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ABSTRACT:

Segmentation is the fundamental step for recognizing and extracting objects from point clouds of 3D scene. In this paper, we present a
strategy for point cloud segmentation using voxel structure and graph-based clustering with perceptual grouping laws, which allows a
learning-free and completely automatic but parametric solution for segmenting 3D point cloud. To speak precisely, two segmentation
methods utilizing voxel and supervoxel structures are reported and tested. The voxel-based data structure can increase efficiency and
robustness of the segmentation process, suppressing the negative effect of noise, outliers, and uneven points densities. The clustering
of voxels and supervoxel is carried out using graph theory on the basis of the local contextual information, which commonly conducted
utilizing merely pairwise information in conventional clustering algorithms. By the use of perceptual laws, our method conducts
the segmentation in a pure geometric way avoiding the use of RGB color and intensity information, so that it can be applied to
more general applications. Experiments using different datasets have demonstrated that our proposed methods can achieve good
results, especially for complex scenes and nonplanar surfaces of objects. Quantitative comparisons between our methods and other
representative segmentation methods also confirms the effectiveness and efficiency of our proposals.

1. INTRODUCTION

Point clouds obtained via laser scanner, photogrammetry, and
range imaging cameras are widely used to represent 3D spatiality
information of scenes, and applied in a wide variety of fields,
including geodesy, geomatics, geology, forestry, and archeology.
For all the mentioned applications, the 3D scene reconstruction
is drawn increasing attention for many related tasks such as
constructing virtual reality, creating digital surface models, or
monitoring construction projects. In particular, point clouds
have been proved to be a suitable data source for the task
of recognizing and reconstructing geometric objects from 3D
scenes, as 3D points measured can provide 3D coordinates of
objects directly. However, for most of the indoor and outdoor
scenes, they normally consist of different objects, combinations
of complex structures, surfaces, and sections. Thus, in practical,
individual objects are commonly identified from the scene prior
to the recognition procedure.

To this end, for unstructured raw point clouds, segmentation are
normally adopted to partition the 3D scene into meaningful seg-
ments (e.g., the group of points having geometric consistency).
An effective segmentation algorithm can facilitate the removal
of disturbances and largely release the burden of work, but the
performance of conventional algorithms is always restrained by
the complex environment of real outdoor scenes. The occlu-
sion frequently occurring in the dataset of outdoor scene also
limit the performance of commonly used methods, as most of
the segmentation criteria use merely the pairwise information
between elements (e.g., normals of points), which is sensitive to
missing points and incomplete structures caused by occlusions.
Moreover, the data quality is also a leading cause of inferior
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segmentations. For instance, outliers and uneven points den-
sity can significantly affect the results resorting to point-based
geometric features (e.g., normal vector). Hence, apart from the
effectiveness, the reliability plays a vital role in the development
of segmentation algorithms as well. On the other hand, as the
point cloud segmentation is computationally intensive, efficiency
is also crucial to the point cloud processing and should be con-
sidered when coping with large-scale datasets.

To address those aforementioned problems and to efficiently
acquire geometric segments from large-scale point clouds, we
present a novel point cloud segmentation strategy combining the
voxel structure and graph-based clustering using the perceptual
grouping laws, which has not been applied for point cloud seg-
mentation so far. The voxel structure is designed for suppressing
negative effects of outliers and uneven distributed densities. We
adopt the octree-based voxelization to organize the point cloud,
facilitating the traversing of neighborhoods. Using voxel struc-
ture to represent points can improve the efficiency of processing
as well. The graph-based clustering is to cluster voxels into
segments, the connection of each voxel is estimated via the graph
model encapsulating the local information of its neighborhood.
What is more, a novel strategy is proposed to encode weights of
graph edges by adopting the perceptual laws, which also termed
as gestalt principles. Based on these ideas, we present two seg-
mentation methods, namely voxel- and graph-based segmentation
(VGS) and supervoxel- and graph-based segmentation (SVGS).
We evaluate our proposed methods by performing experiments,
with qualitative and quantitative results compared with those of
the state-of-the-art segmentation algorithms. We also conduct
experiments using various datasets, namely laser scanned and
photogrammetric point clouds from the same scene, in order
to compare and analyze the performance of approaches when
coping with datasets from significantly different sources.
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1.1 Related work

The point cloud segmentation has been studied and explored for
decades, with methods and algorithms in different disciplines
including computer vision, computational geometry, robotics,
photogrammetry, remote sensing, machine learning and statistics
exploited (Vosselman and Maas, 2010). Summarily, the relevant
point cloud segmentation approaches can be grouped into three
major categories: the model-based methods, the region growing-
based methods, and the clustering-based methods (Vo et al.,
2015).

