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ABSTRACT:

Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver
are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera
system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often
no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In
this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is
described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-from-
motion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed
to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world
objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand,
videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are
estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different
video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car
park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras
are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position
standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras
deviate between one and ten centimeters from tachymeter reference measurements.

1. DRIVER OBSERVATION FOR DRIVER INTENTION
RECOGNITION

One of the big goals in the automotive industry is to reduce the
number of traffic fatalities to zero (Volvo Vision 2020 (Samuels-
son, 2017)). An important part on this way is to know the inten-
tion of a car driver for the next seconds in advance. Currently
available cars are therefore equipped with environment cameras
to collect information about other traffic participants around the
own car. For example, environment cameras can capture a pre-
ceding car slowing down on the rightmost lane and having acti-
vated the right turn indicator. Advanced driver assistance systems
can use driver intention recognition algorithms to anticipate, that
the preceding car driver wants to turn right.

To anticipate the intention of the own car driver, interior cameras
observing his behavior (figure 1) can be used in addition. Their
images can be used to extract features about the driver’s head
movement and his gaze direction. The intention recognition can
be made more reliable, if information from the environment and
interior cameras is combined. For example, combined evalua-
tion allows to evaluate, whether the driver has noticed the slower
car in front of him or is distracted by the car radio, for exam-
ple. Therefore, his head orientation and gaze direction have to be
linked to the position of the other car relative to his car. Basis
for this geometric link is the known relative position and orien-
tation (pose) of the interior and exterior vehicle cameras to each
other. A system calibration for the vehicle cameras can be used
to estimate these parameters.

For calibration of a vehicle camera system, a calibration envi-
ronment large enough to contain a car is required, as well as the

Figure 1: A driver camera can be used to extract features from
images to recognize the driver intention of the next seconds as an
important milestone to increase traffic safety (Volvo, 2014).

car has to be able to drive into this environment. Urban struc-
tures, like parking garages or court yards, can be used for this
purpose. On the one hand, in urban structures additionally placed
photogrammetric reference marks cannot be used, as these struc-
tures are public or there is no permission from the owner. On the
other hand, vehicle interior cameras can see almost nothing than
the interior space of a car. Large parts of the interior of a car, like
the window pane or the seats cannot be used to place reference
marks. Therefore, a calibration approach using unmarked ref-
erence points is required. For example, feature points extracted
from images and their 3d coordinates calculated automatically
can be used as reference.
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3d coordinates of reference points can be calculated automati-
cally by triangulating image features of urban structures shown
in multiple images. However, as the vehicle interior cameras are
showing nearly only the interior space of the car, reference infor-
mation of the urban structures is not available for them. Other
reference information has to be used for these cameras, and the
reference information for both environment and interior cameras
has to be linked together for a system calibration.

As costs are a very important factor in the automotive industry,
the number of cameras is kept small. This leads in addition to
non-overlapping fields-of-view, making the camera system cal-
ibration using tie points in overlapping image parts impossible.
Due to their wide field-of-view and their low costs, so called “ac-
tion cameras” can cover a huge part of the environment around a
car despite their small number. Therefore, it has to be considered,
that the wide field-of-view might cause large image distortions
requiring reliable single camera calibration.

In addition, the camera mounting on the window panes of the car
might not be rigid over time caused by mechanical movements
during a car drive. To check the vehicle camera poses again and
again, the system calibration has to be repeated from time to time,
requiring a calibration process which can be performed with low
effort, for example before and after every video recording drive.

The camera system calibration provides information about the
relative poses of the vehicle cameras. To know, whether a pedes-
trian shown in one of the environment camera images is behind
or in front of the own car, the camera poses have to be linked to
the pose of the car. This can be done by transforming the cam-
era poses into a vehicle coordinate system, which describes the
movement direction of the car. As ground control points for the
transformation, physical points on the car surface corresponding
to the vehicle coordinate system have to be chosen.

