
A VOXEL-BASED METADATA STRUCTURE FOR CHANGE DETECTION IN POINT
CLOUDS OF LARGE-SCALE URBAN AREAS

Joachim Gehrungab∗, Marcus Hebela, Michael Arensa, Uwe Stillab

a Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB,
76275 Ettlingen, Germany - (joachim.gehrung, marcus.hebel, michael.arens)@iosb.fraunhofer.de

b Photogrammetry and Remote Sensing, Technische Universitaet Muenchen, 80333 Muenchen, Germany - stilla@tum.de

Commission II, WG II/10

KEY WORDS: Ray Casting, Discretization Artifacts, Volumetric Environment Representation, Change Detection

ABSTRACT:

Mobile laser scanning has not only the potential to create detailed representations of urban environments, but also to determine changes
up to a very detailed level. An environment representation for change detection in large scale urban environments based on point
clouds has drawbacks in terms of memory scalability. Volumes, however, are a promising building block for memory efficient change
detection methods. The challenge of working with 3D occupancy grids is that the usual raycasting-based methods applied for their
generation lead to artifacts caused by the traversal of unfavorable discretized space. These artifacts have the potential to distort the
state of voxels in close proximity to planar structures. In this work we propose a raycasting approach that utilizes knowledge about
planar surfaces to completely prevent this kind of artifacts. To demonstrate the capabilities of our approach, a method for the iterative
volumetric approximation of point clouds that allows to speed up the raycasting by 36 percent is proposed.

1. INTRODUCTION

The generation of reliable 3D environment data is playing an
increasingly important role in todays mobile mapping systems.
Therefore more and more of these apply mobile laser scanning,
since this technology is usually able to produce more dense and
accurate measurements than camera systems and airborne laser
scanning. Change detection based on such data offers the possi-
bility to identify developments of urban landscapes such as the
construction and tear-down of buildings as well as more subtle
ones like missing or moved city furniture. The task of change
detection in large scale urban environments raises two research
questions. The first one is considered with data cleansing, since
measurements of moving objects and short-term stable structures
such as parked cars would lead to changes which are irrelevant
in the context of city development. The second research question
deals with the efficient representation and handling of large en-
vironments. An extrapolation based on the TUM City Campus1

dataset shows that an epoch for a city like Munich would require
more than 100 TiB of data. Since multiple epochs are required
for change detection, a massive amount of data needs to be stored
and processed efficiently.

A suitable form of representation that fits both tasks - change
detection and the handling of large urban environments - are vol-
umes like voxels. Due to the space discretization, these are very
memory efficient for reasonable resolutions. Compared to point
clouds, they also have an upper memory boundary. Furthermore,
when utilizing an octree based data structure for volume organi-
zation, it is not only possible to store information about free and
occupied space, but also to represent unseen areas. This is valu-
able information for change detection, since the appearance or
disappearance of a structure can only be evaluated correctly in its
context. The downside of using such a representation is the sen-
∗Corresponding author
1http://s.fhg.de/mls1

sitivity to artifacts, especially the ones caused by rays traversing
a voxel otherwise considered as solid. These are particularly sig-
nificant in the vicinity of planar structures, whenever an adverse
combination of the voxel resolution and the angle between plane
and ray appears. Correcting this effect is necessary, since a vol-
ume classification based on voxel statistics is strongly influenced
by this effect.

As a first step towards a volumetric representation suitable for
change detection in large scale urban environments, this paper
proposes a raycasting algorithm that utilizes a plane-based filter
to suppress the artifacts mentioned above. To demonstrate the
capabilities of this method, we also propose an iterative algorithm
for the volumetric approximation of a point cloud. In addition to
that, the suitability of voxel statistics for moving object detection
is investigated.

2. RELATED WORK

Change detection is a topic of interest in various research fields
and therefore has different names depending on the context.
Many research regarding this topic is done in 2D and 3D com-
puter vision, where the Detection and Tracking of moving Ob-
jects (DATMO) is applied to solve problems from robotics, au-
tonomous driving and SLAM. Litomisky and Bhanu (2013) for
example remove moving objects from point clouds utilizing a
clustering approach in order to make SLAM more robust. Since
this paper deals with data collected by mobile laser scanning, the
focus of this chapter will be on point cloud based approaches to
change detection.