The model-based methods evaluate the points in terms of their
geometric features (e.g., spatial position and normal vector) in
a local or global scale using parametric models. The points
meeting the criteria of fitting parametric models (either in spatial
or parametric domain) are segmented from the point cloud as one
individual object. The 3D Hough Transform (HT) (Ballard, 1981)
and the RANSAC (Schnabel et al., 2007) are two kinds of widely
used algorithms (Vosselman, 2013). The HT and it variations
utilize a voting strategy for extracting planes (Vosselman et al.,
2004), cylinders and spheres (Rabbani et al., 2006) from the
point cloud in the parameter domain. Whereas RANSAC and its
extensions directly estimate optimal parameters of the geometric
models in spatial domain (Schnabel et al., 2007). The model-
based methods commonly deem robust to noise and outliers
and provide optimized parameters for modeling simultaneously.
Nevertheless, when dealing with large-scale datasets, they nor-
mally require normally a large computational cost caused by
the iteration process of robust estimator or the voting procedure,
leading to high memory consumptions (Vo et al., 2015). Besides,
challenges arise they are used to segment objects having no ex-
plicit mathematical expressions like irregular curvature surfaces.

The region growing-based ones iteratively examine points in
regions of initial seeds and checks whether they belong to the
group of the seed or not via a given criteria. The growing criteria
and the selection of seeds are two influential factors for this kind
of methods. The normal vectors consistency (Tóvári and Pfeifer,
2005), the smoothness of surface (Rabbani et al., 2006), and
the curvatures (Besl and Jain, 1988) of the points are commonly
used growing criteria. Recently, in Nurunnabi et al., (2012), the
Principal component analysis (PCA) based local features are also
used as growing criteria for their saliency and distinctiveness.
For the selection of seeds, the density of seeds determines the
size of segments while the location of seeds significantly affect
the quality of segments. The region with the smallest curvature
(Nurunnabi et al., 2012) or the surface with minimal residual of
a plane fitting (Rabbani et al., 2006) are frequently identified
as seeds, in order to avoid the boundaries and edges. Theoreti-
cally, region growing-based methods can keep the boundaries of
surfaces well, but they are sensitive to noise and outliers. For
example, over-segmentation can easily occur for large curvature
objects (e.g., pipes with a long radius elbow joint) although the
surfaces of which are smoothly connected (Su et al., 2016). On
the other hand, their performances largely resort to the selection
of seeds (e.g., the location and distribution of seeds).

The last major kinds are the clustering-based ones. This kind
of methods examine the neighboring points in a defined neigh-
borhood by their proximity or similarities in the attribute or
spatial spaces on the basis of the geometric characteristics and
spatial coordinates. Points having a proximity or similarity lower
meeting the acceptable threshold are assessed as connected ones,
which will be aggregated into one cluster. Euclidean distance

(Aldoma et al., 2012) and normal vector (Vo et al., 2015) are
representative instances used as criteria for clustering. For the
clustering algorithms, the k-means (Morsdorf et al., 2003), mean-
shift (Comaniciu and Meer, 2002), and connected relations (Stein
et al., 2014) are mostly adopted ones. Unlike region growing-
based methods, the clustering-based ones require no seeds. Note
that the computational cost of clustering-based methods lies on
the complexity of calculating the similarities or proximity of
points. Complex clustering criterion will greatly increase the
computational burden. Besides, the setting of clustering thresh-
olds is also influential to the granularity of clusters segmented.

Recently, there is a tendency that the clustering of points is also
formulated as graph construction and partitioning problems. The
graph model can explicitly organize the elements (e.g., pixels
or points) with a mathematical sound structure (Peng et al.,
2013), encapsulating the contextual information for deducing
hidden information from the given observations. Representative
examples include the graph-based approaches such as Min Cuts
(Golovinskiy and Funkhouser, 2009), and Graph segmentation
(Green and Grobler, 2015) and the Markov-based approaches
like the Markov Random Field (MRF) (Hackel et al., 2016a) or
Conditional Random Field (CRF) (Rusu et al., 2009). For graph-
based methods, a large topology radius of constructed graphs can
provide better results in segmentation, but a dense and large graph
yields a heavier computational cost (Cour et al., 2005).

