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ABSTRACT:

Palm trees play an important role as they are widely used in a variety of products including oil and bio-fuel. Increasing demand and
growing cultivation have created a necessity in planned farming and the monitoring different aspects like inventory keeping, health, size
etc. The large cultivation regions of palm trees motivate the use of remote sensing to produce such data. This study proposes an object
detection methodology on the aerial images, using shape feature for detecting and counting palm trees, which can support an inventory.
The study uses circular autocorrelation of the polar shape matrix representation of an image, as the shape feature, and the linear support
vector machine to standardize and reduce dimensions of the feature. Finally, the study uses local maximum detection algorithm on
the spatial distribution of standardized feature to detect palm trees. The method was applied to 8 images chosen from different tough
scenarios and it performed on average with an accuracy of 84% and 76.1%, despite being subjected to different challenging conditions
in the chosen test images.

1. INTRODUCTION

Remote sensing is widely used in different sectors of vegeta-
tion monitoring like forestry, agriculture, biophysical studies etc.
It includes identifying, classifying, localizing, measuring sizes,
heights, carbon yields etc., which describe the characteristics and
the socio-economic and environmental importance of different
vegetation and ease the associated institutions in planning and
monitoring.

In agriculture, palm tree cultivation is one of the big sectors with
a huge market value. Palm trees are used to produce a variety
of products like vegetable oil, bio-fuel, papers, furniture, decora-
tions, fodder for cattle etc. It also has to be mentioned that palm
oil is the most widely used vegetable oil in the world. In 2011,
palm tree plantation produced over 53 million metric tons of palm
oil in 16 million hectares land. The global production of palm oil
is increasing every year along with its demand. According to
forecast, in Indonesia and Malaysia alone which represent over
90% of palm oil produced globally, the production will increase
by 30% by the year 2020 (Economy et al., 2014).

In order to meet this demand, it is necessary to plan well during
cultivation and to monitor different aspects of trees like proper in-
ventory, health, size, heights etc., at different stages of their life.
As palm tree cultivation zones are huge and difficult to be moni-
tored visually on ground, remote sensing can play a vital role in
delivering those data and analysis, cost and labor efficiently from
the satellite or aerial images. Therefore, this study investigates on
one aspect, more specifically localizing and counting palm trees
for creating their inventory, as an initial step towards the multi-
faceted monitoring.

A few studies in this direction have already been published. Ju-
soff and Pathan (2009) used the hyperspectral image to map palm
trees. The study implemented the linear spectral mixture analysis
to discover contributions of different materials on hyperspectral
pixel vectors, then used the mixed-to-pure converter that assigns

those vectors to signatures and the minimum distance based for-
mula to detect palm trees. Unfortunately, the results were not
discussed in the publication. Hence, the performance of this ap-
proach is difficult to compare. In general, the hyperspectral imag-
ing shows a coarser geometrical resolution than three-channel im-
ages and requires more expensive equipment.

Malek et al. (2014) have formulated a very well described frame-
work for 2D image processing and analysis, in order to automati-
cally detect the palm trees in images captured with unmanned air
vehicle (UAV). The method uses shift invariant feature transform
(SIFT) as a feature and extreme learning machine (ELM) and
level setting for classification and grouping respectively. It is fol-
lowed by the texture analysis of palm trees with local binary pat-
terns (LBP). The performance of the framework is in general ad-
mirably above 90%. In the method proposed by Shrestasathiern
and Rakwatin (2014), they compute semi-variograms from the
rank transformed vegetation index and use non-maximal suppres-
sion on them to detect the peaks that correspond to the locations
of the palm trees. The normalized difference index (NDI), which
is the normalized ratio between green and red spectral bands of
the image, is used as vegetation index, in order to make the pro-
cess usable even for RGB images. And rank transformation is
used for removal of blurred object borders to increase the dis-
continuity between palm tree and background intensities. The
performance of the method is stated as 90%.

