity Alignment

Before density-based analysis can be performed along a horizon-
tal or vertical axis of a given point cloud, an important prepro-
cessing step is to align the point cloud according to gravity, i.e. so
that walls in the point cloud become parallel to the z-axis. Gravity
alignment can become important, as all camera pose parameters
estimated by SLAM can drift over time, leading potentially to a
roll of the estimated poses relative to the point cloud for example,
as previous experiments of the authors have shown. The method
used for gravity alignment in this contribution was first described
by (Al-Nuaimi et al., 2017). It is assumed that the point cloud is
extended most along its horizontal plane and least extended along
its normal axis, what is likely to be fulfilled in parking garages,
which require a lot of space for parking lots in a horizontal plane,
but not a large room height; besides, in parking garages, it can
be assumed that the camera is moving in a horizontal plane. By
computing the point position covariance matrix, which indicates
the point scatter along the two horizontal and the vertical axis, the
belonging eigenvalues λ1...3 and eigenvectors v1...3 are obtained.
The normal vector of the horizontal plane of the point cloud then
is represented by the eigenvector vmin belonging to the smallest
eigenvalue λmin. By finding the rotation that aligns this eigen-
vector to the z-axis of the gravity-aligned coordinate system, the
transformation required for gravity alignment of the point cloud
can be obtained and applied to the 3D points.

2.2 Density-Based Scale Calculation

For buildings like a parking garage, their building plan can be
used as a priori knowledge about metric sizes in the captured en-
vironment: a top-down view plan provides a priori information
about the building layout, while a side-view plan represents its
height profile. Having the knowledge from the plan, Euclidean
distances dcloud for scale calculation can be obtained from point
density distributions in the point cloud (Hilsenbeck et al., 2012a).
As buildings are sometimes not built as planned, the building plan
might contain errors. Therefore, scale values for new local parts
of the point cloud are compared to previous scale values to recog-
nize outliers. For a parking garage, previous experiments of the
authors have shown that peaks in the point density distribution in
the point cloud of the tested parking garages - including empty
ones - correspond to:

• Driving lane width: The driving lane is considered to be an
empty space with side objects like pillars, walls or cars at its
left and right side. The point cloud therefore is expected to
have point density peaks at the left and right edge between
the driving lane and the side objects.

• Floor-to-ceiling distance: The room of a parking garage is
considered to be the space between the floor plane and the
ceiling plane. The point cloud therefore is expected to have
point density peaks at the floor and the ceiling.
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Figure 1. Obtaining the metric driving lane width: Closest
parallel line pair (green) to the camera (black arrow) is found in

a top-down view building plan of a parking garage by Hough
transform.

In order to extract the corresponding metric distances from an im-
age of the top-down view or the side-view building plan, a global
line detection using a Hough transform (Duda and Hart, 1972) is
applied. The image coordinate system hereby represents the met-
ric size of the building. Depending on the current camera position
and orientation in the plan, the two closest lines, which are paral-
lel to each other and to the orientation of the camera, are selected
(see figure 1 for the top-down view plan). The distance between
the selected lines is calculated and used as metric distance dreal
for scale calculation. The camera position and orientation have
to be known, e.g. from V-SLAM using the metric-scaled point
cloud; the coordinate systems of point cloud and plan are aligned
based on the known position and orientation of the camera at the
entry lane of the parking garage.

Knowing the metric distances dreal of the driving lane width and
the room height, the corresponding Euclidean distances dcloud in
the point cloud have to be obtained. As already mentioned, both
distances in the point cloud can be obtained from point density
peaks, assuming that the desired peaks are the most characteristic
ones in the density distribution. Previous experiments have led
to this statement. Depending on the environment, point density
peaks corersponding to other building structures, like the com-
plete room breadth, can be used. After gravity alignment as de-
scribed in section 2.1, the lane width can be obtained from the
difference of the peak positions in the point distribution along the
horizontal axis perpendicular to the driving lane. The floor-to-
ceiling distance can be obtained from the difference of the peak
positions along the z-axis.