In addition, the voxel-based segmentation methods draw in-
creasingly attention recently. Instead of using points as basic
units, 3D regular cubes occupied by points are used as basic
segmentation elements (Wang and Tseng, 2011). The octree-
structured voxelization is the most commonly used approach. In
Vo et al., (2015), the octree structure and the region growing
process are combined for the fast surface patch segmentation.
Whereas, the octree-based voxel structure combined with graph-
based sub -splitting is applied to segment cylindrical objects
in industrial scenes (Su et al., 2016). Using voxel structure
apparently reduces the computation cost and suppress negative
effects of outliers and varying point densities. Even so, selecting
an appropriate resolution of voxel is crucial to the accuracy of
segments and preservation of details. Lately, the supervoxel
strategy is introduced and applied to the basic voxel structures,
better preserving the boundary features of segments and further
improving the computation efficiency (Stein et al., 2014, Pham
et al., 2016, Ramiya et al., 2016). However, the supervoxel
method is merely an over-segmentation of data, how to cluster
over-segmented patches into segments is still a challenging task.

1.2 Our contributions

The following are the contributions that are specific to this work:
1) A bottom-up point cloud segmentation strategy, combing the
voxel structure and graph-based clustering encoding the local
contextual information, is proposed. Two novel segmentation
methods (i.e., VGS and SVGS) are reported, and they are proved
to be effective and efficient for 3D scene segmentation. 2) Instead
of using conventional criteria, the perceptual grouping laws are
adopted to assess geometric cues used in our methods, providing
a purely geometric and unsupervised solution for segmentation.
3) Experiments using both laser scanned and photogrammetric
point clouds of the same scene are conducted. The performance
of proposed methods coping with datasets from different sources
is analyzed.
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Figure 1. Workflow of voxel- and graph-based segmentation strategy

2. OVERVIEW OF METHODOLOGY

Conceptually, the implementation of our proposed segmentation
strategy concerns three core steps: the voxelization of point
cloud, the calculation of geometric cues, and the graph-based
clustering. In the first step, the entire point cloud is voxelized
into the 3D grid structure. For the VGS method, the voxel is the
basic unit for segmentation, while for the SVGS method, voxels
will be further clustered into supervoxels as basic units, having
geometric consistency and spatial dependency. In the subsequent
step, in order to estimate the geometric cues between basic units
(i.e., voxels or supervoxels), the saliency of each basic unit is
calculated by the use of points set within it. Depending on these
saliencies, geometric cues between basic units are estimated ac-
cording to perceptual grouping laws, so that the affinity between
voxels or supervoxels can be assessed by the homogeneities of
geometric cues, which will be further used for weighting edges
in the graph model. In the last step, the graph-based clustering
is conducted to merge voxels or supervoxels in terms of their
affinity under a greedy frame, in order to generate complete
segments. The graph model is constructed for each basic unit
in its vicinity, encoding the local contextual information in the
form of adjacency graph. By applying the graph segmentation
algorithm, the connectivity of each unit can be estimated, so that
all the connected units can be aggregated into complete segments
by a simple clustering. The processing workflow is sketched in
Fig. 1, with the key steps of involved two methods and sample
results illustrated. The detailed explanation of VGS and SVGS
methods will be introduced in the following sections.

3. VOXEL- AND GRAPH-BASED SEGMENTATION

The VGS method is the basic solution implemented via our
strategy, utilizing the voxel structure and the fully connected local
graph, reported in our recent work (Xu et al., 2017).

3.1 Voxelization of point cloud

In this work, we adopt the octree-based voxelization to rasterize
the entire point cloud with 3D cubic grids. Under the octree

structure, the nodes have explicit linking relations, which facil-
itates the traversal for searching the adjacent ones (Vo et al.,
2015). It is noteworthy that selecting the size of voxels is a trade-
off between the efficiency of processing and the preservation of
details. Generally speaking, the smaller the voxel, more details
will be kept. In our work, the size of voxel is determined
according to the demands of application empirically.