In both cases, the study areas include plantation regions with
palm trees strongly different compared to the background or sim-
ilar objects. The regions consist of coarsely cultivated trees and
a negligible number of artificial objects. In the case of a dense
cultivation region, level set grouping tends to fail, as, in princi-
ple, it would be difficult to find the arbitrary boundary between
the connected trees. Similarly, NDI might have a smooth transi-
tion between trees offering no discontinuity between objects and
background. Palm trees, in general, have a very distinctive shape.
The canopies of palm tree resemble the star-shaped objects on the
aerial image. Therefore, we assume that using the shape infor-
mation of palm trees canopies in detection algorithm could solve
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Figure 1: (a) Model of a star-shaped object. (b) Polar shape matrix representation of the model

those drawbacks. As an extra feature for above algorithms, shape
features could strengthen the algorithm’s potential.

This paper proposes a generic shape feature, the circular auto-
correlation of the polar shape matrix representation of the image
and uses this feature to detect palm trees. The study uses lin-
ear support vector machine (SVM) to reduce the dimensions and
standardize the CAPS and local maximum detection algorithm to
detect the centers of palm trees canopy.

2. METHODOLOGY

The proposed method uses a sliding window approach for fea-
ture extraction. A window of fixed size translates over the entire
image, where algorithm derives CAPS for each window, reduces
its dimension to single scalar value (standardized feature) and as-
signs the standardized feature to the image pixel at the center of
the window. It results in a spatial distribution of the standardized
feature called feature map. The feature map consists of peaks on
the palm trees with local maximum value at the center. Therefore,
a local maximum detection algorithm is used on the feature map
to detect palm trees. The local maximum detection algorithm re-
sults in object map, which is the spatial distribution of the centers
of the palm trees over the image. The detailed description of the
method is presented in following subsections.

2.1 Palm Tree Model

In orthophotos, the palm tree canopies resemble star-shaped ob-
jects with varying numbers of petals. Each palm tree grows 20-
25 leaves every year (Food & Agriculture Organization of United
Nation, 1977), but we found through the observation of multiple
palm trees that the number of distinguishable leaves is limited
to 8-12 petals due to their overlapping nature. In this study, a
model of the star-shaped object, as in Figure 1, is used as the ba-
sis to understand the characteristics of the star-shaped object and
to develop a hypothesis about generic shape feature. The model
consists of 10 leaves and the brightness of the object increases
radially inward, with the highest value at the center. The back-
ground is completely ignored for the analysis, which is not the
case in the real-world scenario.

Star-shaped objects are radially symmetric and each pair of con-
secutive leaves have a constant angular difference. Sampling the
object along the circumference of a circle that is sufficiently large
enough to include leaves results in a periodic curve with a period
equivalent to the number of petals. Sampling along a number of
such concentric circles centered at the center of object results to a
two-dimensional matrix, with one axis being the angle and other
being the radius, called polar shape matrix (Taza and Suen, 1989).
The polar model shape matrix of the star-shaped object produces

a distinct triangular waveform like structure, as shown in Figure
1b.

The circular shift along the angular axis of the polar shape matrix
results in the repetition of the same image when the shift is equiv-
alent to the angular difference between leaves. The similarity de-
creases until it reaches the least when the shift is half the angular
difference between leaves, and gradually increases to maximum
on the other half. This scenario repeats periodically with the pe-
riod equivalent to the number of leaves. In order to measure the
similarity between original polar shape matrix and the circularly
shifted version of it, correlation coefficients can opt.

2.2 Circular Autocorrelation of Polar Model Shape Matrix

Circular autocorrelation of polar model shape matrix (CAPS) is
the generic shape feature proposed in the study, which is the cor-
relation of a polar shape matrix representation of the object with
a circularly shifted version of itself along the angular axis (circu-
lar autocorrelation along angle). CAPS is a periodic curve with
the number of peaks equivalent to the numbers of leaves, in the
case of the ideal star-shaped object. A vector representing CAPS
curve acts as the generic shape feature for detection method.