2.1 Change Detection on Point Clouds

Point based approaches are often used, since change detection
on object level is affected by the quality of the object detec-
tion and classification. Girardeau-Montaut et al. (2005) utilize an
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octree-based structure to organize a point cloud and present sev-
eral simple cloud-to-cloud comparison algorithms. Zeibak and
Filin (2008) compare depths images from a stationary terrestrial
laser scanner in order to compare multiple epochs recoded from
the same position. Both approaches incorporate no information
about free or unseen space.

2.2 Ray-based Change Detection

Point clouds can also be interpreted as a set of rays originating
from the sensor position. Underwood et al. (2013) proposed an
approach to 3D change detection by comparing LiDAR scans
with ray casting in spherical coordinates. Hebel et al. (2013)
combine voxel-indexed rays by applying the Dempster–Shafer
theory of evidence to determine changes in airborne laser scans.
Xiao et al. (2015) use a similar approach based on mobile LiDAR
data. Both approaches consider free and unknown space. How-
ever, the downside of this kind of approach is that every single
ray within the region of interest needs to be evaluated, which is
not feasible for mobile laser data consisting of millions of single
scans per second.

2.3 Change Detection based on Segments or Objects

This class of change detection methods is characterized by the
segmentation of point clouds in order to get clusters or instances
of known object classes. Schachtschneider et al. (2017) extract
clusters from point clouds of urban environments using a region
growing algorithm and assess the temporal behavior of each clus-
ter utilizing an occupancy grid. Aijazi et al. (2013) also apply
a segmentation step to the point cloud, but then classify the re-
sulting clusters into permanent and known temporary classes. A
similarity map created from an evidence grid is then either used
for multiple epoch data fusion to build a 3D urban map or to do
change detection. Both approaches require the performance of
segmentation and classification to be reliable in order to generate
good results. Applying classification also requires specialization
on known object classes.

2.4 Change Detection using Occupancy Grids

Occupancy grids approximate the environment by storing infor-
mation in a discretized space. Pagac et al. (1996) utilize a 2D oc-
cupancy grid based on the Dempster–Shafer theory of evidence
to represent an autonomous vehicle’s environment. A similar ap-
proach has been proposed by Wolf and Sukhatme (2004). The
authors use two grids to model static and dynamic parts of a
scene and are therefore able to detect dynamic objects. Other
approaches to change detection utilize an octree-based 3D occu-
pancy grid referred to as Octomap (Hornung et al., 2013). It is
used by Azim and Aycard (2012) in an online approach for mov-
ing object detection. A voxel list updated by conflict search be-
tween the known environment and LiDAR measurements is clus-
tered and filtered for object candidates. The theoretical frame-
work behind Octomap has also been used in our previous works,
where we showed that the classification of voxels based on voxel
statistics leads to the artifacts mentioned above and therefore to
an inaccurate approximation of the environment (Gehrung et al.,
2016, 2017).

3. ARTIFACTS OF VOLUMETRIC REPRESENTATIONS

3.1 Volumetric Representation Framework

In this work, a modified version of the volumetric framework
proposed by Gehrung et al. (2016) is used. Spatial data is or-

ganized in a Cartesian reference frame such as ECEF (”earth-
centered, earth-fixed”). A grid is used to subdivide the data into
cubic chunks called tiles. Among other things, each tile com-
prises multiple data containers storing the rays and the volumetric
representation. The latter consists of an octree for volume organi-
zation. Each octree node contains statistics of the rays traversing
and penetrating it, the ray indices, as well as a probability table
describing the affiliation to one of multiple classes. For memory
management and visualization reasons the edge length of a tile is
set to 32 m.

3.2 Discretization based Artifacts

As mentioned above, one of the primary problems in terms of vol-
umetric representations are artifacts that are caused by rays that
traverse voxels which are considered to be solid. Since a voxel
is a more or less arbitrary discretization of space, it is likely that
measurements implying multiple classes of space are combined
within a single voxel. For example this happens at object bor-
ders such as building corners, doors or windows. While a border
voxel contains parts of the object, it is also traversed by the rays
which belong to the free space around it. This particular artifact
is characterized by small clusters of improperly classified voxels
at object borders (cf. Figure 1(a)).

(a) (b)

Figure 1. Traversal artifacts due to ray casting within discretized
space. (a) Artifact caused at object borders. (b) Improper voxel

classification near plane-like structures.