3.2 Calculation of geometric cues

Geometric cues stand for the geometric relations between two
voxels, including two steps: voxel saliency estimation and geo-
metric cues using perceptual laws.

3.2.1 Voxel saliency estimation The saliency of each voxel
can be regarded as the unary feature of each voxel delineating the
points within it, including three factors: the spatial location, the
geometric features, and the normal vector of the points.

The spatial position refers to the spatial coordinates of the cen-
troids ~X of points within a voxel V . For geometric features, the
eigenvalue based geometric features (Weinmann et al., 2015) are
used, delineating the 3D properties of points inside a voxel, re-
lated to the local shape features encapsulating the linearityLe, the
planarity Pe, the scattering Se, and the change of curvature Ce
(Weinmann et al., 2015). These four feature sets are calculated
via eigenvalues e1 ≥ e2 ≥ e3 ≥ 0 from eigenvalue decomposi-
tion (EVD) of the 3D structure tensor (i.e., covariance matrix)
of points coordinates. As stated in Weinmann et al. (2015),
Le, Pe, and Se represent 1D, 2D, and 3D features of points,
respectively, whereas Ce reflects the curvature of the surface.
For the normal vector ~N of points within V , it is obtained from
the eigen vectors of the points. Considering noise and outliers
always existing in point clouds, the estimation of eigenvalues and
eigenvectors will be susceptible to such disturbances. We adopt
the weighted covariance matrix proposed in (Salti et al., 2014),
assigning smaller weights to distant points in the covariance
matrix of coordinates.

3.2.2 Geometric cues using perceptual laws Perceptual
grouping laws has a long history of use in the field of computer
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Figure 2. Connection types. (a) “stair-like”, (b) convex, and (c)
concave connections.

vision for recognizing objects from the scene, refering to determi-
nation of regions of the visual scene belonging to the same part
of higher level perceptual units (Richtsfeld et al., 2014). Three
representative principles of the grouping laws are selected as our
clustering criterion: proximity, similarity, and continuity.

The proximity principle states that elements are likely to be
categorized into a same group if they are close to each other.
Whereas the similarity principle claims that elements tend to be
summed into a group when they resemble each other. For the
continuity principle, it indicates that the oriented elements are
considered to be integrated into one part in case that they can be
aligned with each other.

To measure the proximity of Vi and Vj , we utilize the Euclidean
distance Ds

ij = || ~Xi − ~Xj || between the centroids ~Xi and ~Xj
of Vi and Vj . Since the shape similarity denotes the conformity
between the shapes of points within voxels, the stronger the
similarity between the geometric features of voxels, the more
similar the points within the voxels are. For the Ds

ij between
Vi and Vj in this 4 dimensional feature space is calculated using
the histogram intersection kernel (Papon et al., 2013). For the
connectivity, it corresponds to the smoothness (Awrangjeb and
Fraser, 2014) and convexity criterion (Stein et al., 2014) formed
by the points surfaces of adjacent voxels. In Fig. 2, we illustrate
three typical connections between voxels. The smoothness is
defined by the angle difference of normal vectors ~Ni and ~Nj .
The convexity criterion stands for the 3D concave or convex
relationship connecting surfaces formed by the points of two
adjacent voxels, inferred from the relation of ~Ni and ~Nj and
the vector ~dij joining their centroids ~Xi and ~Xj . As shown
in Figs. 2, the angles αi and αj are calculated, where ~dij =
( ~Xi− ~Xj)/|| ~Xi− ~Xj ||. If αi−αj > θ, the surface connectivity
is defined as a convex connection, where θ is the threshold for
convexity judgement. Otherwise, it is a concave connection.
Similar to work reported in (Stein et al., 2014), we also assume
that for one object the convex connection should be preserved
while the concave connection should be disconnected on the
basis of the degree of the convexity criterion. The “stair-like”
surfaces (see Fig. 2a) are highly likely to be parts of different
objects and should be disconnected. Considering these three
situations, the surface connectivity Dc

ij is calculated according
to Eq. 1, giving the blunt convex or smooth connected surfaces a
higher proximity value, while for the concave connected surfaces
a constant penalty so that they are likely to be determined as
disconnected. θ is calculated by a sigmoid function determined
by the difference of αi and αj , following the description in (Stein
et al., 2014).

Dc
ij =

{
(αi − αj)2 + (π − αi − αj)2 ifαi − αj > θ

(αi − αj)2 + π2 else
(1)

Figure 3. (a) Adjacent voxels in a neighborhood. (b) Fully
connected local graph.