2. STATE OF THE ART

2.1 Camera calibration

Geometric calibration is performed on single cameras to estimate
the interior orientation as well as image distortion parameters
(Brown, 1971), (Fraser, 2013), (Hartley and Zisserman, 2004).
Different models, like perspective pinhole models or fisheye mod-
els can be used (Abraham and Förstner, 2005), (Schwalbe, 2005).
Geometric calibration can be also performed on multiple cam-
eras simultaneously to estimate the relative poses of the cameras
(Gruen and Beyer, 2001), wherefore typically calibration patterns
are used. For calibration of commercial vehicle camera systems,
manufacturer-specific calibration patterns are required, which are
only available in calibration laboratories (glassBYTEs.com, 2015).
Recently published approaches do not require calibration patterns
anymore for system calibration of rigid camera systems (Esquivel
et al., 2007), (Kazik et al., 2012), (Schneider and Förstner, 2013).

2.2 Structure from motion

The structure-from-motion (SfM) method is used for 3d recon-
struction (‘structure’) of objects shown in an image set, whereby
the movement of the camera between different images is used
as stereo base line (Koenderink et al., 1991), (Sturm and Triggs,
1996). The usual pipeline (e.g. (Häming, 2010)) is to extract
features from images and to match them with each other. Cam-
era poses are estimated and 3d points triangulated and optimized
in a bundle adjustment. There are different software toolboxes
available for structure-from-motion, a well known example from

the literature is VisualSFM (Wu, 2007), (Wu, 2011), (Wu et al.,
2011).

Camera system calibration and structure from motion can be com-
bined by using reconstructed 3d points of a space to calibrate a
camera system (Hanel and Stilla, 2017). The method in the cited
paper requires, that each camera can see the 3d reference points,
which might not be true for vehicle interior cameras.

2.3 Street scene datasets

Like for the vehicle camera system proposed in this contribu-
tion, vehicle cameras are often used to collect street scene data.
Among others, typically vehicle environment cameras (e.g. for
datasets Kitti (Geiger et al., 2012), Cityscapes (Cordts et al., 2016))
are used for data collection. For the mentioned datasets, the in-
terior and exterior calibration parameters of the camera systems
are provided. Vehicle interior cameras are used only for some
datasets, e.g. provided by Brain4Cars (Jain et al., 2015), while
this dataset does not provide calibration parameters for the cam-
eras.

3. VEHICLE CAMERA SYSTEM CALIBRATION IN AN
URBAN ENVIRONMENT

In this section, a method (figure 2) to calibrate a vehicle camera
system with environment and interior cameras without overlap-
ping fields-of-view using unmarked reference points from urban
structures and from the vehicle interior is described.

Figure 2: Process workflow to estimate the poses of vehicle envi-
ronment Ie and vehicle interior cameras Ii with non-overlapping
fields-of-view in an urban environment.

For pre-processing, each camera is calibrated separately in a lab-
oratory environment to undistort all images. The main process
chain can be divided into an a-priori part, which has to be done
once with images of an external photographic camera before cali-
brating the vehicle camera system and the calibration part, which
is repeated every time the vehicle camera system should be cali-
brated.

In the a-priori part, a point cloud of the calibration environment
(environment point cloud) is created using structure-from-motion
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with images of urban structures in the calibration environment
(environment images). Another point cloud of the interior space
of the vehicle (interior point cloud) is created using structure-
from-motion with images of the vehicle interior (interior images).
Both point cloud coordinate systems are connected with common
reference points and transformed into a vehicle coordinate system
using reference points describing the vehicle movement.

In the calibration part, the poses of the vehicle cameras are esti-
mated. Images of the vehicle environment cameras are matched
with the environment images to use the 3d points of the environ-
ment point cloud as ground control points for pose estimation of
the vehicle environment cameras in the vehicle coordinate sys-
tem. The same way, images of the vehicle interior cameras are
matched with interior images and the 3d points of the interior
point cloud used for pose estimation of the vehicle interior cam-
eras in the vehicle coordinate system. Finally, all vehicle camera
poses are adjusted using separate bundle adjustments for environ-
ment and for interior cameras.

3.1 Single camera calibration

The single camera calibration is performed for each camera to re-
duce the degrees of freedom for the point cloud creation and the
pose estimation. The following process is used: A planar calibra-
tion pattern with photogrammetric marks is captured in images
with different camera positions, orientations and distances to the
pattern plane. The interior orientation parameters (focal length in
x/y direction, principal point in x/y direction) as well as radial
and tangential image distortion parameters are estimated (Con-
rady, 1919), (Brown, 1971).