A more severe class of artifact is caused by rays traversing a plane
or planar surface at a relatively flat angle. In this case voxels oth-
erwise considered to be occupied are traversed by a ray implying
they are free. This leads to conflicting observations and therefore
to large patches of incorrectly classified voxels. We showed in
(Gehrung et al., 2017) that this effect appears when determining
the voxel class on volume statistics only, without including infor-
mation of higher levels such as the local neighborhood (cf. Figure
1(b)).

4. PLANE-BASED ARTIFACT REMOVAL

4.1 Plane Extraction

The algorithm proposed in this paper is intended to solve artifacts
caused by plane-like structures. The idea behind it is simple. For
each plane-like surface patch found in the point cloud, a second
virtual plane shifted in direction of the ray origin is used to trun-
cate each ray. To make sure that no voxel belonging to the surface
patch is traversed, the distance between both planes is the diago-
nal of a voxel. Outside the space between both planes, all voxels
are traversed as usual. Since a plane is infinite by definition, it
is better to represent the surface patch with an oriented bounding
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box (OBB). When adapting its thickness (which corresponds to
its dimension with the lowest eigenvalue) to the voxel size of in-
terest, it acts like the second plane mentioned above, but with the
same spatial boundaries as the original surface patch.

Surface patches containing planes are extracted by using the nor-
mal based region growing algorithm proposed by Rabbani et al.
(2006). Neighboring points which are close enough in terms of
a smoothness constraint are merged to clusters. The constraint
is the angle between the point normals. Seed points are selected
from regions with minimum curvature, since these ones are lo-
cated within the most flat areas. This reduces the total number
of segments. Since lots of very small surface patches are found
by the algorithm, candidate filtering is applied. Therefore the ex-
tracted clusters are sorted by their number of points, the lowest
quarter on the list is dropped. This appears to be a good practice.

Oriented bounding boxes are preferred to axis aligned bounding
boxes (AABB), since the latter ones are only a crude representa-
tion of the plane. To generate an oriented bounding box, princi-
pal component analysis is used to determine the coordinate frame
of the point cloud cluster. Based on this, the eigenvectors and
the cluster’s centroid are used to compute the transformation into
the cluster’s coordinate frame. Once all points have been trans-
formed, the AABB is determined. Due to the applied clustering
procedure, the surface patch is not entirely flat. Therefore the
extend of the AABB in the direction of the eigenvector with the
smallest eigenvalue is set to zero. This is required to prevent vol-
ume approximation errors during raycasting. The AABB and the
transformation from the global coordinate frame to the cluster co-
ordinate frame are stored and used for ray intersection during the
plane-filtered raycasting.

4.2 Plane-filtered Raycasting

Raycasting is used to generate volumes from point clouds. Each
point is considered to be a ray originating at the sensor position
and ending at the location of the measured surface point. When-
ever a ray ends within a voxel or traverses it, the voxel’s corre-
sponding counter is incremented. Casting a ray consists of two
steps, traversing the free space and inserting the endpoint (which
may correspond to occupied space but also to free space, if the ray
has been truncated at the tile border due to performance reasons).

To avoid artifacts, each ray needs to be checked against all ori-
ented bounding boxes for intersections. The test requires the ray
to be projected into the box’s coordinate frame by applying the
transformation calculated in the plane extraction step. At this
point, intersection can be tested against an AABB, for example
by using an algorithm such as the one proposed by Williams et
al. (2003). Before the test is carried out, the bounding box is ex-
panded in all dimensions by the diagonal of a voxel. This needs
to be done at this point and not in the plane extraction step, since
the bounding box needs to be adapted to the current voxel size
(which may vary during refinement). If the test is positive, it re-
turns the offset t along the ray at which the intersection occurred.
This information can be used to determine the new endpoint of
the untransformed ray.

An overview of the plane-filtered raycasting algorithm is given in
Algorithm 1. In a preliminary filter phase the current ray is trun-
cated based on intersection tests with all bounding boxes. Since
there are multiple kinds of intersections, the case differentiation
illustrated in Figure 2 needs to be applied. The following enu-
meration explains the nature of the different cases and how they
need to be handled.