To find the left and right lane edge in the given point cloud, an
approach based on the work of (Hilsenbeck et al., 2012b) is used
(figure 2). An anchor point that is expected to be located between
the lane edges, represented by point density peaks, has to be cal-
culated first; only its horizontal position is needed, it is calculated
by the mean position of all 3D points in the current local part of
the point cloud. By restricting the points to the local part, ef-
fects from scale drift, occurring especially during mapping of a
larger environment with a mono camera (Ros et al., 2012), can
be avoided. Starting from this anchor point, an initial horizontal
lane orientation vector l1 is provided by the first principal com-
ponent vector v1, which has been obtained by previous gravity
alignment, corresponding to the largest eigenvalue of the covari-
ance matrix of 3D points of the point cloud. This initialization
is assumed to be valid, as long as the point cloud has its largest
extension in the direction of the driving lane. In an angle interval

lk

loptAnchor

Anchor

Nopt,1(µopt,1, σ
2
opt,1)

Nopt,2(µopt,2, σ
2
opt,2)

Nk,1

Nk,2

Figure 2. Lane width is obtained by fitting a bimodal Gaussian
model (blue, red) to multiple horizontal axes (black lines with

arrows on both ends) perpendicular to different lane orientation
vectors lk. Final lane width is calculated by the difference of the
mean values µopt,2 and µopt,1 of the bimodal Gaussian model

Nopt,1/2 with minimal average variance.

[−α; +α] around the initial lane orientation vector, further hor-
izontal lane orientation vectors are sampled equidistantly. The
horizontal distances of the local 3D points from each lane ori-
entation vector are calculated. A bimodal Gaussian model, as
shown in figure 2, is fitted to the distance distribution belonging
to each lane orientation vector lk; as seen in direction of the driv-
ing lane, one Gaussian bellNk,1(µk,1, σ

2
k,1) is on the left side of

the anchor point, the otherNk,2 is on the right side. The lane ori-
entation vector lopt with the minimal average variance of Nopt,1

and Nopt,2 is then considered as best fit to the edges. The differ-
ence of µopt,1 and µopt,2 then denotes the Euclidean driving lane
width dlane,cloud in the point cloud.

The idea to determine the floor-to-ceiling distance in the given
point cloud is similar. Instead of using the lane orientation, the
density of the z-values of the 3D points in the gravity-aligned
point cloud is evaluated directly in a histogram as proposed by
(Al-Nuaimi et al., 2017). These authors assume that the 3D points
belonging to the floor and ceiling cause density maxima along
the z-axis. But as floor and ceiling are often poorly textured sur-
faces, it has to be expected that the corresponding density peaks
are remarkably smaller than the global peak; own experiments
with different image sequences of parking garages have proven
this expectation, with the majority of the 3D points being on the
surface of parked cars. Therefore, the peak detection via a bi-
modal Gaussian model is not seen as suitable here. Instead, the
histogram of the z-values of the 3D points is created with a num-
ber of histogram bins appropriate to make local maxima visible.
The outmost points based on their z-values are considered as out-
liers and removed in advance. The first and last local peak in the
histogram are assumed to represent the floor and the ceiling, re-
spectively. These local peaks are detected by iterating from the
first and last bin to the central bin and checking if the number of
points contributing to a bin is higher than the number contribut-
ing to its adjacent bins. The distance between the last and first
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local peak then denotes the Euclidean floor-to-ceiling distance
dheight,cloud.

2.3 Object-Based Scale Calculation

The second approach (pipeline see figure 3) calculates the scale s
based on the known metric size of traffic signs shown in an image
of the environment. The approach is described in the following
for circular traffic signs, but can be transferred to other objects in
general, too.

The diameter of a circular traffic sign can be used as known met-
ric size dreal. The metric size can be obtained for example from
governmental regulations (e.g. (Department of Transport - Ire-
land, 2010)). The size of the diameter in the point cloud coordi-
nate system dcloud is obtained by the following steps: A traffic
sign shown in an image of the environment is detected and the
ellipsoidal shape of its contour is extracted by fitting a geometric
primitive to the image part containing the detection. The image
coordinates of the ellipse vertices of the major axis are calcu-
lated, giving the diameter in the image coordinate system (Elder,
2017). The image rays of the ellipse vertices are intersected with
a plane fitted to the 3D points in the point cloud belonging to the
traffic sign and thereof the 3D coordinates of the ellipse vertices
are obtained in the point cloud coordinate system. The distance
between the 3D coordinates gives finally the Euclidean diameter
dcloud in the point cloud.