The following radial distortion model is used (equations 1, 2):

xdist,rad = x · (1 + k1r
2 + k2r

4 + k3r
6) (1)

ydist,rad = y · (1 + k1r
2 + k2r

4 + k3r
6) (2)

with xdist,rad, ydist,rad as distorted image coordinates, x, y as
undistorted image coordinates, r as radial distance of x, y from
the principal point and k1, k2, k3 as radial distortion parameters.

The following tangential distortion model is added (equations 3,
4):

xdist = xdist,rad + [2p1xy + p2(r
2 + 2x2)] (3)

ydist = ydist,rad + [p1(r
2 + 2y2) + 2p2xy] (4)

with p1, p2 as tangential distortion parameters.

To calculate the desired camera parameters, the sum over all im-
ages and pattern points of the reprojection errors from 3d pat-
tern points into the images is minimized using the Levenberg-
Marquardt optimization. The images of each camera are undis-
torted using the parameters obtained by camera calibration before
processing the following steps.

3.2 Point cloud creation

This and the following parts of the method are the a-priori part
of the processing, i.e. they have to be done once to be able to
calibrate the vehicle camera system. The images used in this part
are taken with an additional camera, not by the vehicle cameras.

In the a-priori part of the processing, the environment point cloud
of urban structures (e.g. building walls, signs) in the calibration
environment has to be created, as well as the interior point cloud
of the interior of the camera-carrying vehicle has to be created.
For the environment point cloud, a high number of overlapping

environment images is taken within the calibration environment.
SIFT features (Lowe, 1999) are extracted from these images and
used to match the images with each other. The point cloud is cre-
ated using the structure-from-motion method, providing 3d point
coordinates for the SIFT feature matches and also 3d coordinates
for the camera poses. Only 3d points with matches between at
least three images are accepted for further processing.

For the interior point cloud, interior images are taken in the inte-
rior space of the vehicle and also the SfM method applied to get
the 3d point coordinates for the SIFT feature matches.

Both image sets need to have overlapping images showing the
same objects to transform one point cloud coordinate system into
the other.

3.3 Transformation into the vehicle coordinate system

Both point cloud coordinate systems are transformed into the ve-
hicle coordinate system to create a link between the estimated
vehicle poses (see subsections 3.4, 3.5) to the driving direction of
the camera-carrying car.

This step consists of two parts: Connecting the two point cloud
coordinate systems to each other and transforming the connected
point cloud coordinate system of the into the vehicle coordinate
system.

For step one, 3d coordinates of common reference points shown
in both environment images and interior images are used. The in-
terior point cloud is transformed into the environment point cloud
coordinate system using a similarity transform (equation 5):

x′ = s ·R · x+ t (5)

with x′, x target and source 3d point coordinates, and the param-
eters s as scale, R as rotation matrix and t as translation vector.

Figure 3: Vehicle coordinate system. Origin is the center of the
front axle. Y-axis is equal to front axle, x-axis through front and
rear axle and orthogonal to y-axis. Z-axis is orthogonal to the
other two axes. Vehicle cameras of the test car are shown in blue
(F = front, D = driver, R = rear), position of the cameras at the
arrow tail, viewing direction like arrows (Volkswagen, 2017).

For step two, the vehicle coordinate system (figure 3) is defined
by both axles of the car. It is assumed, that both axles are at the
same height above ground, i.e. the vehicle coordinate system is
parallel to the ground. The center of the front axle is defined
as the origin of the vehicle coordinate system. The x-axis goes
through the center of both the front and rear axle, pointing in
driving direction, assuming that this definition describes the driv-
ing direction of the car. The y-axis is equal to the front axle,
pointing to the left side of the car. The z-axis is orthogonal to the
two other axes and pointing away from the ground.

A similarity transformation is used as transformation method, the
transformation parameters are estimated with RANSAC and a
least-squares estimation.
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The transformation uses the rim centers (figure 4) of the four
wheels as ground control points. It is assumed, that the rim cen-
ters are the extension of the car axles. As modern car wheels have
independent suspension, the camera-carrying chassis is only par-
allel to the rim centers, if the car is standing on a level plane.

Figure 4: Rim centres (red cross) are used as ground control
points for the transformation into the vehicle coordinate system.
The emblem of the car manufacturer is often placed in the rim
center providing a clear defined central point.