Figure 2. Intersecting ray and bounding box leads to five cases
that need to be handled. Valid parts of the ray are in green,
invalid ones in red. (1) No intersection with ray. (2) Ray is
inside. (3) Ray starts outside but ends inside. (4) Ray starts

inside, but ends outside. (5) Ray starts and ends outside, thereby
traversing the bounding box.

1. No intersection between the ray and any bounding box. Add
the full ray and its endpoint.

2. The ray is completely inside the bounding box. No travers-
ing of the ray needs to be done. The endpoint is only to be
considered in case it is occupied.

3. The ray starts outside the bounding box and ends inside.
Traverse the part of the ray outside the bounding box. Only
an occupied endpoint is to be inserted.

4. The ray starts inside the bounding box and ends outside.
Traverse only the latter part of the ray. The endpoint is to
be inserted, no matter whether or not it is free or occupied.

5. The ray starts and ends outside a bounding box it traverses.
The two parts of the ray are handled separately. The first part
outside the bounding box is treated as free space without
endpoint. The second part is handled separately by adding
it as an independent ray to the ray list.

An overview of the filter phase, which implements the case dif-
ferentiation for each ray, is given in Algorithm 2. Both offsets
used to truncate the ray after intersection with all bounding boxes
are set to tstart = 0.0 and tend = 1.0, which corresponds to the
full ray. For each oriented bounding box, the intersection offsets
tnear and tfar along the ray are calculated. If an intersection oc-
curred, the ray offsets tstart and tend are updated according to the
case differentiation. The if-statements within most of the cases
ensure that previous intersections with other bounding boxes are
not revoked.

Prior to the actual raycasting step, ray consistency needs to be
verified by evaluating whether or not tend ≥ tstart. A valid ray
is truncated accordingly to tstart and tend, raycasting along the re-
maining part is used to select the voxels that are to be marked as
free space. During the plane-filtering step it was decided whether
or not to insert an endpoint (endpoint handling policy). In case
that an endpoint is to be inserted, the according voxel at the ray’s
endpoint is determined and the counter for either free or occupied
space is incremented.
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Algorithm 1: Overview of the plane-filtered raycasting algo-
rithm.
Data: List of rays R = {r1, . . . , rn},

volumetric representation V .
Result: Updated volumetric representation V .
begin

B ←− getBoundingBoxes(R)
for ri ∈ R do

tstart, tend, e, R←− filterPhase(B,R, ri)
if tend >= tstart then

continue

if tstart >= 0.0 ∧ tend <= 1.0 then
d←− r.start− r.end
s.start←− r.start+ tstart ∗ d
s.end←− r.start+ tend ∗ d
V ←− addTraversedSpace(V, s.start, s.end)

if isOccupied(r.end) then
if e.insertEndpointOccupied then

V ←− addEndpointOccupied(V, r.end)

else if isFree(r.end) then
if e.insertEndpointFree then

V ←− addEndpointFree(V, r.end)

return V

5. VOLUMETRIC APPROXIMATION AND VOXEL
STATE ESTIMATION

5.1 Iterative Volumetric Approximation

By utilizing the plane-filtered raycasting algorithm described in
Section 4, it is possible to generate an artifact-free volumetric ap-
proximation of a given point cloud. This section describes the
iterative algorithm used for the approximation as well as the sim-
ple voxel labeling scheme.

A summary is given in Algorithm 3. The volumetric representa-
tion is initialized by applying plane-filtered raycasting at the oc-
tree depth dinit. The result is a crude approximation of the point
cloud. In order to improve this initial guess, each voxel is ex-
panded into a subtree of voxels by utilizing iterative refinement.
This process is based on a queue that is initialized with the voxel
in question. The first step is to extract the next voxel from the
queue and check if a sufficient number of rays has been assigned
to it. If this number is lower than a predefined threshold n, the
voxel is classified as residual and not refined any further. This
is required since the voxel state estimation based on statistics re-
quires a minimum amount of points.

In case there is a sufficient number of rays and the maximum
octree depth dmax is not yet reached, the voxel is labeled by the
estimateState function. The labeling step at this point is based
on a simple heuristic. If all observations of a voxel consist of
traversing rays, the voxel is labeled as free. In case all observa-
tions are rays ending within a voxel, it must be occupied. Mark-
ing this kind of voxel right away as occupied would lead to a very
crude approximation of static structures. Therefore it is classified
as occupied split, meaning that it is an occupied voxel that can
only be split into child voxels which are either free or occupied.
If a voxel contains both types of rays, it is marked to be split. A

Algorithm 2: Filter phase of the plane-filtered raycasting. The
ray in question is intersected with all OBBs.
Data: List of bounding boxes B = {b1, . . . , bn},

list of rays R = {r1, . . . , rn},
ray r.