3.3 Graph-based clustering

In many former work, the connection of voxels are merely iden-
tified by the relation between two adjacent voxels, with their
similarity or normal vector used (Wang and Tseng, 2011), (Papon
et al., 2013). However, due to the complex environment of
the 3D scene, the assessment of connections considering only
information a voxel pair seems unreliable. To that end, we
introduce the graph theory to assess the connections of a center
voxel considering all the neighboring voxels in a neighborhood
of the center voxel simultaneously. Thus, a fully connected local
graph G = (V,E) is constructed as shown in Fig. 3.

3.3.1 Fully connected local graph For the fully connected
local graph, voxels are set as vertices V while the edges E
are linked between all the vertex pairs. For the central voxel,
its adjacent voxels belonging to the same group after the graph
segmentation are regarded as the connected ones. The weight
wij ∈ [0, 1] between Vi and Vj is defined by integrating affinities
Dij between voxels calculated via a multiplicative form as they
are independent:

wij =
∏

k∈[s,e,c]

exp(−
(Dk

ij)
2

2λ2
k

) (2)

where λs, λe, and λc denote the bandwidth of the Gaussian
kernel, controlling the importance of the spatial distance, the
geometric similarity, and the surface connectivity, respectively.
In our cases, all of them are set to 0.1 equally.

3.3.2 Graph-based segmentation Once the graph is con-
structed, we can achieve the connection of voxels by optimization
method, namely the partition of the graph. For this purpose, the
graph-based segmentation method is introduced by adapting the
algorithm proposed in (Felzenszwalb and Huttenlocher, 2004).
Here, the segmentation C is to partition voxels V (i.e., the
vertices in the graph) into segments S ∈ C equating with the
connected components in the graph. As the initial step, every
vertex Vi is regarded as one segment Si. The edges are sorted
in ascending order according to their weights. Then, the graph is
partitioned via a recurrently process by comparing the weight w
of an edge with the maximum internal difference Ii of a segment
Si. For vertices Vi ∈ Sm and Vj ∈ Sn of an edge Eij , if the
weight wij is larger than the threshold τmn, then the Sm and
Sn will be merged as one segment. Here, the threshold τmn is
estimated as follows:

τmn = man(Im +
δ

|Sm|
, In +

δ

|Sn|
) (3)

where |S| denotes the size of the segment S and δ is a constant
parameter setting the initial threshold value. In the extreme case,
if |Sm| = 1 and |Sn| = 1, then τmn = δ . This merging process
is performed repeatedly by traversing all the edges. In Algorithm.
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1, we provide a detailed description. According to the output

Algorithm 1 Graph-based segmentation

Input: G = (V,E), Graph with vertices V and edge E
Output: C = [S1, S2, ..., Sn]: Segments of vertices

0: Sort E in ascending order by its weight w
1: Initial segmentation C0 = [S1, S2, ..., Sm], Si = [Vi]
2: Initial threshold τij = δ, Ii = 0
3: for ∀Eij ∈ E do
4: If wij > τij = max(Ii + δ

|Si|
+ δ
|Sj |

)

5: Sk ⇐ Si ∪ Sj
6: Ik = wij +

δ
|Sk|

7: C ⇐ {C\{Si ∪ Sj}} ∪ Sk

of the graph partition, in the neighborhood of a center voxel, its
connections can be identified by the group of nodes in the graph.

3.3.3 Clustering of connected voxels Once the connections
of all the voxels are identified, the connected voxels are merged
into one segment. This merging process is performed repeatedly
by traversing all the voxels, with a depth-first strategy. In the
neighborhood of a center voxel, its connections can be identified
by the group of nodes in the graph, then all the connected voxels
are aggregated into one segment. In addition, a cross validation
process is carried out to ensure the correctness of connections.
For adjacent Vi and Vj , after segmenting the graph of Vi, if Vi is
identified as connected to Vj , then in the segmentation of graph
of Vj , Vj should be connected to Vi in turn. Otherwise, they are
disconnected.