The image points showing the rim centers in environment images
are used to calculate the 3d coordinates of the rim centers in the
point cloud coordinate system. The 3d coordinates of the rim
centers in the vehicle coordinate system can be calculated for ex-
ample from a blueprint of the car manufacturer providing length
information for relevant vehicle parts, like the wheel base.

The transformation is applied to the connected point cloud coor-
dinate system, providing the point clouds in the vehicle camera
system.

3.4 Pose estimation of vehicle environment cameras

This and the following parts of the method are the calibration part
of the processing chain, i.e. they have to be performed every time
the calibration of the vehicle cameras should be repeated.

Videos of the vehicle cameras recorded during a calibration drive
of the car within the calibration environment are used for pose
estimation of the vehicle cameras with the SfM method. SIFT
features are extracted from the vehicle environment camera im-
ages, the features used to match the vehicle camera images to
each other and to the environment images. The matches between
the environment images and the vehicle camera images allow to
use the 3d points of the environment point cloud as ground con-
trol points to estimate the poses of the vehicle environment cam-
eras.

3.5 Pose estimation of vehicle interior cameras

For pose estimation of the vehicle interior cameras, videos recorded
at the same time as the videos of the environment cameras (sub-
section 3.4) are used. Also SIFT features are extracted to match
the vehicle interior camera images to each other and to the inte-
rior images. Thereby, the interior point cloud is used as reference
information to estimate the poses of the vehicle interior cameras.

3.6 Pose optimization by bundle adjustment

The poses of the vehicle environment cameras and the vehicle
interior cameras are optimized in separate bundle adjustments.
As there is no overlap between the two image sets of the vehicle
cameras, two separate bundle adjustments are required.

The environment images and the images of the vehicle environ-
ment cameras are processed together in one bundle adjustment.
The 3d coordinates of the point cloud and the corresponding im-
age coordinates are introduced as adjustable parameters. A-priori
values for these parameters are obtained from the environment
point cloud (subsection 3.2) and the pose estimation (subsection
3.4). The exterior orientations of the cameras are introduced as
adjustable parameters, too; the a-priori values for the exterior
orientations are taken from the poses estimated with SfM (sub-
sections 3.2, 3.4). The interior orientations of the cameras and
their distortion parameters are kept fixed on the values from sin-
gle camera calibration (subsection 3.1), as the single camera cali-
bration can provide higher certainty for these values than the SfM
method.

Bundle adjustment is done by a least-squares adjustment based
on collinearity equations (equations 6, 7):

xij = x0j − cj ·
R11j(Xi −X0j) +R21j(Yi − Y0j) +R31j(Zi − Z0j)

R13j(Xi −X0j) +R23j(Yi − Y0j) +R33j(Zi − Z0j)
(6)

yij = y0j − cj ·
R12j(Xi −X0j) +R22j(Yi − Y0j) +R33j(Zi − Z0j)

R13j(Xi −X0j) +R23j(Yi − Y0j) +R33j(Zi − Z0j)
(7)

withX,Y, Z as 3d world coordinates, x, y as image coordinates,
x0, y0, c as parameters of the interior orientation, X0, Y0, Z0 as
the camera position in world coordinates and R describing the
camera orientation. Index i represents ground control points, in-
dex j represents images.

For the least-squares adjustment, the residuals between the mea-
sured image coordinates and the image coordinates calculated us-
ing the estimated camera parameters and point coordinates are
minimized.

The interior images and the images of the vehicle interior cam-
eras are processed together in another bundle adjustment. Con-
straints for vehicle camera poses are not introduced into the bun-
dle adjustment, as the camera system might not be rigid due to
the non-rigid mounting with suction pads on window panes and
mechanical movements during the calibration drive.

4. TEST DATA ACQUISITION AND PROCESSING

The calibration environment is within an underground car park.
The environment itself has a parking lot on one side of a drive-
way, and two parking lots on the other side. The car park is built
of concrete, in some parts painted white, and therefore without
strong textures. Some signs are painted onto the walls. The only
illumination source is a neon lamp at the ceiling, providing darker
light than natural daylight. The car park is chosen, as the illumi-
nation does not change over time and there are no moving objects
(e.g. tree leafs, persons). The experiments are conducted in the
late evening when the car park is empty and there are no cars
leaving or entering the garage.

