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ABSTRACT:

The focus of this paper is the processing of data from multiple LiDAR (light detection and ranging) sensors for the purpose of detecting
persons in that data. Many LiDAR sensors (e.g., laser scanners) use a rotating scan head, which makes it difficult to properly time-
synchronize multiple of such LiDAR sensors. An improper synchronization between LiDAR sensors causes temporal distortion effects
if their data are directly merged. A merging of data is desired, since it could increase the data density and the perceived area. For
the usage in person and object detection tasks, we present an alternative which circumvents the problem by performing the merging
of multi-sensor data in the voting space of a method that is based on Implicit Shape Models (ISM). Our approach already assumes
that there exist some uncertainties in the voting space. Therefore it is robust against additional uncertainties induced by temporal
distortions. Unlike many existing approaches for object detection in 3D data, our approach does not rely on a segmentation step in the
data preprocessing. We show that our merging of multi-sensor information in voting space has its advantages in comparison to a direct
data merging, especially in situations with a lot of distortion effects.

1. INTRODUCTION

The detection of persons in the surroundings of a mobile system
has several use cases. Such a functionality can be helpful for the
safe operation of an autonomous system in the direct vicinity of
humans. It is also useful for several kinds of assistance systems,
supporting the operator or driver of such a system. In comparison
to the general detection of moving objects or obstacles, the actual
detection of persons makes it possible to pay particular attention
to their safety and moving patterns. For example, a person can
change the moving direction more abruptly than a car. There are
also several use cases of person detection methods in the field of
human-machine interaction.

Several kinds of sensors are appropriate for the realization of such
a functionality, and a real-world system is often equipped with
different kinds of sensors. This paper is focused on the usage of
LiDAR sensors for such tasks. LiDAR sensors are able to directly
evaluate the 3D features and 3D geometry of the recorded area,
and they can operate independent of external light sources.

A mobile laser scanning (MLS) system can be equipped with
multiple LiDAR sensors to increase the data density or to be able
to record a larger part of the vehicle’s surroundings. This is es-
pecially helpful if a single LiDAR sensor is not able to cover the
whole surroundings due to constructional limitations. However,
the usage of multiple sensors requires some kind of data fusion
between these sensors. To achieve this, a simple approach is to
directly merge the data of the sensors. But given the scanning
nature of each sensor, this results in temporal distortion effects at
areas which are covered by more than one sensor. These distor-
tion effects happen if moving objects occur in the scene, while
∗Corresponding author

the respective data are not recorded at the exact same time by
the sensors. Figure 1 shows an example of such a distortion: the
lower part is recorded by two sensors (green and red) and the per-
son seems to have more than two legs. To prevent such effects,
the multiple sensors have to record every area at the exact same
time. This is hard to achieve due to the scanning nature of most
of today’s LiDAR sensors.

Another kind of data fusion approach is to process the data of
each sensor individually and to merge their processing results.
However, this potentially discards some valuable information and
gets difficult if the overlapping area between the sensors is small,
meaning that a part of a person is only recorded by one sensor
and another part only by a second sensor.

Figure 1. Example of distortion effects caused by the fusion of
data from multiple sensors (green: sensor 1, red: sensor 2).
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2. RELATED WORK

There are different groups of approaches which are commonly
used to detect persons or, more general, objects in 3D data. The
problem is often separated into a segmentation step and a clas-
sification of the segments. For the classification a multitude of
classifiers can be used. One group of classifiers are support vec-
tor machines (SVM). They are trained by determining a hyper-
plane in the feature space of the training data. This hyperplane
separates the different classes from each other and can be used
for the classification of new data later on. Premebida et al. (2014)
presented an approach which uses an SVM to detect pedestrians
in depth images. These depth images are generated by a LiDAR
sensor and an RGB camera. The LiDAR sensor is used to gener-
ate depth values for the pixels of the RGB images. Another ap-
proach uses two consecutive SVMs to detect persons in LiDAR
point clouds. The first one uses several geometric features of the
processed cloud segments. The second one uses the output of the
first and a number of tracking features to generate the output of
the approach (Navarro-Serment et al., 2010).