Figure 3. Pipeline to calculate the scale with the object-based
approach.

The detector uses a sliding window approach to detect one or
more traffic signs in an image pyramid. Step by step, regions of
interest with different sizes and positions in the image are evalu-
ated by a deep learning traffic sign detector described by (Hanel
and Stilla, 2018). Positive detections of a sliding window ap-
proach are typically multiple regions with slightly different posi-
tions and sizes for each traffic sign shown in an image. To avoid

errors in the later shape fitting step, mean shift clustering (Fuku-
naga and Hostetler, 1975) is used to reduce the multiple regions
to a single region of interest for each traffic sign. Thereby with-
out the need to determine the number of traffic signs manually,
all positive detected regions are grouped into several clusters de-
pending on their distance to a cluster center. Each cluster center
defines a single region, the size of the region is defined by the
mean size of all regions contributing to this cluster.

Figure 4. Intermediate steps for traffic sign shape extraction.
Left: Binary image (idealized visualization) with contour points
(red, green, blue balls) along the edges of different image parts
(traffic sign shape as black circle, background object as black

rectangle). Right: Sample contour points (red squares) are used
to fit an ellipse (red circle). RANSAC determines iteratively the
consensus set of contour points along the edge of the traffic sign
shape using the distance (gray lines) between contour points and

fitted ellipses.

The shape of the traffic sign is extracted by fitting an ellipse to a
region of interest, considering that a real-world circle is projected
to an ellipse in an image in general. The extraction obtains the el-
lipse parameters position, size and orientation in the image. A
binary image is created out of the region of interest using an ab-
solute global threshold (exploiting known color of traffic signs)
to separate the shape of the sign contour from other objects in
the image. Contour points are extracted along the edges of differ-
ent image parts (figure 4) with an unique intensity in the binary
image (algorithm from (Suzuki and Abe, 1985)). The RANSAC
algorithm (Fischler and Bolles, 1981) selects iteratively the con-
sensus set of contour points belonging to the edge of the traf-
fic sign. Therefore, ellipse parameters are calculated with sam-
pled contour points in each iteration and the set of all contour
points within a maximal distance to the ellipse is determined. The
largest set is used as consensus set. The number of iterations is
chosen to have at least one set of sample points without outliers
with a probability of 99 %. The final ellipse parameters are esti-
mated in a least-squares-adjustment using the consensus set.

To calculate the scale, the 3D coordinates of the ellipse vertices
have to be obtained in the point cloud coordinate system to es-
tablish a link between the point cloud and the known metric size.
As the orientation of the major axis of an ellipse in an image is
perpendicular to the line of sight of the camera (Elder, 2017),
the image coordinates of the vertices in two images do not corre-
spond to the same object coordinates. Therefore, the 3D coordi-
nates of the vertices can’t be obtained by triangulation from two
or more images. (Soheilian and Brédif, 2014) provide a method
to recover the 3D circle parameters from multi-view using multi-
ple optimizations, which is considered as computationally more
expensive than our approach, which is described in the following
paragraph.

Instead, the 3D coordinates are obtained by intersecting their im-
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age rays with a plane fitted to the 3D points belonging to the
traffic sign. Therefore, a cone starting in the projection center of
the image and going through the corners of the region of interest
is defined. The cone is transformed from the camera coordinate
system to the point cloud coordinate system. By intersecting the
cone with the point cloud, a set of 3D points is selected. For the
following, it is assumed that in an urban environment, 3D points
belong to planes. Further, that the traffic sign belongs to the clos-
est plane as seen from the camera. To group the 3D points into
planes with different distances from the camera, a histogram is
used. It represents the horizontal distances of the selected 3D
points from the projection center. The distance is supposed to be
a valid separator for the planes: first, traffic signs and so their
planes are approximately perpendicular to the optical axis of a
front looking vehicle camera. Second, the field of view of the
cone is typically small, as the traffic sign covers only a part of
the image, leading to similar distances even for planes diagonal
to the camera. A ”peakiness test” is applied to get characteristic
local maxima in the histogram. The 3D points with a distance
within a threshold around the first maximum are considered to be
belonging to the plane of the traffic sign. The 3D position and ori-
entation of the plane is fitted by a robust least squares adjustment
using the 3D points within the threshold. The 3D coordinates
of the ellipse vertices are finally calculated by intersecting their
image rays given in the point cloud coordinate system with this
plane and thereof their distance dcloud is obtained.