The polar shape matrix representation of the image is calculated
by sampling image along the circumference of different concen-
tric circles in a constant angular interval. Considering angular
and radial sampling intervals α and β, the polar shape matrix
representation of the image is given by;

Zrθ = Zxy(xm + r ∗ (cos(θ))T , ym + r ∗ (sin(θ))T ) (1)

where Zxy is the image normalized to zero mean and unit stan-
dard deviation, θ = (0, α, 2 ∗ α, ..., 360− α)T , r =
(0, β, 2 ∗ β, ...., dmin/2)T and dmin is the side with minimum
diameter required to include object and xm and ym are the coor-
dinates of the center of the object.

Circular shifting is achieved by shifting the final entry to the first
position while shifting all other entries to the next position. Cir-
cularly shifting along the angle and calculating correlation for
each shift is highly inefficient. Therefore, an efficient algorithm
based on Wiener-Khinchin theorem is proposed as in Equation
2, which computes the autocorrelation through inverse Fourier
transform of the product of Fourier transform of polar shape ma-
trix and its conjugate.

ACR = real(F−1{F{Zrθ} . F ∗{Zrθ}}) (2)

where F is the Fourier Transform.

The product of Wiener-Khinchin method (Figure 2) of polar shape
matrix is a two-dimensional matrix, which consists of autocor-
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Figure 2: The product of the Wiener-Khinchin method. The im-
age shows the values for a shift in both radial and angular direc-
tion. Red as the highest and blue as the lowest correlation.

relation values at different angular and radial shifts. The auto-
correlation values are dependent on the gray level distribution in
the image, more specifically, the overall lighting condition. The
well-lit image that has larger pixel values has larger autocorrela-
tion values and vice-versa. Therefore, the range of autocorrela-
tion values varies between images. To overcome this variation,
the autocorrelation values are normalized to Pearson autocorre-
lation coefficients, where the values range from -1 to 1, -1 being
inversely and +1 being positively correlated. The normalization
method is mathematically described by the following equation:

R =
ACR−Nµ2

Z

Nσ2
Z

(3)

where N is the total number of samples or elements in polar
shape matrix. µZ and σZ are mean and standard deviation of polar
shape matrix.

The proposed feature considers the autocorrelation value along
the angular shift only. Therefore, only the values at zero radial
shift are extracted from the normalized Wiener-Khinchin product
of polar shape matrix, as shown in Figure 3. Additionally, the
autocorrelation function is symmetric in nature, hence only half
of this vector i.e 360

2∗α number of elements is enough to describe
the object and is used as the feature vector.

Figure 3: Circular autocorrelation of polar shape matrix.

CAPS has maximum values at zero angular shift, but for the ro-
tationally periodic object it has multiple maximum values. The
CAPS of the rotationally periodic object is itself periodic with the
half the period. Circular autocorrelation, by nature, is not affected
by the shift. In the case of CAPS, the shifting operation is carried
out along the angular axis, therefore, CAPS is not affected by ro-
tation. CAPS is invariant to overall illumination change, however
slightly variant to the change in the direction of the source of light
and variation of light within the object.

2.3 Feature Dimensionality Reduction and Standardization

CAPS is a vector with multiple elements, a total of 360
2∗α in num-

ber. The collective influence of all these elements plays a decisive
role in discriminating the objects. But, the higher dimensionality
of the CAPS offer complexities in processing the features to de-
tect objects. We propose the use of any standard machine learning
methods, in our case linear SVM, as a transformation measure to
reduce the dimension of this vector. SVM is a standard tool for

machine learning, widely used for solving problems in classifi-
cation, regression and novelty detection (Chang and Lin, 2011,
Bishop, 2006), because of its good generalization property for
even small samples (Liu et al., 2012, Vapnik and Vapnik, 1998,
Cortes and Vapnik, 1995). In this method, the data is mapped
into a higher dimensional space and an optimal separating hy-
perplane is constructed in this space (Suykens and Vandewalle,
1999, Cortes and Vapnik, 1995).

