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ABSTRACT:

This paper shows a method to register point clouds from images of UAV-mounted airborne cameras as well as airborne laser scanner
data. The focus is a general technique which does rely neither on linear or planar structures nor on the point cloud density. Therefore,
the proposed approach is also suitable for rural areas and water bodies captured via different sensor configurations. This approach is
based on a regular 2.5D grid generated from the segmented ground points of the 3D point cloud. It is assumed that initial values for
the registration are already estimated, e.g. by measured exterior orientation parameters with the UAV mounted GNSS and IMU. These
initial parameters are finely tuned by minimizing the distances between the 3D points of a target point cloud to the generated grid of
the source point cloud in an iteration process. To eliminate outliers (e.g., vegetation points) a threshold for the distances is defined
dynamically at each iteration step, which filters ground points during the registration. The achieved accuracy of the registration is up
to 0.4 m in translation and up to 0.3 degrees in rotation, by using a raster size of the DEM of 2 m. Considering the ground sampling
distance of the airborne data which is up to 0.4 m between the scan lines, this result is comparable to the result achieved by an ICP
algorithm, but the proposed approach does not rely on point densities and is therefore able to solve registrations where the ICP have
difficulties.

1. INTRODUCTION

Most registration approaches are based either on human made
linear structures, planar structures or point correspondences. But
these have the disadvantages that human made structures mainly
exist in urban areas and direct point registrations, i.e. ICP (It-
erative Closest Point), are limited to point clouds with almost
the same point density and distribution. Therefore, this paper
focusses on a more general technique which does rely neither
on linear or planar structures nor the point cloud density. The
main application for this registration will be the change detection
of river ground points. By looking on river areas it is obvious
that the river mostly crosses rural areas. So the registration of
bathymetric measurements in river areas must mostly deal with
rural areas. Furthermore, for the change detection information is
needed on the accuracy of the transformed coordinates so that it is
possible to distinguish real geometric changes from data noise or
registration errors. Therefore, an accurate registration is needed
which also considers measurement errors and take them into ac-
count for determining the variance of the resulting transformation
parameters.

The proposed method is based on a regular 2.5D grid generated
from the segmented ground points of the 3D point cloud. It is as-
sumed that initial values for the registration are already estimated,
e.g. by measurements of the UAV mounted GNSS and IMU sen-
sors. Figure 1 shows an overview of the steps for registration
from the two input point clouds to the aligned point clouds.

The input source data is an airborne laser scanner point cloud
where the ground points are segmented based on a voxel grid and
the pulse class of the laser return. Like descripted in a previous
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Figure 1. Sheme of registration: The source point cloud is
generalised with a regular raster DEM and the target Point cloud

is aligned using a minimisation of point to raster distances
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publication of the authors (Boerner et al., 2017), it is assumed
that ground points correspond to the lowest voxels inside the grid
including mainly last pulses. The 2.5D grid is generated from
the ground points with a least squares fit of a regular raster with
smoothing criteria. This grid has the advantage that each raster
cell holds a reconstruction accuracy and that the point to grid dis-
tance can be calculated very fast. The registration is solved with a
least squares approach based on weighted point to raster distances
by minimizing this point to raster distance for the whole point
cloud. The reconstruction accuracy of each raster cell is used
to filter false observations by not considering observations which
belong to raster cells with low accuracy. This is checked by set-
ting a threshold on the variance of the heights of the points inside
a raster cell. Furthermore, this variance of the raster cell height is
also used to adjust the observation weights. Therefore, the statis-
tical model considers not only the accuracy of the 3D coordinates
of each point but also the reconstruction accuracy of the raster.
This reconstruction accuracy is low (high variance) in areas with
less 3D ground points, e.g. vegetation. Outliers are filtered by
using the point to raster distance. Due to the ground point based
raster, such outliers with a high point to raster distance are mainly
non-ground points of the target point cloud. Therefore, the out-
lier removal also filters the ground points in the photogrammetric
point cloud.