2.4 Fusion to a Combined Metric Scale

The approaches described in sections 2.2 and 2.3 provide three
independent scale values. There might be situations, where the
scale value of an individual approach lacks accuracy, for example
when the environment captured in the images changes quickly,
like in curve drives. To increase the robustness of the scale calcu-
lation, a combined metric scale sfused is obtained by a weighted
mean of the independent scale values valid for the same local part
of a point cloud. Additionally, a multiplicative factor fmethod is
added to the weight for each approach to penalize strong devia-
tions of the scale calculated for the current local part of the point
cloud from the scale calculated for former parts.

fmethod = 1− |sfused,t−1 − smethod|
sfused,t−1

(2)

where fmethod = multiplicative factor for wmethod

sfused,t−1 = former computed scale value
smethod = current computed scale value

The weight of the scale of each individual approach is obtained
as follows:

• Driving lane width: The weight wlane for the scale slane

is calculated from the average of the variances σ2
opt,i of the

best-fit bimodal Gaussian modelNopt,1/2 (equation 3). Fur-
thermore, the multiplicative factor flane (see equation 2) is
applied in order to penalize strong deviations from previous
scale computations.

wlane = flane · tanh
(

2

σ2
opt,1 + σ2

opt,2

)
(3)

where wlane = weight for slane

σ2
opt,1/2 = variances of bimodal Gaussian model
flane = multiplicative factor (see equation 2)

• Floor-to-ceiling distance: The weightwheight for the scale
sheight is calculated from the average of the local variances
σlocal,1/2 of the peaks for floor and ceiling (equation 4).
Again, the factor fheight, computed as shown in equation 2,
is applied to penalize strong deviations from the last com-
putation.

wheight = fheight · tanh
(

2

σ2
local,1 + σ2

local,2

)
(4)

where wheight = weight for sheight
σ2
local,1/2 = local variances of outmost

histogram peaks
fheight = multiplicative factor (see equation 2)

The value of the three neighboring histogram bins are used
for each local peak to calculate the variance; the lower the
local variances are, the more robust the local peaks are as-
sumed to be.

• Object-based scaling: The weight wobject for the scale
sobject is calculated from the variance σ2

image of the set of
scale values obtained from the traffic signs detected in one
image (equation 5):

wobject = fobject · tanh
(

1

σ2
image

)
(5)

where wobject = weight for sobject
σ2
image = variance of the scales from one image
fobject = multiplicative factor (see equation 2)

The combined metric scale is calculated as follows (equation 6):

sfused =
wlane · slane + wheight · sheight + wobj · sobj

wlane + wheight + wobj
(6)

where sfused = fused scale
wlane, wheight, wobj = scale weights
slane, sheight, sobj = individual scale values

3. DATASETS AND EXPERIMENTS

As test scenario, a synthetic 3D model of a parking garage is
used. The parking garage consists of a driving lane and parking
lots perpendicular to the lane. The model is created by means of
3D computer graphics with circular traffic signs along the driv-
ing lane. Template for the virtual parking garage model is the
building plan of a real existing parking garage. The density of
traffic signs in the virtual model corresponds to the density in the
afore-mentioned real existing garage.
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Camera Pinhole camera model
Geometric resolution 640 x 480 px
Radiometric resolution RGBA, 8 bit
Lens 35 mm, no distortions
Settings 24 fps

Table 1. Technical data of the synthetic camera used to render
several image series along different camera drives through the

3D model of a parking garage.

A sequence of RGB images (example in figure 5) is rendered for
each drive with a front-looking camera (camera specifications see
table 1) through the model: drive 1 along a straight part of the
driving lane; drive 2 along a part of the driving lane with two
curves and a final parking maneuver heading into a parking lot.
Contrary to a real-world dataset, the ground truth size of the sce-
nario and its objects as well as the ground truth trajectories of the
camera drives are available for a synthetic dataset. Thereby com-
parison of the scale values calculated with the proposed method
to the actual scales values becomes possible.