SVM is trained with labeled generic shape features extracted from
the training examples. The input feature vector formulates a com-
plex multidimensional space where SVM determines the best de-
cision boundary between positive and negative training examples
(Figure 4) and the function to calculate the distance of examples
from decision boundary in the same space. This reduces the n-
D feature space to the 1-D scalar quantity with higher values for
higher object likelihood.

Figure 4: Support Vector Machine: Red boundary is the hy-
perplane generated by SVM by maximizing the margin with two
blue hyperplanes, also called support vectors.

SVM uses the convex optimization method to determined the de-
cision boundary/hyperplane in multidimensional feature space. If
a training dataset {(xi, yi)}ni=1 where xi, also called example, is
the ith vector and yi is the label associated with xi is used to train
SVM. The decision boundary/hyperplane is identified by solving
the following primal optimization problem.

min
W,b

‖W‖2/2 + C

n∑
i=1

ξi (4)

subject to,

yi.(W
Txi + b) ≥ 1− ξi i = 1, ..., n (5)

where W T represents weight vector, b an explicit bias parame-
ter (Liu et al., 2012, Ben-Hur and Weston, 2010, Bishop, 2006).
The hyperplane or decision boundary is defined by the vector x
such that the value of the discriminant function is zero. The mar-
gin error 0 ≤ ξi ≤ 1 allows the samples to be in the margin
or misclassified. The constant C > 0 is a regularization param-
eter. Minimization of Equation 4 gives the unique solution of
hyperplane which serves as the linear decision boundary for two
classes.

The SVM is a discriminative model, hence, it provides the deci-
sion rather than posterior probabilities. Decision function is given
by

sgn(f(x) = W Tx+ b) (6)

where f(x) is the function that gives the distance of the sample
from decision boundary in feature space and can be taken as the
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Figure 5: f(x) of test samples from decision boundary

confidence measure. The decision function outputs the class label
which input vector x belongs to (Chang and Lin, 2011).

Generally, the trained classifier is used with a sliding window de-
tector which visits every pixel, calculates feature for the window
around that pixel and, based on this feature, decides whether the
pixel is object or non-object i.e. it labels the pixel directly us-
ing the decision function in Equation 6. Usually, this approach
generates many detections in the proximity of and within objects,
which need to be post-processed.

In this study, instead of the decision on labels of windows, actual
values of the f(x) are computed, as shown in Figure 5. Hence,
linear SVM is rather used as the feature space transformation
function, which reduces the dimensionality of the feature space
from n-dimensional space to one-dimensional space, with the de-
cision boundary as the reference Rn => R.

2.4 Local Maximum Detection

Feature map is a spatial distribution of standardized features over
the image, with positive peaks on the palm trees with a local max-
imum at the center of the palm trees, given that the features used
for training are extracted from the blocks with the central pixel at
the center of palm trees. The spatial extent of peaks depends on
the size of objects.

To detect the locations of the objects, a local maximum detec-
tion algorithm is proposed which, in the context of this study, is
the sliding window algorithm where a window of definite size
(footprint) translates over the entire image and calculates the lo-
cal maximum by comparing the central pixel value to all other
pixels values within the footprint. In the presence of non-palm
objects, there could be local maximum detections on non-objects
as well, hence, a threshold in the value of f(x) is introduced such
that only local maximum value exceeding this threshold is con-
sidered as palm-trees. Figure 6 shows the visual demonstration
of the algorithm, where the highest peak within a footprint that is
above the feature-value threshold is detected. The result of detec-
tion might vary a lot for different footprint sizes and thresholds.
Therefore, an appropriate size of the footprint, Parameter A and
the threshold, Parameter B have to be chosen by evaluating accu-
racies for different footprints and thresholds. The final result of
this process is a distribution of the object’s center locations over
the entire image: object map.