4. SUPERVOXEL- AND GRAPH-BASED
SEGMENTATION

The SVGS method is an improved solution utilizing the super-
voxel structure and the local affinity graph, improved from our
former work (Xu et al., 2016). It has three significant differences
compared with the VGS method. Firstly, the supervoxels are used
as basic units for clustering into segments, instead of directly
using voxels. Secondly, the definition of graph is different. We
define a local adjacency graph rather than the fully connected
graph used in VGS. At last, the clustering of connected basic
units, here, the aggregation of supervoxels is conducted resorting
to the merging of adjacency graphs.

4.1 Supervoxel generation

The generation of supervoxels is carried out by the Voxel Cloud
Connectivity Segmentation method (VCCS) (Papon et al., 2013),
clustering the voxels of points in terms of the distance between
the seed and candidate voxels in a feature space, involving geo-
metrical features, and RGB colors (Papon et al., 2013). Slightly
different from the way described in (Papon et al., 2013), we
merely use normal vectors and spatial coordinates of voxels to
define the distance, which is related to the proximity and conti-
nuity principles. The VCCS we used is implemented and tailored
from the Point Cloud Library (PCL) (Rusu and Cousins, 2011).
One of the most significant advantage of VCCS is the boundary
preservation performance (Papon et al., 2013), so that we can
obtain the supervoxels sharing same boundaries with the major
structures of objects in the scene. Note that, the size of the voxel
and the resolution of seeds can greatly affect the performance
of VCCS. The former one determines the details preserved in
the scene, while the later influences the effectiveness of keeping
boundaries. Empirically, we set these factors according to the
densities and the varying range from the sensor to the objects.

Figure 4. Aggregation of supervoxels.

4.2 Local adjacency graph

To apply the graph model to the supervoxel structure, we define
a local adjacency graph for each supervoxel encoding all the
neighboring supervoxel in a local vicinity, so that the connectivity
of two adjacent supervoxels can be assessed in a context-aware
way. In detail, for each supervoxel Vi, all its n neighbors with
a spatial distance between centroids smaller than a given radius
Rc are counted as the candidate ones for building the contextual
graph Gi = {V,E}, which is represented in the form of nodes.
The spherical space defined by Rc is termed as the local context
of each supervoxel. For each node, only these edges connecting
its adjacent ones will be considered. The weights of edges
E are estimated by the use of aforementioned geometric cues
in a same way like VGS. The partition of the local adjacency
graph G is the same like that of VGS, using the graph-based
segmentation (Felzenszwalb and Huttenlocher, 2004), by which
the segmented graph G+ can be obtained. In G+, the connected
nodes representing the connectivity of supervoxels.

4.3 Aggregation of supervoxels

To aggregate the supervoxels, all the segmented local adjacency
graphs are traversed and checked. For these segmented graphs
having common nodes (see Fig. 4, the node Vk shared by the
graphsG+

i andG+
j ), they will be merged into one large graph G,

encoding the connection information of nodes within it. At last,
for each merged graph G, all the supervoxels represented by the
connected nodes will be aggregated into a complete segment as
shown in Fig. 4.

5. RESULTS AND DISCUSSION

5.1 Experimental datasets

To test our proposed methods, point clouds acquired from two
different scenes are used. One is a general outdoor building
facades scene (see Fig. 5a), which is part of the terrestrial laser
scanning point cloud from the large-scale point cloud classifi-
cation benchmark datasets published by ETH Zurich (Hackel et
al., 2016b). The other one is about a construction site (see Fig.
5b) located in the downtown of Munich, Germany, having both
laser scanned and photogrammetric point clouds (see Figs. 5c
and 5d). The testing area of which is around 320 m2, including
the foundation pit, ground objects, construction equipment, et
al. The terrestrial LiDAR point cloud is surveyed via Leica
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HDS 7000, while the photogrammetric point cloud is generated
from a structure from motion (SfM) system and multi-view stereo
matching method (Tuttas et al., 2014), using a Nikon D3 DLSR
camera with 105 images. The statistical outlier removal filtering
(Rusu and Cousins, 2011) is applied to the point clouds prior to
the main processing. The sizes of LiDAR and photogrammetric
point clouds are both around nine million points. To evaluate
the performance of our method, four representative segmenta-
tion algorithms, including the Euclidean distance and difference
of normal (DON) based clustering(Ioannou et al., 2012), the
smoothness based region growing (RG) (Rabbani et al., 2006),
and the Locally Convex Connected Patches (LCCP) (Stein et al.,
2014) are used as reference methods, implemented by the use
of Point Cloud Library (PCL) (Rusu and Cousins, 2011). The
quantitative evaluation is conducted by comparing the segments
against the manually segmented ground truth (see Fig. 6) using
the approach described in Awrangjeb and Fraser (2014) and Vo et
al. (2015). Three standard metrics, Precision, Recall, and F1

- score, which are calculated via the true positive (TP), the true
negative (TN), the false negative (FN), and false positive (FP),
are introduced to assess the quality of segmentation.