Result: Ray offsets tstart and tend.
Expanded list of rays R = {r1, . . . , rn},
boolean vector e with endpoint handling policy.

begin
tstart ←− 0.0
tend ←− 1.0
e.insertFreeEndpoint←− true
e.insertOccupiedEndpoint←− true
for bi ∈ B do

if intersection(r, bi) then
tnear, tfar ←− getIntersection(r, bi)
if tnear <= 0.0 ∧ tfar >= 1.0 then

tstart ←− −∞
tend ←−∞
e.insertEndpointFree←− false

else if tnear > 0.0 ∧ tfar > 1.0 then
if tnear < tend then

tend ←− tnear

e.insertEndpointFree←− false

else if tnear < 0.0 ∧ tfar < 1.0 then
if tfar > tstart then

tstart ←− tfar

else if tnear > 0.0 ∧ tfar < 1.0 then
if tnear < tend then

tend ←− tnear

e.insertEndpointFree←− false
e.insertEndpointOccupied←− false
R←− R ∪ createRay(r, tfar, 1.0)

return tstart, tend, R, e

result of the iterative approximation without the final state esti-
mation can be seen in Figure 3.

If the states split or occupied split have been assigned to the
voxel, it is subdivided. The number of traversing and penetrat-
ing rays of each of its child voxels are calculated by using plane-
filtered raycasting. The speed of this process can significantly
be increased if only the ray indices are stored within each voxel.
Each child voxel is then added to the queue.

5.2 Final Labeling

The final labeling step estimateF inalState is executed for
each voxel that reaches the maximum octree depth dmax. Since
the problem of voxel state estimation is not a simple one, the
approach described here is to be considered only as a simple ap-
proximate solution in order to investigate the suitability of the
volumetric representation for moving object detection. The voxel
is labeled as either occupied, moving object or residual based on
statistics, considering only the number of traversing rays and rays
ending within the voxel. At this point, it is ruled out that the state
free can be assigned to the voxel in question. This is because it
is hard to distinguish the states free and moving object as soon
as a voxel contains observations that imply that it has been oc-
cupied at some point in time. For this reason, the free space has
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Algorithm 3: Overview of the volumetric point cloud approxi-
mation algorithm.
Data: List of rays R = {r1, . . . , rn},

octree depths dinit and dmax,
minimum number of point threshold n.

Result: Volumetric representation V .
begin

V ←− planeF ilteredRaycasting(R, dinit)
for vi ∈ V do

Q←− {vi}
while Q 6= ∅ do

q ←− Q[0]
if q.numRays < n then

q.state = ′residual′

else if q.depth < dmax then
q ←− estimateState(q)
if q.state = ’split’ then

for ci ∈ getChildren(q) do
ci ←− recastRays(R, q.depth+ 1)
Q←− Q ∪ ci

else
q ←− estimateF inalState(q)

Q←− Q \ q

return V

already be carved out during the iterative refinement using the
simple heuristic mentioned above.

The approach to labeling is based on the authors observation that
a voxel that belongs to a moving object contains up to 5 orders of
magnitude more traversing rays than rays implying occupancy.
An occupied voxel in which the artifacts introduced by objects
borders as described in Section 3.2 are present contains only 1 or
2 orders of magnitude more traversing rays. Equations 1 exploits
this fact to calculate the probability for an occupied voxel pocc.

pocc =
log(o)

log(o+ f)
(1)

Equation 2 shows the probability pmov for the voxel to be part of
a moving object.

Figure 3. Iterative approximation of a street without the final
state estimation (red=occupied, yellow=split; free space is not

shown.

pmov = 1.0− pocc (2)

The probability pres required to distinguish signal from noise is
shown in Equation 3.

pres =
1.0

(o+ f)
(3)

The variables f and o are the numbers of rays traversing the voxel
and ending within it, therefore implying it to be either free or
occupied respectively.