2.5 Accuracy Assessment and Optimization

2.5.1 Accuracy Assessment The detection results are evalu-
ated by comparing them with the ground truths. Ground truths

Figure 6: Local maximum detection

are generated by manual selection of all object locations in the
images. The precision-recall or users-producers accuracy, total
accuracy and RMS localization error are computed for accuracy
assessment.

The precision-recall and total accuracy is calculated from ratios
of positives and negatives. For determining true and false posi-
tives and negatives, the user should provide the maximum permis-
sible localization error (δ) i.e. permissible deviation of location
in ground truth and detection.

Precision or user’s accuracy is defined as the proportion of de-
tected objects that are correct in reality, given by Equation 7. Re-
call or producer’s accuracy is defined as the proportion of objects
detected (Equation 8) (Powers, 2011). Total accuracy is calcu-
lated as the average of both user and producer accuracy.

AccU =
TP

TP + FP
(7)

AccP =
TP

TP + FN
(8)

Acctot =
Precision+Recall

2
(9)

2.5.2 Parameter Optimization As discussed before, the lo-
cal maximum detection algorithm uses two parameters: footprint
size and the feature-value threshold. The detection results are af-
fected by the choice of values for those parameters and it is diffi-
cult to choose those parameters, as they can vary between scenes
and depend on size and shape of the palm trees. Therefore, an au-
tomatic approach to determine those parameters is proposed here.
But, it requires an image of small region per scene with ground
truths.

In this approach, the local maximum detection algorithm is ap-
plied to these images, choosing a set of varying footprint sizes
and the feature-value thresholds. The precision, recall, and total
accuracies are calculated for each of the detection results and the
parameters corresponding to the highest accuracy are chosen as
the final optimized parameters for the scene, where that image is
taken from, as mathematically expressed in Equation 10.{

A,B|max
A,B

Acctot

}
(10)

2.5.3 Localization Error For each true positive, the displace-
ment from its location in ground truth is calculated as localization
error (Equation 11). The overall localization accuracy, in each
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scene, is calculated through root mean square of the localization
errors of all true positive detections (Equation 12).

Lj =
√

(xTP (j)− xtrue(j))2 + (yTP (j)− ytrue(j))2 (11)

where j = 1, 2, 3, ..., NTP . NTP being the total number of the
true positives.

∆RMS =

√
L2

1 + L2
2 + L2

3 + ...+ L2
NTP

N
(12)

3. STUDY AREA AND DATA

3.1 Study Area

Our study areas comprise of the oil-palm tree plantation regions
in Malaysia, Thailand and Indonesia. Indonesia and Malaysia
are the two biggest exporters of oil-palm tree products, which
contribute to more than 90% of worldwide export (Colchester,
2011). The study data are aerial images captured at four planta-
tion region in the stated countries, with Trimble UX5 unmanned
aircraft system (UAS). Ground sampling distance of data range
from 3.2 to 10 cm and consist of three spectral channels which
include near-infrared, red and green in two of them and red, green
and blue in others. The spectral combination of the image does
not play a significant role in our study, hence, it is ignored and
the only green channel is used for all the experiments. All of
the data are orthorectified and reprojected to the Universal Trans-
verse Mercator (UTM) projection system with World Geodetic
System 1984 (WGS84) as an ellipsoid of the reference.

3.2 Training Data, Test Data and Ground Truth

Figure 7: Few examples of positive samples (Palm) of training
data in the red channel.

The data chosen for training and test are resampled to approxi-
mately 5 cm to avoid different sizes of training and test images.
Through the observation in a significant amount of fully grown
tree canopies, we found out that the canopies of the fully grown
palm trees are enclosed by the window size of 201x201 pixels
(10mx10m). Therefore, the sizes of training data and the window
in feature extraction are chosen to be 201x201 pixels.