Figure 5. (a) LiDAR point cloud of the building facade scene.
(b) Real scene of the construction site. (c) Photogrammetric and

(d) LiDAR point clouds of the construction site scene.

5.2 Results of building facade scene

In Fig. 7, segmentation results of VGS and SVGS using the
LiDAR point cloud in the building facade scene is illustrated,
with segments rendered with different colors. Seen from the
figures, the ground and wall surfaces, decks, fences, and window
sills are segmented from the whole scene as individual objects.
Comparing the results of these two methods, it is clear that the re-
sult of VGS method tends to be the over-segmented one, namely

Figure 6. (a)-(c) Sample point clouds. (d)-(f) Corresponding
manually segmented ground truth.

the details of a complete structure are segmented as individual
parts. In contrast, the result of SVGS method is more like the
under-segmented one, which prefers to keep the large object as
a complete segment, for example, the neighboring surfaces of
the same facade are recognized as one planar surface. It is
also noteworthy that in the result of SVGS, many small details
are merged as larger objects and preserved in the output, for
example, the window frames. However, for that of VGS, the over-
segmented objects consisting of merely one voxel are removed as
outliers from the output. Of cause, this is counterproductive to
the completeness of the output results. To carry out a quantitative
evaluation, we compare our methods with reference methods
using the manually segmented ground truth data, consisting of
33 segments. Here, the voxel resolution used in VGS, SVGS,
and LCCP is 0.1 m, equaling to the radius of normal vecotr
estimation in RG and the small radius of normal estimation in
DON. The seed resolution of supervoxel in SVGS and LCCP is
0.2 m, equaling to the graph size used in VGS and the large radius
of normal estimation in DON. The graph size of SVGS is 0.4
m. As shown in Table 1, our proposed methods can outperform
other reference methods according to the F1 scores, with the
value reaching around 0.81. It is noteworthy that the result of
RG method is comparable with those of our methods, but when it
comes to the execution time, our methods are more efficient.

Method
Laser scanned

Precision Recall F1 Time (sed)
RG 0.8857 0.6957 0.7793 24.5
DON 0.5560 0.6160 0.5844 40.7
LCCP 0.6523 0.6840 0.6677 5.8
VGS 0.8562 0.7559 0.8029 14.2
SVGS 0.8403 0.8084 0.8240 9.4

Table 1. Evaluation of segmentation results of the building
facade dataset

5.3 Results of construction site scene

For the test in the scene of construction site, segmentation re-
sults of point clouds generated by LiDAR and photogrammetry
are illustrated in Fig. 8, with VGS and SVGS methods used.
Similarly, different segments are rendered with varying colors.
The parameters of methods are same as the ones used for the
case of building facade. It appears that, the environments of the
construction site scene is much more complex than that of the
building facade, which significantly increases the difficulties of
segmentation. This can also be proved from the results, which
are obviously inferior to the result of building facade case. Com-
paring the results of using LiDAR and photogrammetric datasets,
we can easily find that, for segmenting the major structures of the
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Figure 7. Segmentation of building facade using (a) VGS and
(b) SVGS methods.

given point clouds, the result of using LiDAR data is much better
than that of using photogrammetry. One of the possible reason is
that, unlike the LiDAR points, the positions of photogrammetric
points normally have larger errors due to the stereo matching
process, which may decrease the accuracy of spatial positions
of these points. Moreover, the VGS method shows better per-
formance using photogrammetric dataset, when compared with
that of SVGS methods, especially in the preservation of concave
and “stair-like” connections. This is because for the SVGS
method, the generation of supervoxels are sensitive to the higher
percentage of noise and outliers existing in the photogrammetric
dataset, as they are clustered by the use of normal vectors.