6. EVALUATION

6.1 Experimental Setup

The evaluation is based on the MLS 1 - TUM City Campus2

dataset, which has been recorded by the measurement vehicle
MODISSA of the Fraunhofer Institute of Optronics, System Tech-
nologies and Image Exploitation (IOSB). The dataset consists of
about 2.25 billion georeferenced mobile laser scans (MLS) and
covers an area of 0.17 km2, which encompasses the TU Munich
inner city campus and the surrounding streets. Measurements
were recorded in 2016 utilizing two Velodyne HDL-64E LiDAR
sensors mounted at an angle of 25 ° on the front roof of the vehi-
cle. The georeferencing is based on navigational data provided by
an Applanix POS LV navigation system that utilizes two GNSS
antennas installed at the front and back of the car, an inertial mea-
suring unit and an additional distance rotary encoder installed on
one of the back wheels. The navigation data has been postpro-
cessed to increase accuracy. The dataset is publicly available un-
der a Creative Commons License.

A crossing at the corner of Arcisstraße and Theresienstraße nort-
east of the TUM city campus has been chosen for evaluation (cf.
Figure 4). The corresponding data contains 84 million range mea-
surements. One side of the crossing is bordered by large build-
ings, while the other side consists of natural terrain in form of
a meadow with large trees. The streets contain signs and traf-
fic lights. Pedestrians and cars are participating in the traffic. The
measurement vehicle approaches the crossing, waits there shortly
and then turns left.

6.2 Qualitative Evaluation

A labeled ground truth was not yet available at the time this
paper has been submitted, therefore an evaluation of the plane-
filtered raycasting algorithm is done by a human observer. Since
the correct labeling is of minor interest apart from planar struc-
tures, a comparison to a ground truth would be of limited use
for this work. The main focus of the evaluation is on the perfor-
mance of the plane-filtered raycasting algorithm and the volumet-
ric approximation of the point cloud. The following criteria are
checked:

• What is the impact of the plane-filtered raycasting?

• Are all major planar surfaces correctly recognized? Are
some missing or not correctly determined?

2http://s.fhg.de/mls1
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(a)

(b)

Figure 4. The scene used for evaluation. (a) Overview. (b)
Accumulated Point cloud of the crossing.

• Are planar surfaces approximated correctly by both segmen-
tation and bounding box estimation?

And for the sake of completeness, the results of the simple voxel
state estimation are also evaluated:

• Are solid structures and free space correctly classified?

• Which quality has the estimation of voxels that belong to
moving objects?

The questions are answered by investigating a color-coded volu-
metric representation of the scene in combination with the point
cloud the former one has been generated from. In addition to the
above questions, the results are investigated for anomalies.

6.3 Runtime

The evaluation is completed by a short discussion regarding the
runtime of the plane-filtered raycasting and the iterative volumet-
ric approximation.

7. RESULTS AND DISCUSSION

7.1 Results of the Qualitative Evaluation

Impact of Plane-filtered Raycasting – To illustrate the effect
of the approach presented in this paper, the same scene has been
generated with both normal raycasting and plane-filtered raycast-
ing. In the first case, large parts of the walls are traversed by rays,
which waters down the state of most of the voxels. This causes
a mislabeling into the moving object class (cf. Figure 5(a)). Uti-
lizing our raycasting approach in combination with the iterative
refinement leads to a result in which every single voxel in prox-
imity to a planar surface is classified correctly as occupied (cf.
Figures 5(b)).

The capability of the iterative refinement approach is shown in
Figure 5(c). Although the scene is quite complex from a geomet-
ric point of view, the approximation of the point cloud is very
accurate, for example this can be seen at the ornaments of the
windows, the cars and the powerline between the buildings. Even
the cyclist in the middle of the street that is incorrectly classified
as solid structure can easily be recognized by a human observer.

(a) (b)

(c)

Figure 5. The volumetric representation (a) without and (b,c)
with plane-filtered raycasting (red=solid, blue=moving object).

Planar Surface Segmentation and Approximation – The
method described in Section 4.1 is able to extract the most dom-
inant planar structures such as the ground plane and building fa-
cades (cf. Figure 6), however there are anomalies caused by some
planes which are either small in terms of their geometry or con-
tain only a low number of points. In some cases arbitrary point
clusters are recognized as planes.