The calculation of the transformation parameters can be solved
online, i.e. during the UAV flight, by implementing the least
squares approach in an adaptive manner. Such registration can
be used to enhance the 3D points derived from the aerial laser
scanner acquisition with a higher resolution. Since this can be
done online, the UAV pilot is able to see the preview result in the
field and can decide if the point cloud derived from the captured
images is of sufficient density and accuracy. Another advantage
is, since the landscape itself is used for the registration, that the
approach is independent of urban structures like buildings. This is
shown on an example area of a river basin in southern Bavaria. It
is a small side arm of the river Mangfall which can be considered
as stagnant water due to the very low water velocity. Therefore,
morphodynamic characteristics in the area of the river basin are
not considered. Possible influences of morphodynamic charac-
teristics are minimized by considering the whole landscape. The
chosen area shows no buildings, only vegetation and bare ground.
The landscape shows a locally flat area but there are some hills
and structures of the river basin which makes it possible to use
the landscape for registration. The achieved accuracy of the reg-
istration is up to 0.4 m in translation and lower than 0.3 degrees
in rotation, by using a raster size of the DEM of 2 m. Consid-
ering the ground sampling distance of the airborne data which is
up to 0.4 m between the scan lines, this result is near to the result
which can be achieved with an ICP algorithm but the proposed
approach is able to solve the described registration while ICP is
not.

The registration of UAV-based images and airborne laser scans
should be used in the future for topobathymetric change detec-
tion. Since the approach is not limited to RGB-cameras, a NIR-
camera can also be used which simplifies the detection of vege-
tation areas and water bodies for refraction correction. The point
to grid distance can also be used to determine true geometric
changes and differences caused by measurement, reconstruction
or registration errors, this will be the key advantage of the pro-
posed method for future change detection.

Section 2 shows a short overview of the state of the art in the
context of point cloud registration. The proposed approach is

described in detail in Section 3 and the used data is shown in
Section 4. Results are shown in Section 5 and the summary is
given in section 6.

2. RELATED WORK

Marker less registration for aligning different scans is a currently
important research topic. The topic gets even more important by
thinking of multi sensor registration. Methods in this field are
generally based on geometric characteristics which are used for
alignment. These geometric features used in the geometric ap-
proaches can either be point based features or features extracted
from other primitives (e.g., planes).

The point-based approaches aim for finding corresponding point
pairs in the different scans. The Iterative Closest Point (ICP) can
be seen as the major algorithm in this field. ICP and its vari-
ants works in overlapping areas by minimizing point-to-point dis-
tances (Besl and McKay, 1992; Habib et al., 2010; Al-Durgham
and Habib, 2013). This ICP-like methods have been proven to be
effective in terms of accuracy but the matching of corresponding
points needs good initial alignment and a time consuming match-
ing process. To reduce the searching space for correspondences,
there are also key point based methods which adopt classic key
point descriptors of the photogrammetry in 3D. There are SIFT
based (Böhm and Becker, 2007; Weinmann et al., 2011), DoG
based (Theiler et al., 2014) or FPFH key point descriptors (We-
ber et al., 2015). Another strategy in the search for corresponding
points is to look for intersection points which are considered as
semantic points (Theiler and Schindler, 2012; Yang et al., 2016;
Ge, 2017). In general all these methods are able to create a good
alignment of different point clouds but get into troubles when
dealing with different densities, noisy data or large scale datasets.
Also a slightly different level of detail in the two point clouds can
affect the alignment in a negative way.