A Volkswagen Transporter 5 van is used as test car. Two envi-
ronment cameras and one interior driver camera are installed in
the car. The positions of the cameras are chosen to cause the least
possible occlusion for the field of view for the car driver. The first
environment camera is mounted on the windshield and looking at
the area in front of the car (figure 5). The second environment
camera is mounted on the rear window and looking at the area
behind the car (figure 6). The interior camera is also mounted on
the windshield and looking at the driver’s seat (figure 5).
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Figure 5: View onto the test car windshield against the driving
direction. The front environment camera (red rectangle) is look-
ing at the area in front of the car and the interior driver camera
(purple rectangle) is looking at the car driver. Photogrammetric
marks on the calibration pattern are used as ground control points
to link the driver camera to the vehicle coordinate system.

Figure 6: View onto the rear window pane of the test car. The
rear environment camera (red rectangle) is looking at the area
behind the car. Image brightness increased strongly for better
visualization.

A-priori to the vehicle camera calibration, 143 images of the cali-
bration environment are taken with an external DSLR camera (ta-
ble 1) to create the environment point cloud with the SfM toolbox
VisualSFM. In some of these images, photogrammetric marks
placed on walls of the calibration environment are shown. 162
images are taken of the front seat row in the test car to create
the interior point cloud. Some of these images contain a planar
pattern with photogrammetric marks.

Camera Nikon D3
Lens 24 mm fixed focal length
Geometrical resolution 4,256 x 2,832 px
Settings ISO 200, focus infinite, f/8,

exposure time variable

Table 1: Technical specifications and image acquisition parame-
ters of the external DSLR camera used for the environment im-
ages (Nikon, 2007).

The photogrammetric marks placed on walls in the calibration
environment and the marks on the calibration pattern in the car
are used as reference points for the transformation of the interior
point cloud into the environment point cloud coordinate system.
The 3d coordinates of all marks are calculated from tachymeter
(model: Leica TS02) measurements and used for the transfor-
mation together with the corresponding image coordinates mea-
sured (software: AICON 3D Studio (Schneider et al., 2017)) in
the environment images and interior images, respectively. In gen-
eral, the tachymeter measurements are not necessary to connect
the two point clouds (cf. subsection 3.3), but are used here for
evaluation purposes. For the transformation into the vehicle co-

Camera Garmin VIRB Ultra 30
Lens 2.73 mm fixed focal length
Geometrical resolution 2,688 x 1,512 px
Temporal resolution 30 fps
Settings ISO 800, focus infinite, f/2.6

Table 2: Technical specifications and video recording parameters
of the action cameras used in the test car to record videos (Pem-
ble, 2017).

ordinate system, 3d coordinates of the rim centers are calculated
from environment images. Scale can be introduced from vehicle
blueprints with metric information of vehicle parts (e.g. wheel
base, total length). Several points on each case of the vehicle
cameras are measured with the tachymeter to evaluate the esti-
mated poses.

To calibrate the vehicle cameras, 248 images are extracted from
videos of each vehicle camera (table 2) of a calibration drive, one
image per second. The test car is standing still or moving slowly
(< 5 km/h) during the video recording. Temporal synchronization
between the vehicle cameras is achieved with a short flashlight at
the beginning of the video recording. Previous tests of the syn-
chronization have shown a maximum time gap between the three
cameras of 0.1 seconds. As the vehicle cameras should be used in
future research to record street scenes, videos instead of images
are used for the calibration. The images of the front and rear ve-
hicle camera are matched with the environment images, the poses
of the vehicle camera images estimated in the vehicle coordinate
system and adjusted in the bundle adjustment. The images of the
vehicle driver camera are matched with the interior images. To
ensure, that features are only extracted from image parts showing
the vehicle interior, the other image parts are excluded from the
calculation. Another bundle adjustment is performed to optimize
the estimated poses.

5. RESULTS AND DISCUSSION

In this section, the results of the single camera calibration, the
point cloud creation and the vehicle camera pose estimation are
shown and discussed.

Single camera calibration. The RMS values (table 3) calculated
for the single camera calibration vary up to 2 px. The pinhole
model of openCV (OpenCV, 2017) is used for calibration and im-
age undistortion, as the Garmin cameras apply internally already
an image distortion correction. So the pinhole model is applied to
correct the remaining distortions, wherefore calibration with the
openCV fisheye model has led to poor RMS values (factor 500
worse). The high RMS values (RMS < 1 px is considered as ’low
value’) of the pinhole model might be caused by the wide-angle
lens of the used Garmin action cameras (diagonal FOV 133.6◦,
(Pemble, 2017)); in addition, there is no information available
about the quality of the internal image distortion correction. The
difference of the RMS values for the different cameras might be
explained by different poses of the pattern relative to each camera
during calibration.