In some cases these planes also accidentally mark moving ob-
jects. This happens especially in case of a moving car; when
accumulating multiple laser scans, the object creates a long tube-
like structure. Due to its planar roof, this also leads to a very large
planar patch discovered by the plane detection.
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Very rare cases of improperly oriented bounding boxes were ob-
served. It is assumed that this could be handled in future work by
changing the way the oriented bounding box is determined.

Figure 6. Planar surfaces (gray) extracted from an examplary
point cloud (red). Most planar surfaces are correctly

approximated. Some oriented bounding boxes are not aligned
correctly.

Voxel Labeling – Although a very simple heuristic has been ap-
plied to estimate free space as well as occupied space along planar
structures, the results are persuasive. Free space is reliably carved
out and thanks to the plane-filtered raycasting planar structures
are artifact-free.

As one would expect, the naive state estimation method for the la-
beling of moving objects works only in well observed situations
which correspond to the heuristic used for labeling. Apart from
the direct vicinity of the sensor vehicle, this assumption is not
always given. A further investigation led to the conclusion that
labeling based on a single voxel is not a feasible approach. Utiliz-
ing the direct neighborhood of a voxel may be a way to increase
the robustness of the labeling. But since the raw range measure-
ments supply not only a much higher spatial resolution, but also
a temporal order of range measurements, the authors came to the
conclusion that moving objects are best handled before generat-
ing the volumetric representation.

Anomalies – As mentioned previously, there are planar structures
created by moving objects which mislead the plane extraction al-
gorithm (cf. Figure 7(a)). In addition, there are moving objects
which have been mislabeled partly or as a whole. As can be seen
in Figure 7(b), the artifacts induced by borders is still remaining,
as the traffic light in the example is coated with voxels imply-
ing movement. This has been expected due to experiences from
our previous works and the applied simple state estimation. The
same applies to trees. The tree trunk is mostly recognized as solid
structure, but the leaves and branches are almost completely es-
timated to be part of a moving object (cf. Figure 7(c)). This ef-
fect appears since only sometimes rays hit a leaf or another solid
structure; which is exactly the effect used to determine whether
or not a voxel contains a moving object. Since this applies pretty
well to most parts of the tree, a detection algorithm based on this
effect may be possible.

7.2 Discussion of the Runtime

The runtime per ray is 0.19 ms for normal raycasting. If the plane-
based filter is applied, the runtime per ray grows up to 0.24 ms.
This is an increase in runtime of about 26 percent. Both values
are calculated by averaging over about 39000 points.

(a) (b)

(c)

Figure 7. Anomalies caused by the plane-filtered raycasting. (a)
A moving car classified as solid due to the plane fitted onto its
roof. (b) Object border traversal artifacts. (c) Tree trunks are
solid, but leafs are recognized as moving objects (red=solid,

blue=moving object).

Although the runtime per ray has grown, the overall time per scan
has decreased in comparison to our previous work (Gehrung et
al., 2016). Raycasting within a fixed resolution grid requires
31.3 seconds, whereas the iterative refinement-based approach
presented in this paper only requires 19.9 seconds. This is due
to the fact that during iterative refinement, most of the free space
is only handled at a very crude resolution. No refinement is ap-
plied to a voxel that is believed to contain only free space. Since
a ray mostly traverses free space, this leads to the speedup of
36 percent observed here.

8. CONCLUSION AND FUTURE WORK

This work shows that a plane filter for raycasting can be used to
completely remove artifacts caused by discretization in the vicin-
ity to planar structures. It was also shown that our iterative refine-
ment algorithm leads to a good approximation of a given point
cloud with respect to the geometric reproduction of its structure.
Due to the iterative nature of the approach, it was possible to
speedup the raycasting by 36 percent.

In order to either mark or completely remove moving objects,
there are multiple possibilities. The simple state estimation in-
vestigated in this work shows that voxel labeling without con-
sidering the local neighborhood is not a feasible way. While it
would also be possible to solve the problem by using geometrical
features or scene knowledge based in context of the volumetric
representation, the authors belief that handling the problem based
on the rays directly would lead to a more simple and robust ap-
proach. This is due to the fact that working on rays permits the
exploitation of the higher spatial resolution and temporal order of
the measurements.

Once a reliable voxel representation without moving objects has
been generated, another topic of interest is the actual change de-
tection in large scale urban environments.
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