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ABSTRACT: 

 

This paper presents a data-driven workflow for the detection of scaffolding components from point clouds. The points belonging to 

the scaffolding components are identified and separated from the main building structures and two basic elements, namely the 

toeboard and the tube, are reconstructed. The workflow has four main processing steps. Firstly, the raw point clouds are 

preprocessed by statistical filtering and voxel girding. In the second step, the planar surfaces of the building surface and scaffoldings 

are extracted via RANSAC and then grouped by their parallelity and distance to separate the building façade. In the third step, the 

3D shape descriptor FPFH and random forest classification algorithm are applied to classify the point data of building façades into 

classes belonging to different elements. Finally, by the use of linear fitting algorithm and matching using SHOT shape descriptor, the 

tubes and toeboards are reconstructed with their geometric parameters. It is shown that the points belonging to these objects are 

identified and then reconstructed with cylinder and cuboid models. The final results show that over 60% of the tubes and nearly 90% 

of the toeboards are reconstructed in the investigated façade, and more than 40% of the reconstructed objects are well rebuilt. 

 

 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

1.1 Motivation 

In the fields of Architecture, Engineering and Construction/ 

Facility Management (AEC/FM), the demand for efficient and 

accurate progress monitoring of construction site has 

dramatically grown in recent decades for popular specialized 

applications in work progress control, productivity 

improvement, security assurance, accident investigation, 

collaborative communications, etc. (Turkan et al., 2012). 

 

Normally, traditional progress tracking approaches depend 

highly on visual inspection and require extensive manual 

collection of data and analysis of various documents. Such 

progress monitoring methods therefore not only rely heavily on 

the personal skills and the experiences of professionals and but 

also require a lot of time. To solve this problem, the automatic 

construction site monitoring is developed with the application 

of 2D imaging, photogrammetry and Terrestrial Laser Scanning 

(TLS) in recent years (Turkan et al., 2012). Among all these 

techniques, the as-built Building Information Model (as-built 

BIM) generated from point clouds is utilized more and more 

widely due to its 3D feature and high  flexibility for fast 

updating (Tang et al., 2010).  

 

Nevertheless, the raw datasets of the generated point cloud 

usually contain many secondary and temporary objects, for 

example, scaffolding components. The scaffold components, 

which are commonly formed by thin structures like tubes and 

boards, are located very close to the building and share some 

similarities with the main body of building in size, color and 

height. As a result of these properties, scaffold components may 

cause difficulties during the rebuilding of as-built BIM of the 

main building structure due to occlusions, similarities and 

disturbances. Therefore, if the scaffold components can be 

detected and reconstructed prior to the processing of the dataset 

of main building structure, the rebuilding of the as-built BIM 

will be more accurate and efficient. Moreover, since the 

scaffolds are commonly used to assist the construction and the 

maintenance of buildings, by judging the status of the 

reconstructed scaffolds, the professionals can also make an 

appropriate evaluation of the aggregate scheduling for the 

construction project.  

 

The purpose of this work is to detect and reconstruct the 

scaffolding components from photogrammetric point cloud 

generated by stereo matching of a construction site with 

complex environment, in order to make a good preparation for 

the further rebuilding of as-built BIM and provide auxiliary 

information on the monitoring of the construction process. 
 

1.2 Related work 

Previous work about the reconstruction of scaffolds components 

using point cloud is scarce. Most of the related work mainly 

focuses on the rebuilding of as-built BIM from point clouds 

(Pătrăuceana et al., 2015; Xiong et al., 2013; Tang et al., 2010) 

or the comparison between as-built and as-planed BIM (Tuttas 

et al., 2014; Rankohi and Waugh, 2014). A preliminary 

investigation was made (own citation) to detect the scaffolding 

components in the construction site based on projection and 

Min-cut segmentation, with impressive results achieved. And 

based on Scan-vs-BIM system, some applications of point 
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clouds in tracking specified construction objects like 

Mechanical, Electrical and Plumbing (MEP) components 

(Bosché et al., 2014) and temporary or secondary objects like 

shoring, rebar are also developed (Turkan et al., 2014).  