For the quantitative evaluation, as listed in the Table. 2, our VGS
and SVGS methods can outperform the other methods, with F1

- scores larger than 0.7, for both LiDAR and photogrammetric
datasets. Interestingly, for the testing sample point cloud, the
testing results of photogrammetric datasets are even better than
those using LiDAR ones, for both VGS and SVGS methods,
according to the F1 - scores. One of the possible explanation for
this phenomenon is due to the ground truth we used. Since the
manually segmented ground truth of photogrammetric dataset is
rougher than that of LiDAR dataset, it may influence the correcte-
ness of the evaluation. For the photogrammetric dataset we used,
it is difficult to manually segment the point cloud even for our
human vision because of its quality. This phenomenon can also
be observed from the results comparisons of using other reference
methods. Therefore, in our future work, for providing more
convincing evaluation results, a reliable ground truth is necessary.
But then again, although the comparison using different ground
truth datasets is not appropriate, the evaluation using the same
ground truth can still support the superior performance of our
proposed methods.

Method
Laser scanned Photogrammetric

Precision Recall F1 Precision Recall F1
RG 0.6098 0.5799 0.5945 0.6371 0.6807 0.6582
DON 0.5875 0.5160 0.5495 0.5649 0.5269 0.5452
LCCP 0.5950 0.5250 0.5578 0.6104 0.5694 0.5892
VGS 0.7105 0.7077 0.7091 0.7655 0.7306 0.7476
SVGS 0.7205 0.7283 0.7244 0.7163 0.7420 0.7289

Table 2. Evaluation results of the construction site dataset

6. CONCLUSION

In this paper, we report a strategy for point cloud segmentation,
using voxel structure and graph-based clustering with perceptual
laws, which allows a learning-free and completely automatic
but parametric method for segmenting 3D point cloud. The

Figure 8. Segmentation results of construction site using (a)
VGS and (b) SVGS methods with LiDAR dataset, and using (c)

VGS and (d) SVGS methods with photogrammetric dataset.

experiments using different datasets have demonstrated that our
proposed methods can achieve segmentation results effectively
and efficiently, especially for complex scenes and nonplanar sur-
faces of objects. In addition, quantitative comparisons between
our method and other representative segmentation methods also
validate the superior performance of our methods.
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Tóvári, D. and Pfeifer, N., 2005. Segmentation based robust
interpolation-a new approach to laser data filtering. International
Archives of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences 36(3/W19), pp. 79–84.

Tuttas, S., Braun, A., Borrmann, A. and Stilla, U., 2014. Com-
parision of photogrammetric point clouds with bim building el-
ements for construction progress monitoring. The International
Archives of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences 40(3), pp. 341.

Vo, A.-V., Truong-Hong, L., Laefer, D. F. and Bertolotto, M.,
2015. Octree-based region growing for point cloud segmentation.
ISPRS Journal of Photogrammetry and Remote Sensing 104,
pp. 88–100.

Vosselman, G., 2013. Point cloud segmentation for urban scene
classification. ISPRS Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci.

Vosselman, G. and Maas, H.-G., 2010. Airborne and terrestrial
laser scanning. Whittles Publishing.

Vosselman, G., Gorte, B. G., Sithole, G. and Rabbani, T., 2004.
Recognising structure in laser scanner point clouds. International
archives of photogrammetry, remote sensing and spatial informa-
tion sciences 46(8), pp. 33–38.

Wang, M. and Tseng, Y.-H., 2011. Incremental segmentation
of lidar point clouds with an octree-structured voxel space. The
Photogrammetric Record 26(133), pp. 32–57.

Weinmann, M., Jutzi, B., Hinz, S. and Mallet, C., 2015. Seman-
tic point cloud interpretation based on optimal neighborhoods,
relevant features and efficient classifiers. ISPRS Journal of
Photogrammetry and Remote Sensing 105, pp. 286–304.

Xu, Y., Tuttas, S. and Stilla, U., 2016. Segmentation of 3d
outdoor scenes using hierarchical clustering structure and per-
ceptual grouping laws. In: 2016 9th IAPR Workshop on Pattern
Recogniton in Remote Sensing (PRRS), pp. 1–6.

Xu, Y., Tuttas, S., Hoegner, L. and Stilla, U., 2017. Geometric
primitive extraction from point clouds of construction sites us-
ing vgs. IEEE Geoscience and Remote Sensing Letters 14(3),
pp. 424–428.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17,  6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-1-W1-43-2017 50