Training data are selected randomly from only one test site in
Thailand. Training data consist of 644 samples of palm trees and
597 samples of non-palm objects, which include non-palm trees,
cars, buildings, backgrounds etc. Few samples of the training
data are shown in Figure 7. The leaves and their sizes varies
between the images. In some cases, the leaves overlap and the
canopies tend to be a circular object. On most of the training
data, there are interferences of nearby trees or other objects.

Table 1: Test image sets & their properties

Images Object-
Background
Contrast

Cultivation
Density

Artificial
Objects

Palm
Tree
Sizes

Img 01 High Medium Yes Large,
Medium,
Small

Img 02 High High No Large
Img 03 High Medium No Large,

Medium,
Small

Img 04 Medium Low Yes Large
Img 05 Low Low No Medium
Img 06 High High No Large
Img 07 High High Yes Large
Img 08 Very Low Low No Large,

Medium,
Small

(a) (b)

Figure 8: (a) Test Image 07 (b) Test Image 08

Test images are selected from all the data, considering different
challenges. In total, eight test images covering 4000x4000 pixels
are selected. General characteristics of the test images selected
are shown in Table 1. Within and between test images, the exis-
tence of different cultivation densities, different levels of contrast
between object and background, different sizes of trees, artificial
objects etc. pose ample challenges for the algorithm to perform.
Figure 8 demonstrates two of the test images used in the study.
Figure 8a have a high cultivation density of palm trees that have a
high resemblance to the star shape. The object-background con-
trast is high and there are artificial objects like houses present.
On the other hand, Figure 8b consists of palm trees, which have
more circular shape with a low cultivation density. There exist
palm trees of different sizes and the object-background contrast
is very low. It is difficult, even for human eyes, to distinguish
between the palm trees and the background. The ground truths
required for accessing the accuracy of the study is prepared by
manually selecting the palm tree centers in the test images.

4. IMPLEMENTATION AND RESULTS

The values of α = 1px and β = 1 degree are used as radial and
angular sampling intervals for the extraction of CAPS. CAPS of
palm training samples show lower values at leaves compared to
the model, as repeating scenarios are not exactly same in the real
world as in the model. However, the CAPS curves still are fluc-
tuating curves with peaks at the petals, as shown in the CAPS
of a training example (Figure 9a). The CAPS elements of palm
trees on average have higher values of autocorrelation coefficients
compared to the non-palm objects. Figure 9b shows the average
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of each element of CAPS for all palm and non-palm training ex-
amples, where the average value of each element for palm trees
are above 0.4 and most of the elements are demonstratively higher
than that for non-palm training examples.

(a)

(b)

Figure 9: (a) CAPS of a palm sample (b) Average CAPS of all
palm and non-palm training samples

The window of size 201x201px is translated over the test images
to generate feature maps. The window is shifted along rows and
columns at the step size of 5 pixels. Even though it affects the
final localization accuracy, the efficiency of the standard feature
extraction process is increased by 25 times. Feature maps have
prominent peaks at the center of palm trees as expected by the
hypothesis. But, there are also a few peaks on the objects that are
not palm trees. The false peaks lie mainly on other vegetations
and the artificial objects. These characteristics can be noticed in
Figure 10, which shows the feature map generated from Image
01.

Figure 10: Feature map of Image 01

A local maximum detection algorithm with different footprint
sizes and threshold values is applied to produce multiple object
detection results for each of the feature maps. For each result,
precision and recall are calculated with the maximum permissi-
ble localization errors of δ = 100px and δ = 40px, in order
to compare the results for different values of δ. Precision-recall