 

Beyond these work mentioned above, there are also many 

research work has been done in the field of shape or object 

detection and reconstruction from point cloud. Klein et al. 

(2007) detected basic shapes from unorganized point clouds by 

decomposing the point cloud into a structure of shapes and a set 

of remaining points. By means of statistical analysis and 

persistent histogram features estimation, Rusu et al. (2008) 

obtained the 3D object map in a household environment from 

the point cloud. Moreover, in Bosché (2010) the object 

recognition is performed based on a threshold on the ratio of the 

covered area to the entire surface of the object. Additionally, 

Rottensteiner (2012) gave a review of local supervised 

classifiers and statistical models for the object extraction from 

LiDAR points in urban areas. Then, Niemeyer et al. (2014) 

detected the building object from point clouds via integrating 

the random forest classifier into conditional random field 

framework. Based on the precious work, Polewski et al. (2015) 

demonstrates that the local 3D shape descriptors and local 

supervised classifiers can be used to efficiently detect segments 

of fallen trees in LiDAR point clouds.  

 

At present, most of the existing methods related to monitoring 

construction site depend heavily on BIM. How to develop a 

simple but effective workflow to identify and rebuild scaffold 

components from point clouds without BIM is worth of 

research. 

 

1.3 Contribution and structure of the paper 

In this paper improved approaches for the detection of the 

scaffolding components based on the methods in (own citation) 

are given and put forward a detailed procedure of the 

recognition and modelling of two basic elements in the 

scaffolds: the tube and the toeboard, which are exhibited in 

Figures 1a and 1b. The overall methodology is described in 

Chapter 2. Firstly, the approaches for the preprocessing of the 

point cloud are explained in Section 2.2. Afterward, Section 2.3 

devotes the methods for division of the building façades, 

namely the detection of the scaffolding components, while the 

process of classification of different kinds of elements in the 

scaffolds is described in Section 2.4. Then the methods of 

recognizing and rebuilding the objects are developed in Section 

2.5. In Chapter 3, the experiments shown, with the introduction 

of datasets (Section 3.1) and discussion and evaluation of the 

results (Section 3.2 and 3.3), followed by a conclusion and an 

outlook in Chapter 4. 

 

 
Figure 1. a) Real photo of scaffolds, b) toeboards and tubes in 

the scaffolds. 

2. METHODOLOGY 

2.1 Workflow 

In general, the overall workflow for the detection and modelling 

of the scaffolds can be divided into four main steps. The first 

step is to make a preprocessing of the raw point clouds, in 

which a statistical removal algorithm is utilized to filter the 

outliers, followed by a voxelization process, aiming at to 

downsample and structure the point dataset. In the second step, 

the voxelized point clouds are projected to the ground, and  

intensities of pixels in the projected 2D imagery are counted in 

order to find the local maximum areas representing the points of 

scaffolds and building structures. The planar surfaces 

representing the building surface and scaffoldings are extracted 

by the random sample consensus (RANSAC) based model 

fitting algorithm and then merged and grouped by the parallelity 

and Euclidean distance between surfaces. The building surface 

and corresponding scaffolds are grouped together as a building 

façade. Afterwards, a 3D shape descriptor: fast point feature 

histogram (FPFH) is applied to the point data of building 

façades in order to obtain the features of different elements. 

With the help of random forest (RF) classification method, the 

points belonging to different types of objects are identified. 

Finally, by the use of RANSAC algorithm and signature of 

histograms of orientations (SHOT) (Salti et al., 2014) shape 

descriptor, the linear and planar objects are recognized, 

respectively, with their geometric parameters obtained. Figure 2 

gives an overall workflow with involved methods and 

algorithms. 

 

 
Figure 2. The overall flowchart. 