There are also high level geometric features which can theoret-
ically increase the robustness of the matching of feature pairs.
For representative features lines (Habib et al., 2005), surfaces
(Ge and Wunderlich, 2016), or planes (Xiao et al., 2013) can
be found. Line features can be further splittet in several repre-
sentations of the line which are represent in a large number of
investigations for registration problems. Some examples of line
representations are intersection lines of neighbouring planes (Sta-
mos and Leordeanu, 2003), spatial curves (Yang and Zang, 2014)
or 3D straight-lines (Habib et al., 2005). For the alignment of
plane features, there are approaches searching for plane corre-
spondences (Dold and Brenner, 2006; Von Hansen, 2006; Xiao et
al., 2012) as well. But the extraction of planar surfaces by region
growing or model-fitting algorithms can be time consuming and
therefore limits the performance of the registration (Wang et al.,
2016; Xu et al., 2017). In the field of segmentation plenty of stud-
ies shows the advantage of using voxel structures, by constructing
a rasterized representation of volumetric elements (voxel) to sim-
plify the dataset. These voxel structures can also overcome the
uneven point density. Registration approaches which use such
voxel structures can be found in the field of coarse registration
by using EGI features (Wang et al., 2016) or planar surfaces ex-
tracted from the raw point cloud (Xu et al., 2017).

By comparing these two groups of registration approaches, it can
be said that point based approaches are mostly located in the
field of fine registration because of high accuracy (especially the
ICP is used here). Beneath the point based approaches, the high
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level geometric primitives can overcome problems in different
point densities but the majority of them focuses on residential
or other urban areas. So the high level primitives will get into
trouble when dealing with rural areas like in forests or bathy-
metric applications. Therefore, the proposed approach aims for
a point based registration using the landscape itself as geometric
primitive. This will combine the high accuracy of a point based
approach and the stability of a geometric generalisation against
noise and different density.

3. METHOD

The proposed method can be seen as an adoption of the ICP. But
with the main difference, that the proposed method doesn’t as-
sume point correspondences, which are hard to find consider-
ing multi sensor data. Instead of point distances, the proposed
method minimizes distances of 3D points to 2.5D grids. There-
fore, only one point density takes account to the final registration
accuracy, instead of the point density of each point cloud. The
whole process is summarised in Algorithm 1 and explained in
detail in the Sections 3.1 and 3.2. Beneath the iterative minimiz-
ing approach (Section 3.1 ) there is also a regularisation included
(Section 3.2) which efficiently filters outliers in the target point
cloud.

Data: LiDAR and Photogrammetric point cloud
Result: transformation parameters
G = calculate Grid(LiDAR);
t = initial threshold;
M = initialise Model();
while iteration < maximal iteration do

foreach point p ∈ photogrammetric point cloud do
d = calc distance point to grid (G,p);
fill histogramm (d);
if d < t then

update Model(M,G,p);
end

end
∆x = calculate Parameter update();
if ∆x < ε then

return final parameters;
else

update Parameters(∆x);
end

end
Algorithm 1: Algorithm summarise

3.1 The minimizing problem

The proposed approach aims for the minimisation of the distances
of a single 3D point to a source 2.5D grid. This grid can be
described in a mathematical way as S(x, y) which should be a
continuous function. One point on the grid is given by the 3D
coordinates

(
x; y; S(x, y)

)T . The continuity of the function
S(x, y) is reached by a bilinear interpolation of the point inside
a single grid cell.

S(x, y) =(1− s)(1− t) · zi,j
+ (1− s)t · zi,j+1

+ (1− t)s · zi+1,j

+ s · t · zi+1,j+1 (1)

with:

s = x− xi : difference of the x coordinate of the current point
to the x coordinate of the anchor edge(xi) on the grid
inside the range [0,1]

t = y − yj : analogue to s with the y coordinates
of the current point

z = heights of the grid cells edge points
(i.e. the z coordinate of each edge of the current grid cell)

i,j = coordinates of the anchor edge of the current grid cell,
corresponding to the given x,y values

The height of each grid cell are estimated like described in Förstner
and Wrobel (2016) by the optimisation of

Ω =
1

σ2
n

∑
m

(lm − zm)2 +
1

σ2
δ

∑
i,j

δ2i,i + 2δ2i,j + δ2j,j (2)

with the regularisation terms

0 = δi,i = ai−1,j − 2ai,j + ai+1,j (3)