curves (Figure 11a) of detection on Image 01 show the influ-
ence of footprint size and feature-value threshold on the preci-
sion/user’s accuracy and recall/producer’s accuracy values. The
precision of the detection increases with increasing footprint size
and the feature-value threshold size. The recall , on the other
hand, decreases. Increased footprint size forces the algorithm
to search for maximum value in the larger area and hence, sup-
presses small peaks, which generally are false objects. As a
drawback, some objects that lie close to each other get neglected.
Similarly, increased feature-value threshold keeps the prominent
peaks only, which makes the results more precise, while the ob-
ject having lower peaks go undetected. Total accuracies for Im-
age 01 for δ = 100px, as shown in Figure 11b, have the high-
est value at around 77% and corresponding footprint size and
threshold are 225px and 1.75. These are the optimized parame-
ters, which can be used now for object detection in overall scene,
where the test Image 01 is extracted from. The object map de-
tected with optimized parameter is shown in Figure 12.

(a)

(b)

Figure 11: (a) Precision and recall curves of detections for differ-
ent thresholds and footprints for δ = 100px. (b) corresponding
total accuracies

For δ = 40px, the precision and recall exhibit similar behavior
as for δ = 100px. But the precision and recall are smaller in
value and hence, the total accuracies are lower. For Image 01,
the maximum total accuracy of 75.75% is achieved at footprint
size, 215px and threshold, 2.45. The feature-value threshold for
δ = 40px is higher compared to the one for δ = 100px, implying
that it only considers objects with very high likelihood. Figure 13
shows the optimal detection on Image 01 for δ = 40px. Similar
object maps are generated for all 8 images.

The results of the detection on all images for δ = 100px and 40px
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Figure 12: Object map of Image 01 with δ = 100px

Figure 13: Object map of Image 01 with δ = 40px

are presented in Table 2 and 3. The accuracy of the method varies
significantly with the chosen value of δ. The palm trees are de-
tected with high accuracy for δ = 100px, where the trees in 6 out
of 8 images are detected with accuracy higher than 83%, reach-
ing the maximum accuracy of 95.1% for Image 03. The detection
accuracies decrease for δ = 40px, where only 4 images are de-
tected with accuracy more than 82%, having maximum accuracy
of 93% for Image 03. The accuracies of detection vary noticeably
for Image 04 and 05.

The accuracies achieved by detection on Image 01 and 08 are
lowest with 77.1 and 60.9% for δ = 100px, while for δ = 40px
Image 04 and 08 have the lowest values with 64.6 and 50.1%.

5. DISCUSSION

The close analysis of object maps and the results suggests the
good performance of the algorithm in detecting palm trees. In
most of the cases, the accuracies are higher than 80%. Test im-
ages 02, 03, 06 and 07 have the palm trees that are very distinct
and are resembling more to the star-shaped objects (eg. Figure
14a) than the palm trees in other images and the detection algo-
rithm performed best for those images with accuracy above 89%
and 82% for δ = 100px and 40px respectively.

Table 2: Detection results on all images with CAPS, δ = 100px

Images Truth Detect Miss False Pacc Uacc Acc
Img 01 239 167 72 31 69.9 84.3 77.1
Img 02 393 361 32 39 91.9 90.2 91.1
Img 03 485 463 22 26 95.5 94.7 95.1
Img 04 390 344 46 92 88.2 78.9 83.6
Img 05 380 341 39 10 89.7 77.1 83.4
Img 06 670 597 73 64 89.1 90.3 89.7
Img 07 636 582 54 60 91.5 90.7 91.1
Img 08 467 254 213 123 54.4 67.4 60.9

Table 3: Detection results on all images with CAPS, δ = 40px

Images Truth Detect Miss False Pacc Uacc Acc
Img 01 239 176 63 50 73.6 77.9 75.6
Img 02 393 343 50 36 87.3 90.5 88.9
Img 03 485 441 44 23 90.9 95.0 93.0
Img 04 390 279 111 240 71.5 53.8 62.6
Img 05 380 278 102 144 73.2 65.9 69.5
Img 06 670 509 161 57 76.0 89.9 82.9
Img 07 636 531 105 65 83.5 89.1 86.3
Img 08 467 1 466 0 0.2 100.1 50.1

The detection performed very well against the presence of differ-
ent sizes of palm trees and high (eg. Figure 14a) and medium
cultivation densities. The performance of the algorithm against
medium and low object-background contrast is low for δ = 40px,
while it is higher for δ = 100px, as seen in results of test images
04, 05 and 08. This suggests that the objects with low object-
background contrast form small peaks. In the case of test Image
08, the object-background contrast is very low making it diffi-
cult even for human eyes to distinguish between the trees and the
background. The algorithm performed poorly for the image.