 

2.2 Preprocessing of point cloud 

The preprocessing of the point clouds aims at refining and 

structuring the primitive point clouds data. In detail, the 

objectives of the preprocessing of point cloud is twofold. On 

one hand, since the photogrammetric point clouds may 

introduce more errors compared with that from TLS, the 

outliers in the raw dataset should be removed. On the other 

hand, due to the large amount and the uneven distribution of 

points, a voxelization process is required to organize point 

cloud (Moravec, 1996), which will reduce the amount and 

discretize the point clouds in a uniformly spaced 3D grid data 

structure.  

 

To remove the sparse outliers, a statistical analysis on the 

neighborhood of each point is conducted (Rusu et al., 2011). 

For each point, the mean distances from it to all its neighbors 

are computed. Assume that the distribution of points is 

Gaussian with a standard deviation, those points whose mean 
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distances are beyond the interval defined by the global distance 

and standard deviation can be considered as outliers and 

filtered. 

 

For the voxelization of datasets, a voxel grid by means of kd-

tree with cubic cells of certain size is created. This grid is 

applied to the point cloud of the whole construction site area. 

This voxelization can distribute the density of points uniformly 

to avoid the overly dense and sparsely sensed points in specific 

areas.  

 

2.3 Division of the building façades 

The division of the building façades aims to distinguish and 

extract the points of main building body, including the points of 

the structures of the building and the adjacent scaffolding 

components, from the points in the construction site. The 

division consists of three core phases: (i) The projection and 

selection of the points, (ii) the extraction of planar surfaces and 

(iii) the grouping of the planar surfaces.  
 
2.3.1 The projection and selection of the points: The 

projection of the point cloud is a conversion from 3D point data 

to 2D projected data by projecting the point clouds on the 

ground. As a cubic voxel grid has already been established in 

the preprocessing step, hence the point can be directly projected 

to the ground along the perpendicular direction. The number of 

pixels in length and width can be computed by dividing a pre-

defined pixel size: 

 

)/(

)/(

sizeyy

sizexx

PlceilP

PlceilP



                                   (1)   

                                 

Here, the ()ceil  searches for the minimal integer which is larger 

or equal to the calculation results. Two calculated pixel 

numbers determines the size of the 2D image. In this way, each 

point is projected in a unique bin definitely by the pixel on the 

2D image, which is named after the counting image. However, 

each bin in the form of pixel on the counting image perhaps 

records many points or nothing depending on the pixel size. The 

larger the pre-defined pixel is, the more points each bin may 

contain. Too many or too few points in a pixel are both 

counterproductive to the assessment of the intensity. For the 

application of this work, an appropriate pixel size is about triple 

diameter of the vertical tube section. This pixel size guarantees 

that a single vertical tube can be projected into pixels with 

limited neighbours, with its features kept and disturbances 

limited.  

 

For the selection, assuming that the projected points in the 

ground of main structure of the building and scaffold 

components (e.g. walls, tubes and boards) have a higher density 

when compared with the disturbing object. Thus, in the 

projected image, pixels are selected according to its intensity, 

namely the number of points falling into it. Large number 

means higher intensity and higher possibility of being selected. 

The points corresponding to the pixels with high intensity are 

expected to be selected as the points of main building body. For 

this work, the local maximum intensity is regarded as the most 

appropriate threshold for the selection of intensity. A sliding 

window with size of 33   is applied to the counting image to 

calculate the local maximum intensity following Equation 2: 

 

 3,2,13,2,1)),(max(  nmnmIm                   (2) 

 

where   is the intensity of pixels, and m , n  are the image 

coordinates in the sliding window. 

 

2.3.2 The extraction of planar surface: After the projection 

and selection of the points, an extraction algorithm of planar 

surfaces is employed to the points of main building body. In this 

phase, an assumption is made that the major façades of the as-

built building are mainly constructed with a planar shape. For 

example, the vertical walls, inner and outer rows of the 

scaffolds and so on. As a consequence, by fitting the planar 

surface, we can extract the different parts of the building 

façades. Here, a plane fitting algorithm based on RANSAC is 

applied. Furthermore, considering the major façades always 

have a vertical direction, a constraint with a vertical direction is 

also added to the plane fitting process. 