0 = δj,j = ai,j−1 − 2ai,j + ai,j+1 (4)

0 = δi,j = ai−1,j−1 − ai−1,j − aj,i−1 + ai,j (5)

and with:
lm = z-coordinate of observation point m (S(x, y))
zm = z-coordinate of point m on the grid
σ2
n = variance of observation point
σ2
δ = variance of the regularisation term

The parameters of the transformation to estimate are the ones of
the 3D similarity transformationtxty

tz

 = m · R

x− x0y − y0
z − z0

 (6)

with:
x0, y0, z0 = translation along x,y,z axis
x, y, z = coordinates of the point to be transformed
m = scale
R = rotation

The observation of a single point pn =
(
xn yn zn

)T is

fn = S(txn, tyn)− tzn (7)

where the transformed coordinates are generated by the use of
Equation 6 with the use of pn. The transformation parameters
are estimated by the optimisation of

Ω =
∑
n

1

σn
f2
n (8)

where σn is the variance of the single observation.

The optimisation is solved by the least squares method which
gives an analytical formula for the parameters:

x̂ =

(
AT
(

BQBT
)−1

A
)−1

AT
(

BQBT
)−1

f (9)

with:
x̂ = vector of the parameters
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A = functional matrix (derivatives of the observations
with respect to the parameters pi)

=

 δf1
δp1

... δf1
δpm

... ... ...
δfn
δp1

... δfn
δpm


B = matrix of conditional observations (derivatives of the

observations with respect to the coordinates xi)

=

 δf1
δx1

... δf1
δxn

... ... ...
δfn
δx1

... δfn
δxn


Q = covariance matrix of observations
f = vector of fn for each point

To simplify the equation it is assumed that there are no corre-
lations between the 3D points of the target cloud or between the
cells of the source grid. This is truly not the case but simplifies the
equations such that the parameters can be estimated in real time
(meaning on the UAV flight) and no full matrix must be saved,
which saves memory resources as well. Especially by consider-
ing big number of points in the target point clouds, the saving of
working memory gets very interesting. In future works, it can be
tested how this simplicity influenced the final registration accu-
racy compared to the estimation speed up. With no correlations,
Q becomes a diagonal matrix and the multiplication result BQBT

becomes a diagonal matrix with scalar values for a single point.
For a single observation point pn it becomes

bqbn =

3∑
j=1

(
δfn
δxj

)2

σn;j + σz;n (10)

with σn;j as the variance of the j-th coordinate of point n. The
variance of the raster cells height to the point n is given as σz;n.
This value can be calculated based on the stochastical output of
the least squares reconstruction of the source grid. Therefore, the
stochastical model for the observation n considers reconstructed
grid cells with high variance in a lower weight for the observation
itself. It is also noteworthy, that if the variances of 3D point co-
ordinates are not taken into account, the observation weight fully
consist of the reconstruction accuracy.

Since the shown functional model is a non-linear model, there are
initial values needed to solve the derivatives. These initial values
are fine tuned in an iterative way by calculating the parameter up-
date in a single iteration. The iterative process is aborted if either
a maximum number of iterations is reached or if the parameter
update is small enough to be considered as convergence.

3.2 Outlier removal

The proposed approach considers a grid of ground points as source.
Therefore, an outlier removal can also be seen as a binary clas-
sification which returns the ground and non ground points in the
target point cloud. This outlier removal is realised by a dynamic
threshold during the iterative registration process. Therefore only
points whose distance to the grid is below the dynamic threshold
are considered as observations for the registration. The distance
threshold is determined with a histogram based approach.