Bag-of-words approaches are also widely used to solve classifi-
cation problems. They use a dictionary of words which vote for a
certain class. These words are usually represented by feature de-
scriptors. The dictionary is the result of a training process. Fea-
tures are extracted for the processed data and then these features
are matched to words in feature space. The matched words are
used to classify the data based on their votes. Behley et al. (2013)
use a bag-of-words approach to classify point cloud segments.
Instead of only using one bag-of-word classifier, they utilize sev-
eral of them with differently parameterized features. This allows
them to deal better with the characteristics of each point cloud
segment. For example, the data density might vary between the
different segments. It is conceivable to deal with distorted seg-
ments in such an approach by using yet another group of classi-
fiers, which are specially trained and parameterized for the use
with distorted data.

Another way to solve the problem of person detection is not to
classify segments of the data but each individual element of it.
Shotton et al. (2011, 2013) use random decision forests to clas-
sify each pixel of depth images and to detect persons in the data.
They also track several body parts of detected persons. Random
decision forests utilize several decision trees and use them to-
gether to classify data. Each tree is trained with a certain random
element, meaning that the resulting trees are not completely iden-
tical. This prevents the problem of overfitting, which otherwise
often occurs.

In recent years, deep learning with convolutional neural networks
has successfully been used for object recognition tasks. At first,
these approaches were considered for the processing of 2D im-
ages. But they have later been adopted for either depth images
(Socher et al., 2012) or volumetric representations of 3D data
(Maturana and Scherer, 2015; Garcia-Garcia et al., 2016).

Implicit shape models (ISM) are a modification of the classical
bag-of-words approach. They modify this approach in a sense
that the words not only vote for a class but also for a position
of the classified object. They then look for positions in voting
space at which multiple votes converge. This allows them to con-
sider not only the existence of certain features but also their rel-
ative position in the data. Especially in case of 3D data, a lot
of information lies in the geometrical structure of the recorded
area. Therefore, considering the relative position of features is

an obvious improvement of the detection method. ISM were first
used by Leibe et al. (2008) for the object detection in 2D images.
Later they were modified several times to be used for 3D data.
Knopp et al. (2010) use a 3D ISM approach for general object
recognition tasks, which uses 3D SURF features calculated for
well-chosen interest points. Velizhev et al. (2012) use ISM to
detect parked cars and light poles in point clouds of an urban en-
vironment. These clouds have been created by merging several
separate scans. Their approach does not deal with moving ob-
jects and considers them as noise. Our own approach uses ISM
to detect persons in single scans (rotations of the scan head) of
a 360◦ LiDAR sensor (Borgmann et al., 2017). Although most
ISM approaches for 3D data utilize some kind of segmentation,
the basic idea of ISM does not rely on this.

3. OUR APPROACH

In this section, we describe our approach for the detection of per-
sons in 3D data of multiple LiDAR sensors. We assume that the
data of each sensor are provided as streams of general 3D point
clouds, and we assume that the sensor setup has already been cal-
ibrated geometrically. We also assume that there is some kind
of time-synchronization between the multiple sensors, in a sense
that we are able to match together data which have been acquired
at roughly the same time. But due to the effects mentioned in
the introduction of this paper (e.g., scanning sensors), this time-
synchronization does not prevent all temporal distortion effects
between the separate sensors.

Although the focus of this paper lies on the detection of persons
in the data of multiple LiDAR sensors, our approach can also be
used for the detection of other object classes, or for the exploita-
tion of data of a single LiDAR sensor. It is based on our existing
approach (Borgmann et al., 2017) and uses implicit shape mod-
els (ISM). It performs the merging of data between the sensors
in the voting space of the ISM. Our approach already assumes
that the votes in the voting space are not completely exact and
searches for maxima in this space. Therefore, additional uncer-
tainties caused by temporal distortion effects should not have a
large influence on the performance of our method. In compar-
ison, the processing of directly merged point clouds affects the
determined features and is likely to reduce the detection perfor-
mance.

Our approach consists of three main processing steps: prepro-
cessing, casting of votes and search for maxima in the voting
space. While the first two steps are performed separately for ev-
ery point cloud of each sensor, the last one is performed only
once for each set of simultaneously acquired point clouds. Fig-
ure 2 shows a schematic diagram of our approach, considering
data from two sensors. In the following subsections, we describe
the main parts of our approach in more detail.