Figure 5. Rendered RGB image during a camera drive through
the modeled parking garage. The known metric lane width, the

room height and diameter of the traffic signs are used to
calculate the metric scale.

As application to calculate the metric scale, the ORB-SLAM2 al-
gorithm (Mur-Artal and Tardós, 2017) is applied to each image
sequence k, returning each time an estimate for the point cloud
of the environment and the camera trajectory. The ground truth
metric scale is obtained by comparing and aligning the estimated
ORB-SLAM2 trajectory with the ground truth trajectory of the
scenario and by scaling it to minimize the translational error. The
ground truth metric scale is assumed to be constant for the whole
point cloud, as the ORB-SLAM2 algorithm has not shown to be
prone to scale drift in the tested sequences. Using the proposed
method, the metric scale is calculated with the local part of the
estimated point cloud provided for every 10th keyframe during
the ORB-SLAM2 processing; an image of the synthetic sequence
is considered to be a keyframe, if the camera moves into a part
of the environment with a low overlap to already mapped parts.
The number ’10’ is chosen as trade-off between a desired high
amount of 3d points in the point cloud and a desired low com-
putational effort. The described steps to estimate the point cloud
and to calculate the metric scale are repeated for each image se-
quence several times for statistical reasons; indeterministic in the
algorithm is the initialization of the camera pose at the beginning
and the RANSAC used for traffic sign shape fitting.

The individual approaches and the fusion approach are evaluated
and discussed with regard to the following aspects:

• Scale precision: The scale precision is analyzed by a rel-
ative scale error escale,k,i comparing the scale value sk,i

calculated for each repetition i to its respective ground truth
value (equation 7):

escale,k,i =
|sk,i − sgt,k|

sgt,k
(7)

where escale,i = relative scale error
sk,i = calculated scale for repetition k, i
sgt,k = ground truth scale for sequence k

• Trajectory precision: The trajectory is analyzed using the
root-mean-square error defined in (Sturm et al., 2012) (equa-
tions 8, 9). This error measure allows analyses in absolute
metric values as well as in relative values with respect to the
trajectory length (Geiger et al., 2012):

Etraj =

(
1

n

n∑
t=1

||xest,t − xgt,t||
2

)1/2

(8)

etraj =
Etraj

l
(9)

where Etraj = absolute metric trajectory error
etraj = relative trajectory error
n = number of estimated positions
xest,t = estimated camera position at time t
xgt,t = ground truth camera position at time t
l = trajectory path length

4. DISCUSSION OF THE RESULTS FOR METRIC
SCALE CALCULATION

4.1 Traffic Sign Detection and Shape Fitting

Figure 6. Multiple detections (blue rectangles) are typical for the
traffic sign detector used for this paper.

The traffic sign detector used for object-based scale calculation
yields typically multiple detections for a traffic sign in an image
(real-world image example see figure 6). The detector shows a
high classification certainty on both classes (see confusion matrix
in table 2). Detections with a low classification certainty are re-
moved, they might be false positives, which could lead to a wrong
scale value. The average RMS for fitting an ellipse to a detected
region of interest is 1 px. Regions above a RMS threshold are
removed as well.

4.2 Scale Error of the Individual Approaches

The difference (see table 3) between the mean and median of the
relative scale error escale of scale values slane, which are cal-
culated for different local parts of the point cloud from the lane
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True class
TS No TS

Predicted
class

TS 96 % 4 %
No TS 4 % 96 %

Table 2. Confusion matrix for the convolutional neural network
for traffic sign (TS) detection.

width, is remarkable. The low median error, compared to us-
ing other structures or objects in the environment, indicates that
using the lane width can provide the most precise scale values,
while the higher mean error indicates that the scale values calcu-
lated for some local parts might be outliers. Analysis of the image
sequence at the time points of outliers shows that they occur es-
pecially when the camera is moved around curves along the drive
way or when simulating a parking maneuver at one of the parking
lots. Table 3 further shows a larger mean and median error for
scales calculated from the room height, which can be interpreted
that this building structure is less suitable for scale calculation
than the driving lane width. This observation is surprising, as the
virtual parking garages don’t contain cars, on which 3D points
could be lying, which then could blur the density peaks in the
point cloud in the vertical direction.