Each point in the target point cloud is considered to build a his-
togram of distances to the source grid within every iteration. To
define the distance threshold which divides ground from non ground
points, some conditions are assumed. First the initial values must
be good enough to create the highest peak of the ground points
in the histogram (e.g. there are no rotations of 90 degrees or

Figure 2. Sheme of threshold definition: The bins discretize the
point to grid distances, values are the number of points

corresponding to one bin, the threshold t is searched on the right
side of the bin with maximal value.

something similar). And second, ground points are the major
count of points in the target data. With these conditions, the dis-
tance threshold can be found in the histogram of distances on the
right side of the highest peak. Therefore, the dynamically de-
termination of the distance threshold is to find the bin inside the
histogram which is below a percentage threshold of the highest
value and on the right side to the highest value. Figure 2 ex-
emplary shows the determination of the distance threshold (t) in
the histogram of distances. The values are the number of points
corresponding to the distance which is discretized with the corre-
sponding bin.

This outlier elimination is important for the registration approach,
because of the the fragility of the least squares method in case
of outliers. Furthermore, it generates a binary classification to
ground and non ground as a further output of the whole registra-
tion process.

4. DATA

For testing, an area of the river Mangfall in Bavaria, Germany was
chosen. The chosen area is located in a side arm of the river which
can be considered as an area of standing water. Here are some
beaver dams which were the main focus of a past research project
and were captured in 3D with some UAV flights in the past. These
beaver dams are structures which are to small to be captured by
airborne laser scanning and therefore, exemplary show the need
of spatial enrichment of airborne data.

The airborne LiDAR Data was captured with an Riegl VQ880 Li-
DAR sensor which uses a full waveform processing and a green
wavelength for the LiDAR measurement. Therefore, the data can
distinguish between ground and vegetation or water points. For
the UAV flights a Falcon 8 UAV was used with a Sony Nex 7 cam-
era which captures 24 MPix images. Figure 3 shows an overview
of the 3D data in the chosen area. The beaver dam is located in
the marked area of Figure 3b and shown in a closer look in Figure
4.

The data used for evaluating the proposed method have differ-
ences in the attributes which must be considered as border condi-
tions of the matching approach. At the one hand the radiometrics
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(a)

(b)

Figure 3. Data overview, a) LiDAR Data, b) photogrammetric
data, the marked area shows the area of the beaver dam which

can be seen in a closer look in Figure 4

can’t be considered as similar since the one data is derived from
RGB images and the other one from the measurements of a Li-
DAR system. Therefore, the intensity values differs a lot. On
the other hand, the geometric information is slightly different as
well. Where are differences in the point density of the 3D data
and also in the level of detail, as mentioned above. The ground
sampling distance of the LiDAR data is 1 to 4 dm and the ground
sampling distance of the potogrammetric data is 0.6 dm. There-
fore, the photogrammetric point cloud captures more detail but
also includes more noise.

(a)

(b)

Figure 4. Beaver dam a) in LiDAR data, b) in photogrammetric
data

Furthermore, the landscape itself can be considered as a locally
flat landscape in this region. Therefore, the test side shows sev-
eral border conditions which the proposed method must handle.
The method must be able to register multi sensor data by using a

geometric approach, since there are no intensity similarities. The
registration have to be robust against noise, differences in point
densities as well as slightly different level of details.

5. RESULTS

The proposed approach is evaluated to get knowledge about two
things: first the accuracy of transformation parameters in the shown
area and second the influence of initial values. As mentioned
in Section 3, the proposed approach needs good initial values
to optimise the transformation. What are good initial values is
therefore also tested in this section. The LiDAR point cloud
is georeferenced by direct georeferencing using the GNSS and
IMU sensor in the air plane. The photogrammetric point cloud
from the UAV taken images is georeferenced using ground con-
trol points. Therefore, these two point clouds can be considered
as registered which is used for comparison between the proposed
automatic approach and a control point based approach. As a
second comparison of the accuracy of the transformation param-
eters, the same LiDAR point cloud was registered to the source
grid with an initial translation and rotation different to the identity
transformation (transform one point to himself). Since it is the
same data, the transformation parameters should be the one for
the identity transformation. Differences of the resulting parame-
ters can therefore be considered as accuracy differences. Further-
more, the evaluation of the influence of initial values is done by
changing the initial values to bigger differences from the identity
transformation.