Front camera 1.97 px
Driver camera 0.91 px
Rear camera 0.36 px

Table 3: RMS values of the single camera calibration using a
pinhole model for each vehicle camera.

Point clouds. The created environment point cloud consists of
around 26,000 3d points and is representing mostly the walls in
the calibration environment. Only few 3d points are on the floor
or on the ceiling. More than 600,000 SIFT features are extracted
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from the environment images, in average around 4,800 SIFT fea-
tures per image. More than 126 thousand combined matches (i.e.,
independent whether a SIFT feature is found in two or more im-
ages, it is counted as one match) are calculated from all image
pairs, cf. (Hanel and Stilla, 2017).

Figure 7: Point cloud of the front seat row of the test car, view
from outside through the windshield to the interior. Three seats
can be seen in the figure, the driver’s seat is on the right side.
3d points (examples: red circle) of this point cloud are used to
estimate the pose of the interior driver cameraD. In average, 180
points per image are used for pose estimation.

The interior point cloud (figure 7) consists of around 7,000 3d
points and more than 43,000 combined matches. It shows the
front seat row of the test car with the most 3d points on the seat
surface and a lower number of points on the ceiling of the car. The
seats have a repetitive pattern surface, whose color differences are
needed to extract image features and to find matches. The lower
number of 3d points of the interior point cloud compared to the
environment point cloud might be drawn back to two aspects: The
covered area is smaller and the illumination of the car interior is
very poor, so that some areas appear dark in the images used for
point cloud creation.

Figure 8: Distance dFR between vehicle front and rear camera
plotted over the time of the calibration drive videos, as well as
the position standard deviation of the vehicle front camera σF and
vehicle rear camera σR. Gaps in the plot occur, if a camera pose
could not be estimated for a specific time point. The plot shows
stable values while the vehicle is standing, a lower accuracy while
the vehicle is moving. Line between discrete poses drawn for
better visualization.

Vehicle poses. For the most consecutive images of the vehicle
environment cameras, the poses can be estimated with reference
information from the environment point cloud (figure 8). In the
videos of the calibration drive, the vehicle is standing still until
around second 100, afterwards it is moving within the calibra-
tion environment. Therefore, for the first 100 seconds, the pose

estimation is stable for nearly all images and can be considered
as successful, while afterwards the value variations increase and
the estimation fails for some images (gaps in figure 8). Pose es-
timation fails especially, when the test car is moving into a part
of the calibration environment with a low density of the envi-
ronment point cloud, cf. (Hanel and Stilla, 2017). Large value
variations might be explained by motion blur while driving, vary-
ing number and distribution of ground control points. Further,
the link between the environment and interior vehicle cameras is
only kept, while the vehicle is standing. Therefore, and for qual-
ity reasons, it should be considered to calibrate the cameras in
future experiments only with images taken while the vehicle is
standing.

For numeric evaluation, the distance dFR between the vehicle
front and vehicle rear camera is calculated from the estimated
poses (figure 8). For the first around 100 images, the distance
varies within around 30 cm, while the variations increase after-
wards up to several meters. The position standard deviations
σF , σR (e.g. σF = ||σF,V||2 with σF,V = [σF,X σF,Y σF,Z ] T )
of the two vehicle environment camera positions are around 10
cm while the car is standing. The smaller variations of the stan-
dard deviation of the front camera compared to the rear camera
might be explained by the higher number of 3d points of the en-
vironment point cloud shown in the images of the front camera.
At that time, the rear camera is closer to walls than the front cam-
era, reducing the number of 3d points shown in the images. For
the time points the car is in movement, the values of the stan-
dard deviations as well as their variations increase. To conclude,
the more stable distance values and standard deviations until sec-
ond 100 show again the importance, that the test car is standing
still at different positions during the calibration drive. Numeric
evaluation based on the correlations between interior and exterior
orientation parameters is not possible, as the interior parameters
are kept fixed in the bundle adjustment due to their accurate esti-
mation in the single camera calibration.