The mean and median relative error for scale values from the
object-based approach are higher than for the afore-mentioned
density-based approaches exploiting building structures, as table
3 shows as well. Analysis of the image sequences shows that the
calculcated scale values have largest variations when the camera
is moved around a curve with only a short viewing range until
the next wall in front and a low number of traffic signs in these
images therefore. The object-based approach can therefore rather
be seen as complementary extension, which is independent from
dynamic objects in the parking garage, compared to being a stan-
dard approach for scale calculation. It can become important for
scale calculation, when the driving lane borders or the floor and
ceiling are occluded in the images by dynamic objects, especially
cars, in the garage.

Method Mean (%) Median (%)
Lane Width Det. 24.54 8.93

Ceiling Height Det. 24.72 19.27
Object Det. 32.79 30.24

Fused Lane/Height 14.69 9.83
Fused all 14.45 11.94

Table 3. Mean and median of the relative scale error escale for
both synthetic sequences

4.3 Scale Error of the Combined Approach

Fusion of the three individual approaches using equation 6 re-
sults in both reduced mean error and median error (table 3) of the
combined scale value compared to the individual scale values.
The errors of the combined scale value are in the same range as
described by other authors; for example, the method of (Kamin-
sky et al., 2009) achieves a mean error of 25%, while the more
recent method of (Ni et al., 2013) achieves 12%. In addition, the
second cited method relies on the assumption that the complete
point cloud is already known. Our approach instead uses only on
local parts of the point cloud and can therefore be used ”online”
during V-SLAM mapping. Table 3 further shows, that the me-
dian error for the fusion of all three approaches is worse than for
a fusion of the two density-based approaches only.

4.4 Trajectory Error of Density-based Approaches

A small scale error in the camera trajectory is crucial for the
density-based approaches, because they rely on extracting the
lane width or ceiling height at the correct position in the met-
ric building plan, i.e. the camera position has to be given with
a metric unit. Therefore, the camera trajectory obtained by the
V-SLAM algorithm with an Euclidean unit is scaled to obtain a
metric unit. Using synthetic data has the benefit that the ground
truth trajectory of the camera is known: The absolute trajectory
errorEtraj for drive 1 averaged over i repetitions is 2.72 m with a
standard deviation of 0.57 m; the ground truth length of the trajec-
tory is 63 m and the relative trajectory error etraj therefore is 4.3
%. Compared to the work of (Gräter et al., 2015), our approach
achieves a similar trajectory error. Considering the desired use
case of a parking garage, the trajectory error is sufficient to local-
ize the car on a driving lane. To perform a parking maneuver, the
trajectory error has to be seen as too high, as a common parking
lot has a width of only around 2.5 m.

5. CONCLUSION

In this paper, a method to calculate the metric scale for a point
cloud of an indoor environment, like a parking garage, generated
by a visual mapping algorithm, has been proposed. The length
of dominant environment structures in the point cloud, like the
width of the driving lane or the room height of the parking garage
are derived from peaks in the point densities in the point cloud.
Alternatively, the size of traffic signs in the point cloud is derived
by projecting traffic signs detected in images onto the point cloud.
A priori known knowledge about the lane width, room height or
the traffic sign size provides the metric lengths for the lengths
derived from the point cloud, which are then set in ratio to cal-
culate individual scale values. The combined scale is obtained
by a weighted fusion of the individual scale values. It has been
shown for synthetic image sequences of camera drives through a
3D model of a parking garage that the calculated metric scale is
either more robust or more precise for each of the three individual
approaches. It has further been shown, that the combined scale
can improve precision and robustness compared to the individual
approaches.

An obvious future research step is to apply the proposed method
to an acquired image series to test the quality of the scale cal-
culation under real conditions. To further extend the scale cal-
culation for automotive applications, the metric distance between
the two wheel centers on one side of a known car model can be
used as additional scale information. Statistical tests could be
used to evaluate hypotheses for different car models in the case
of an uncertain model recognition from images. As maps created
with monocular mapping algorithms show especially errors in the
moving direction of the camera, the 3D position of traffic signs
could be used to compensate these errors longitudinal to the driv-
ing lane. To make the method better applicable to other indoor
environments than parking garages, the use of common standard-
ized objects like doors or windows could be investigated.
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