For the evaluation of the transformation accuracy a slightly wrong
position up to 5 m is considered, which can be considered as
the accuracy of the UAVs GNSS sensor. The rotation error was
considered as up to 3 degrees, which also can be considered as
the UAVs IMU accuracy. This initial alignment is visualised by
the overlapping point clouds in Figure 5. The misalignment can
be seen in the marked area of the water body where radiometric
break lines are visible in the LiDAR data. With these initial pa-
rameters the output of the proposed automatic approach can be
compared to a control point based approach.

Figure 5. Initial alignment used for fine registration the marked
areas show the visible misalignment

Figure 7 shows visually results of the proposed approach with
the given initial alignment. In comparison Figure 6 shows visual
results of ICP (the implementation in cloud compare 1 was used)
with the same initial parameters. A visual inspection of the radio-
metric break lines of the marked area in the LiDAR data shows
that, the ICP has difficulties to handle this registration problem

1http://www.danielgm.net/cc/ (visited on 02.07.2018)
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Figure 6. Result of ICP with given initial alignment (see Figure
5) the marked areas show the comparison between the initial

alignment

Figure 7. Result of the proposed approach with given initial
alignment (see Figure 5) the marked areas show the comparison

between the initial alignment

while the proposed approach creates a suitable alignment. One
possible reason for the difficulties of ICP can be the varying point
density. By switching the target and source cloud to the source
being the denser photogrammetric point cloud and the target be-
ing the LiDAR cloud, the alignment gets even worse which show
an existing influence of point density in the ICP. Another possi-
ble reason can be the slightly different level of detail between the
smooth LiDAR point cloud and the high resolution photogram-
metric one. This difference makes it difficult to find one-to-one
point correspondences. The proposed approach optimises dis-
tances to a continuous surface which can be calculated to each
target point and enables an average between the two level of de-
tails.

A numerical evaluation results in the following numbers: the
translation can be determined with an accuracy of about 4 dm
and the rotation accuracy can be determined below 0.3 degrees.
Considering a used grid size of 2 m and the ground sampling dis-
tance of the LiDAR cloud of about 5 dm the translation is inside
the ground sampling distance. As a visual result of the outlier
removal Figure 8 shows the raw input as well as the filtered out-
put for the photogrammetric point cloud. The marked areas show
successful filtered vegetation points which are determined as out-
liers. The final threshold is below 4 dm, which efficiently filters
fallen trees out of the ground layer but includes little grass hills
or structures in the river bed.

The numerical evaluation is also summarised in Table 1. A com-
parison between an ICP approach shows that the ICP gets into
troubles with the given dataset. The difference of the transfor-
mation parameters between the ICP and the proposed approach
reaches the maximal values of 22 m in translation and 3 degrees
in rotation.

Method ICP proposed
difference
(ICP-
proposed)

translation x [m] -22.08 -0.23 -21.85
translation y [m] 7.61 6.18 1.43
translation z [m] 2.97 -0.53 3.5

rotation
around x [degrees] -0.92 -0.85 -0.07

rotation
around y [degrees] 0.75 -2.04 1.95

rotation
around z [degrees] -1.95 0.76 -2.71

Table 1. numeric results for registration of LiDAR and
photogrammetric point cloud

(a)

(b)

Figure 8. Results shown with eliminated outliers in marked
areas: a) original data, b) data without outliers

As another visual result Figure 9 shows the aligned region of the
beaver dam. The spatial enrichment of the photogrammetric point
cloud can be seen and the scan lines can be located on the beaver
dam.