3.1 Feature descriptor

Our approach uses feature descriptors to describe the local shape
of the processed data. ISM-based approaches assume that an ob-
ject can be classified by such local shape descriptions, and that
they are sufficient to detect objects of certain classes. With re-
gard to the feature descriptors, two general strategies are com-
monly used. One is to consider a smaller amount of highly de-
scriptive features, which are determined for well-chosen interest
points (Knopp et al., 2010). Another strategy is to compute a
larger amount of less descriptive features for a larger part of the
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Figure 2. Schematic diagram of our approach for the processing
of 3D data of two LiDAR sensors

data or the complete data set. This strategy seems to deal better
with noise and occlusions (Velizhev et al., 2012). Since we have
to deal with many occlusions in our use case, we choose the sec-
ond strategy and evaluate fast point feature histograms (Rusu et
al., 2009) as descriptor, which we calculate for every 3D point.

3.2 Dictionary

The dictionary is the result of a training process and it contains
geometrical words, which later vote for the potential position of
a person. The structure of our dictionary is shown in Figure 3.
Each word is described by a feature descriptor and casts at least
one vote. Each vote is cast for an object with a certain class,
the vote has a position vector for that class and it has a weight be-
tween 0 and 1. For the purpose of this paper, we only consider the
classes ”person” and ”not a person”. (Manually) pre-classified
point cloud segments are used during the training process. These
training segments either only contain a single person or no person
at all. The actual training process is explained in greater detail in
our previous work (cf. Borgmann et al. (2017)). At first, feature
descriptors are determined for each point of the processed train-
ing data. These descriptors are used to initialize new words. In
a second step of the training, words which are similar in feature
space are clustered together. This clustering reduces the size of
the resulting dictionary. After the clustering, a word might have
more than one vote. Similar votes of such words are also clus-
tered together and the total weight of each word is normalized to
1. This means that votes of descriptive words, which only cast a
few different votes, have a higher weight than votes of less de-
scriptive words, which cast a multitude of votes.

3.3 Preprocessing

The preprocessing part of our approach serves the purpose to re-
duce the amount of data which has to be processed later on. This
is done to increase the runtime performance. The first step of

Figure 3. Structure of our dictionary

the preprocessing is the estimation of a ground grid. This grid
is then used to perform a removal of data points at ground level.
We have shown that such a ground removal can typically reduce
the amount of data by about 45% (cf. Borgmann et al. (2017)).
The usage of a ground grid allows us to deal with uneven ground,
which would not be achievable by a simple ground plane esti-
mation. The ground grid is generated as follows: at first, each
grid cell is initialized by determining its ground level based on
the height values of the points which lie in that cell. To achieve
this, it is assumed that every point, besides outliers, either be-
longs to the ground level or lies above the ground. If a cell does
not contain any ground points, this method will give incorrect re-
sults. To avoid this, the grid cells are validated in a second step.
We traverse them starting from a well-chosen starting cell which
contains ground. For the traversal, a criterion is used for the max-
imum steepness of the ground, and hence for the allowed height
difference between neighboring cells. Grid cells which cannot be
reached by the traversal without violating the steepness criterion
are considered as cells which do not contain any ground and are
subsequently removed from the ground grid.

In our previous work, we performed a segmentation of the re-
maining data based on a region-growing method. Following that
segmentation, we filtered out segments for which we could as-
sume that they do not represent a person. This filtering step was
done by evaluating simple geometrical features like the aspect ra-
tio or size of the segments. Although these segmentation and fil-
tering steps allowed a further data reduction and a better runtime
performance, they also have their disadvantages: Segmentation
errors may occur, which subsequently cause wrong filtering re-
sults. In addition, such segmentation errors are problematic if the
further processing is at least partly dependent on a correct seg-
mentation. Therefore, we modified our previous approach and no
longer use a segmentation and filtering of the data.

3.4 Casting of votes

The casting of votes consists of three steps. First, a feature de-
scriptor is calculated for each point in the processed point clouds.
Then a search in the dictionary is performed to find the best
matching word for each of the calculated feature descriptors.
These words are used for the actual casting of the votes. Fig-
ure 4a and Figure 4b exemplary show the result of such a vote
casting for data from two LiDAR sensors.

As described earlier, these steps are performed for each sensor
individually. Since the determination of a feature descriptor for a
point is based on its neighboring points, it is likely to be affected
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by distortion effects. Therefore, we avoid a merging of the multi-
sensor data before the feature extraction. In doing so, we cannot
benefit from the higher data density available in areas covered by
multiple sensors. This constitutes a disadvantage in comparison
to approaches that directly merge the point clouds, especially if
the data density is low. However, given our use case, this disad-
vantage is more than compensated by the advantages in dealing
with moving objects in these areas.