In the presence of artificial objects, mainly houses, the algorithm
detected the roof corners and centers as shown in Figure 14b.
CAPS of the regular shapes are also a periodic curve with high
autocorrelation values, which is the reason behind the detections
on the houses. CAPS of a circular shape have the highest value.
Therefore, the objects, like tree canopies having circular and nearly
circular shape are also detected. In order to get rid of such false
detections, a learning algorithm, which decides on a non-linear
decision boundary, can be employed. From the observation of
such characteristic of CAPS, it can be concluded that the use of
CAPS can also be extended to object recognition. It can be used
as a general shape feature in detecting objects of different shapes.

There are few false detections in the backgrounds between the
cluster of the trees, where the backgrounds, in a combination with
the trees around, give the false impression of star-shaped objects
(Figure 14c). Even though they can be eliminated by taking the
spectral value in consideration, it is not attempted in this study.

Overall, the training data required for the algorithm were pro-
duced from only one image, while the trained SVM were applied
to scenes taken at different scenarios. Even then, the accuracies of
detections are comparable with each other and with those meth-
ods proposed by Malek et al. (2014) and Shrestasathiern & Rak-
watin (2014). Unlike, the test areas chosen by the authors, our
test areas were chosen to have multiple challenges, including few
images with high cultivation densities. The accuracy of the de-
tection might increase if the training data from all scenarios are
included.

Although the localization accuracies are highly controlled by the
maximum allowed localization error δ, evaluation on how accu-
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(a) (b) (c)

Figure 14: (a) Detection in high cultivation density. False detec-
tions on (b) artificial objects and, (c) false star-shape. [Blue-star:
Detection, Red-star: Missed, Red-dot: False detection]

rately the system localizes center is made by calculating the root
mean square of the deviations of true detections from object cen-
ters as discussed in Section 2.5.3. The localization error of CAPS
in case of δ=40px is less than 20px and 70px for allowed δ =
100px. The maximum localization error occurs for Image 08,
for which accuracy of detection is also worst. Except image 08
for δ=100px, all other images have localization accuracy below
50px, which is half of the allowed error. Furthermore, during
the feature map derivation, the shift along rows and columns are
carried out in an interval of 5 pixels, which also contribute signifi-
cantly to the degradation of the locational accuracy of detections.
The locational accuracy can be increased by decreasing this shift-
ing step, but it will also make the process inefficient.

Figure 15: RMS localization error [pixels]

6. CONCLUSION

The algorithm performed well with comparable accuracy with the
results from different authors, given that the test sites were chosen
focusing on different challenges. Overall accuracy of the method
for all test images is 84% for δ = 100px and 76.1% for δ =
40px. Although, the performance of the algorithm was poor for
few images, in most of the cases it produced results with high
accuracies, despite the fact that training samples for algorithm
were chosen only from the first scene.

CAPS as the feature was able to distinguish between palm trees
and non-palm objects. But yet, few interesting false objects were
detected, which had high CAPS values. It signifies that CAPS
can also be used for recognition of different shapes, especially
regular shapes, which also have high values of CAPS.

One drawback of CAPS is that its extraction is a non-linear pro-
cess, and hence, the efficiency of feature extraction is low. Fur-
ther study on increasing the efficiency would strengthen the fea-
ture. Finally, CAPS proved to be a shape feature that distin-
guishes palm trees that can be used singularly in object detection.

However, for increased accuracy, it also can be used in combina-
tion with other features.
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