The evaluation of the initial parameters shows that suitable trans-
formation results are reachable with a wrong position initialisa-
tion up to -5 to +5 m and a wrong rotation initialisation up to -8 to
8 degrees. These values are determined considering the opposite
(translation or rotation) parameters as very close to the identity. If
both parameters are considered as wrong, the borders are slightly
different. In sum the translation can be inside -3 to +3 m and
the rotation between -6 and 6 degrees simultaneously. These val-
ues also show, that initial values captured by good UAV sensors
should be enough. If these sensors are not given or have a lower
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Figure 9. Results shown on the exemplary beaver dam

accuracy a coarse registration should be considered.

Numerical values for the registration error are given in Table 2
and compared to the ICP approach. These values are estimated
using the same point cloud and initial parameters are given in the
table. This evaluation is some kind of unfair because the ICP gets
the exactly same point cloud which means that the ICP reaches
100 percent overlap while the proposed approach needs to han-
dle a grid with 2 m cell size. But the evaluation shows that the
proposed approach is able to handle the grid size and creates ac-
curacies which are near to the ICP ones.

Method initial ICP proposed
translation x [m] 1.0 -0.11 -0.42
translation y [m] -3.0 0.07 -0.04
translation z [m] 5.0 -0.004 -0.01

rotation
around x [degrees] 0.97 0.0009 0.001

rotation
around y [degrees] -1.95 -0.0009 -0.002

rotation
around z [degrees] 2.98 0.003 -0.27

Table 2. transformation error evaluated on the same point cloud
with the shown initial values

Since the shown scene shows a locally flat area, there is one de-
gree of freedom left in the translation parameters and also one
degrees of freedom in the rotation parameters. Therefore this
evaluation on the shown scene is to pessimistic for the actually
approach. This can also be seen, on the x translation, which
gives the dm accuracy, the other parameters have an error on cm
level. So for future evaluations another scene which shows a bet-
ter landscape for registration should be considered.

Compared to an ICP approach it can be said that the proposed
approach creates similar results, but works also in strong border
conditions. The approach handles different point density as well
as differences in the level of detail of the landscape.

6. CONCLUSION

This paper presented a registration method for multi sensor point
clouds and shows an example of a registration of airborne Li-
DAR data and photogrammetric data from UAV taken images.
Beneath the multi sensor application and therefore the need for a
geometric approach, there are other constraints which are taken
into account and the proposed approach is able to handle these

constraints. The main focus for applications goes to a rural area.
Therefore it must be considered that no man made objects are
in the data. Furthermore, the different sensor configurations also
create differences in the geometry, which are different point den-
sities or slightly different level of details. Another constraint can
be seen by the further application for the registered data. To
define significant changes of the geometry which does not rely
on measurement or registration errors there is a need to have the
variance of the transformed 3D points of one point cloud to the
source. The proposed approach is able to consider the measure-
ment accuracy of each point in the two point clouds and take this
into account to determine the transformation parameters as well
as the variance of this parameters. With this stochastical model,
the variance of a transformed point from the target point cloud to
the source can be calculated and taken into account for definition
of a significant change.

The proposed approach uses a least squares minimisation of point
to grid distances. The source grid is calculated from ground
points. Therefore, an outlier removal creates a binary classifica-
tion into ground and non ground points during the registration
process. The achieved registration accuracy can be compared
with control point based or ICP based methods. But compared
to the ICP the proposed approach have no limitations due to dif-
ferent point densities or level of details. However, there is the
need of good initial parameters, as by ICP-based methods. These
initial parameters can be get from UAV mounted sensors or from
the output of an coarse registration.

Future work aims for a change detection in the river bed. These
change detection should divide geometric changes from changes
caused by registration or sensor errors. Therefore the stochastical
grid as well as the accuracy of the transformed point to this grid
is needed. So for the change detection the same distances are
used as in the proposed approach for registration. But the change
detection will include a statistical test if the distance is significant
or not. To exclude potential water points inside the registration, it
is possible to mark the water cells of the grid as bad registration
areas by assuming a high variance here and therefore ignore all
observations which belongs to these cells.
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