(a) Examples of votes cast for a
point cloud from sensor 1

(b) Examples of votes cast for a
cloud from sensor 2

(c) Merged votes of both
processed clouds. The size

represents their weight

(d) Rating of a potential object
position using votes in

surrounding interest area

Figure 4. Illustration of our approach for person detection in
multiple point clouds

3.5 Detection of person positions in voting space

After votes for each of the point clouds have been cast, all votes
are put together and their individual sensor source is ignored fur-
ther on. The next step is the search for maxima in the voting
space. To find maxima, a weighting of votes for potential object
positions is used. Figure 4c exemplary shows the voting space
at the beginning of this processing step: each potential position
has the weight of its original vote in the dictionary. We assume
that a high amount of weight indicates the actual position of an
object. Therefore we evaluate the neighborhood of each potential
position to rate this position. We use the following equation to
determine the rated weight of each potential object position:

Rp =
∑
k∈K

Wk ·Wnorm · e−
Dpk

2

2σ2 (1)

where Rp = Rated weight of position p
K = All potential positions with same class as p
Wk = Weight of position k
Wnorm = Weight normalization factor
Dpk = Euclidean distance between positions p and k
σ = Determines the width of the normal distribution

The above equation adds a fraction of the original vote weight of
neighboring positions to the rated weight of the currently exam-
ined position. This fraction is calculated based on the distance
between the two positions using the Gaussian normal distribu-
tion. Wnorm is a normalization factor. In previous work, we cal-
culated this normalization factor based on the total weight of all
potential positions in the processed point cloud segments. This
works well, as long as only one or only a small amount of objects
end up in a segment. Since we no longer use a segmentation and
since we process multiple point clouds from different sensors, we
changed the calculation of the normalization factor: Now we use
an interest area around the currently processed position for the
determination of its weight. Then Equation 1 only considers po-
sitions inside the interest area for K. The normalization factor is
calculated for this interest area as follows:

IWnorm =
1

N(PI)
(2)

where IWnorm = Weight normalization factor for interest area I
N(PI) = Number of potential positions in interest area I

This factor normalizes the weight based on the number of po-
tential positions in the interest area. The interest area is defined
by a certain radius around the examined position. This normally
works well, but it is susceptible to very isolated potential posi-
tions which only have a small amount or no other positions in
their respective interest area. Therefore we also evaluate a cri-
terion for the minimum amount of other positions with the same
class in this area. If this criterion is violated, the position will not
be processed further. This accords to the basic assumption of our
approach that a correct detection is indicated by a great amount
of votes for positions close to the actual position of the person.

After the weighting, positions with a rating below a certain
threshold are removed. The remaining set of positions are then
assumed to represent correctly detected persons. If several of
these positions end up in close proximity of each other, we as-
sume they represent the same person and merge them together.

4. EXPERIMENTS

We performed several experiments to determine the improvement
that is achievable by merging multi-sensor information in the vot-
ing space of our ISM method for LiDAR-based person detection.
The improvement and performance are evaluated in comparison
to a direct merging of the data. This direct merging is achieved
by combining the 3D point clouds of the separate sensors. In this
section, we first describe the experiments and then present and
discuss their results.
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4.1 Experimental setup

For our experiments we analyzed data which contain persons
captured by multiple LiDAR sensors. In order to generate such
data we used our multi-sensor vehicle MODISSA, which, among
other sensors, is equipped with several LiDAR sensors. The ve-
hicle is shown in Figure 5. For our experiments we used the two
Velodyne HDL-64E mounted in a tilt-angle at the front of the
vehicle. The individual sensors are able to perform 1.3 million
measurements in distances up to 120m. They utilize a rotating
scan head, giving them a 360◦ horizontal field of view. Verti-
cally, the field of view is 26.9◦, which is divided into 64 scan
lines. In the setup used for the experiments, the scan heads of
both sensors rotated at 10Hz. Due to the mounting angle of the
sensors, their fields of view form an overlapping coverage area in
front of the vehicle. Mainly this area has been used for the exper-
iments. We considered the data recorded in 0.10 s as single point
clouds, which corresponds to one rotation of a scan head. Both
sensors are geometrically calibrated and time-synchronized. The
vehicle is equipped with an inertial measurement unit and GNSS
receivers, allowing us to compensate for the vehicle’s movement
while recording 3D LiDAR data (direct georeferencing).