Figure 9: Variations dD of the estimated vehicle interior driver
camera positions over the time of video recording, as well as
the position standard deviation of the vehicle interior camera σD .
Plotted over the time the vehicle is standing still during the cali-
bration drive. Line between discrete poses drawn for better visu-
alization.

The poses of the driver camera (figure 9) are calculated with
ground control points from the interior point cloud. The posi-
tion standard deviation varies between 10 mm and 20 mm for the
first 60 seconds of the calibration video. In that time, the calibra-
tion pattern (figure 5) is placed in the car. No photogrammetric
marks shown in the pattern are used for pose estimation, but it
occludes a large part of the car interior from the point of view of
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the interior vehicle camera, leading to a reduced number of fea-
ture matches used for ground control points. Image noise caused
by low light in the calibration environment might have also led to
different SIFT features in different images, finding no matches to
features detected in other images. The higher position standard
deviation with values up to 1,000 mm after 60 seconds might be
explained as a person enters the car at that time to drive it around
within the calibration environment, causing further occlusions of
the car seats in the driver camera images. The position differ-
ences show a similar trend than the position standard deviations,
but with periodic value changes in the first 60 seconds. These
observations should be investigated further to conclude on their
reason.

A match matrix (showing the number of feature matches between
all image pairs) between the a-priori interior images and the vehi-
cle interior camera images shows, that there is only a small num-
ber of feature matches between the two mentioned image groups.
This small number leads to a small number of ground control
points for pose estimation, and therefore has negative influence
on the position standard deviation. A possible explanation for the
small match number is, that the strongly-textured car seats with a
high number of possible features can only be seen in a small part
of a vehicle interior camera image. A change in the position of
this camera should be considered, requiring a trade-off with the
occlusion of the field-of-view of the driver.

Median distance Reference distance
Front - Rear 321 cm 323 cm
Front - Driver 81 cm 89 cm
Driver - Rear 359 cm 358 cm

Table 4: Median and reference distances between the vehicle
camera positions. Median is obtained from the calculated dis-
tances for all time points using the estimated camera positions.
The reference distances are obtained from tachymeter measure-
ments.

The median distance of the vehicle cameras positions to each
other is compared to the distances from tachymeter measurements
(table 4). The median is calculated for the distances between the
camera positions while the test car is standing still during the cal-
ibration drive. As a tachymeter can only measure points on the
camera case, but not the projection center, it is assumed, that the
projection centers of the used Garmin action cameras are in the
middle of the camera case in direction of the optical axis (no fur-
ther manufacturer information available). The median distance
between the front and rear camera deviates only two centimeters
from the reference distance, while the deviation for the distance
between front and driver camera is around 10 cm. The smaller
deviation between the vehicle environment cameras might be ex-
plained, because both camera poses are estimated using the same
point cloud as reference information. In opposite, the front and
driver camera poses are estimated with different point clouds,
and an additional error might be caused by the transformation
between the point clouds. The deviation for the driver and rear
camera is only one centimeter, but it has to be mentioned, that the
distance deviation is smaller than the calculated position standard
deviations (figures 8, 9).

6. CONCLUSION

In this contribution, a method for a vehicle camera system cali-
bration using unmarked reference points has been proposed. The
method can be used for vehicle environment and vehicle inte-
rior cameras with no overlapping fields-of-view. It is shown, that
point clouds can be obtained for the environment around the ve-
hicle as well as for its interior space. Both point clouds can be

connected to each other using a similarity transform with refer-
ence points from objects shown in environment images and inte-
rior images as well. With a second similarity transformation, the
point clouds are transformed into a vehicle coordinate system de-
scribing the movement direction of the car using reference points
on the wheel rim centers. The poses of both groups of vehicle
cameras can be estimated especially when the vehicle is standing
still during a test drive using the 3d points of the point clouds
as reference information. The proposed method can be seen as
suitable for an application in the field of driver intention recog-
nition. For this application, the knowledge of the camera poses
with a centimeter position accuracy is sufficient for combined in-
formation extraction about the traffic situation from vehicle envi-
ronment and interior cameras.

For the future, a change of the position of the interior driver cam-
era has to be considered. A position with a better view on well-
textured surfaces like car seats might facilitate the feature extrac-
tion and therefore increase the accuracy of the estimated poses.
Further research can also be done on validation of the estimated
poses in long-time vehicle drives.
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