Figure 5. Multi-sensor vehicle MODISSA equipped with
multiple LiDAR sensors

We recorded two sequences in which a person moves within the
coverage area of the sensors, going-in and coming-out of the
overlapping part. We manually annotated these sequences to gen-
erate a ground truth to evaluate our results. The first sequence is
considered to be the ”easy” sequence, in which the person is only
perceived by one sensor most of the time and only crosses the
coverage area of both sensors a few times. In the overlapping
coverage area, the person moved slowly, causing only negligible
distortion effects. The second sequence is considered to be the
”difficult” sequence, containing more movements of the person
between fields of view of both sensors. In addition, the person
moves faster and stays longer in the overlapping coverage area.
Due to these differences, this sequence contains much more dis-
tortion effects. Both sequences were processed by merging the
information in voting space and by a direct data merging, in both
cases using a processing chain that kept unchanged otherwise.
Additional manually annotated point clouds from previous mea-
surement campaigns were used to train the detector. Positive as
well as negative examples were used for the training.

For the evaluation of our results, we use the indicators precision
and recall. The precision shows how many of the detections are

correct and the recall shows how many of the persons in the scene
have been detected. The indicators are defined as follows:

Precision =
tp

tp+ fp
(3)

Recall =
tp

tp+ fn
(4)

where tp = True positive detections
fp = False positive detections
fn = False negative detections

4.2 Results and discussion

Figure 6 shows our results as precision-recall curves. We com-
pare both methods for the two sequences. As shown in Figure 6a,
the direct merging of data outperforms the merging of informa-
tion in the ISM voting space in case of the ”easy” sequence. We
assume that this results from the low amount of distortion effects
in this sequence. In such cases, only small negative influences
on the performance are to be expected if the data are directly
merged. In addition, this direct data merging results in a higher
data density, which benefits the feature extraction and makes it
more accurate. In contrast, the merging of information in the
ISM voting space is based on an individual feature extraction for
the low-density data of each sensor.

In case of the ”difficult” sequence, the performance of the merg-
ing in ISM voting space increases in comparison to the direct
merging of data (cf. Figure 6b). We assume that this becomes
even more obvious in cases with more than two LiDAR sensors,
more overlapping fields of view, moving persons, faster move-
ments, and so on.

As a result, our approach to perform the merging of information
in ISM voting space is only slightly influenced by distortion ef-
fects. On the other hand, the direct merging of data performs
well in cases without distortion effects that affect the data. We
expect that the limits of our merging approach in voting space
are reached as soon as the distortion effects cause the distorted
votes to leave the interest area of the rating process (cf. Section
3.5). However, this would only be possible in cases where objects
move much faster than persons.

Figure 7 exemplary shows some results of our approach. Al-
though we merged the point clouds of both sensors for the vi-
sualization, the actual detection resulted from the merging of in-
formation in voting space. Besides being able to deal with the
described distortion effects, our method can detect persons and
determine their correct position even if the person is only partly
visible.

5. CONCLUSION AND FUTURE WORK

We presented an approach for ISM-based object detection that
is robust against distortion effects caused by the usage of data
from multiple scanning LiDAR sensors. To achieve this, we ex-
tended our existing ISM approach and perform the merging of
multi-sensor information in the voting space of the ISM method,
instead of merging the 3D data directly. This circumvents the
distortion effects when extracting 3D features, while still utiliz-
ing some of the advantages of using multiple sensors in the actual
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(a) Precision-recall curves for the ”easy” sequence
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(b) Precision-recall curves for the ”difficult” sequence

Figure 6. Results for both sequences

Figure 7. Exemplary results: Our approach is robust against
distortion effects and detects partially visible persons

detection step. In an evaluation of our approach, we showed that
our method provides results that are more stable than those result-
ing from a direct merging of the 3D data. When detecting objects
by an ISM approach in combination with a multi-sensor setup,
information merging in voting space should be the preferred way
of sensor fusion, especially if there are many distortion effects
induced by object movements.

In addition, our approach does not rely on a segmentation of the
original data. This prevents segmentation-induced errors caused
by an over- or under-segmentation of the data. This is an im-
provement in comparison to our previous work and many similar
object detection approaches.

In future works we plan to improve the performance of our ap-
proach by utilizing some meta-knowledge about persons. For ex-
ample, a person normally has some contact to the ground. Since
we already determine the ground level, we could use that knowl-
edge to deal with several false-positive detections. In addition,
we plan to add a tracking component to our approach, which al-
lows us to use knowledge about previously detected persons to
improve the performance for the currently processed data. To
achieve this, we plan to include the tracking information to the
voting space of the ISM approach.
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