 

2.3.3 The grouping of the planar surface: The vertical 

planar surfaces which belong to the same façade should be 

grouped together as an entire as-built building façade. The 

grouping process is conducted on the basis of the parallelism 

and Euclidean distance. Normals of the plane will be calculated 

and to judge whether the planar surfaces are parallel or not, and 

the distance between them will decide whether they belong to 

the same façades or not. As shown in Figure 3, the relationship 

between the wall surface and the inner and outer rows of the 

scaffolds can also be rebuilt and labelled during the grouping 

process. For each extracted planar surface, they will firstly be 

grouped by the directions of their norms, and then verified and 

labelled by the distances between the parallel surfaces. 

 

 
Figure 3. The schematic depiction of the grouping of the planar 

surfaces. 

 

2.4 Classification of scaffolding components 

With respect to the classification of the scaffolding components, 

its aim is to distinguish different kinds of basic elements 

forming the scaffolds. For this work, our emphasis is put on two 

basic elements in the scaffolds, namely the vertical tubes and 

the toeboards, which are the basic and typical elements in the 

scaffolds. To obtain these two basic elements from the whole 

point datasets with disturbing background, we use a supervised 

classification strategy with random forest algorithm to 

discriminate the elements.   

 

For the sake of the features used in classification, a 3D shape 

descriptor FPFH (Rusu et al., 2008) is employed to train the 

random forest classifier in order to distinguish between the 

points belonging to certain kinds of elements and other points.  

 

The random forest classifier (Breiman, 2001) is a combination 

of N tree-structured classifiers in which each classifier is created 

by randomizing vector sampled independently from the input 

vectors, and each decision tree vote uniformly for selecting the 
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most popular class to classify the input vectors (Pal, 2005).  The 

random forest classifier employed in this study consists of using 

a combination of geometric features at each node to grow a tree. 

In the training, bagging method is used for each feature 

combination to generate a training dataset by randomly drawing 

with replacement N examples, where N is the size of the original 

training set (Breiman, 1996). For the classification process, if 

there are M classes  Mncn ,...,2,1  of elements needed to be 

classified, a sample p  will get M confidence degrees after the 

classification, each confidence degree )(),( cp pn
 representing the 

possibility of the sample p  belonging to a certain class nc . As 

shown in Equation 3, the final output ionfinalDecis  of the 

random forest is the average of the results from all the decision 

trees. 

 





Nn

pnd cp
N

f
,...,1´

),( )(
1

maxarg                  (3) 

 

 
 

Figure 4. The illustration of the principle of random forest. 

 

In regard to the FPFH descriptor, it is a simplified version of the 

point feature histogram (PFH), aiming at overcoming its 

drawbacks of high computational cost. The FPFH considers 

only the connections directly between the center key point and 

its neighbors, ignoring additional links between neighbors. This 

simplification make the complexity down from O(nk2) to O(nk). 

For each pair, the Darboux frame is computed from their normal 

vectors. With this frame, the difference between the normal 

vectors can be encoded with 3 angular variables, resulting in 33 

bins in a feature histogram. 

 

2.5 Recognition and rebuilding of objects 

The recognition and modelling of the objects is designed to 

recognize and label each object in the candidate points of 

certain kinds of elements, and then represents them with regular 

geometric models. To make the recognition process more 

accurate and avoid the interference of similar objects, in 

advance of the recognition, there is also a segmentation based 

on region growing used to segment the candidate points into 

small point clusters. 

 

For the purpose of recognizing tubes and toeboards, two 

different approaches are designed to recognize them considering 

the various geometric characteristic of these two elements: (i) 

For tube, it is regarded as cylinder with length and radius. Like 

the aforementioned plane fitting, in the modelling of tubes, the 

RANSAC algorithm is used to fit the axis line of the model, and 

then the cylinder model is rebuilt with given radius. After the 

rebuilding of models, small fragments are merged together to 

form a completed tube object. (ii) For  toeboard, it is deemed to 

be cuboid with thin thickness. In the reconstruction of 

toeboards, the candidate points used for the modelling have to 

be firstly recognized from the point cluster by the use of SHOT 

shape descriptor and feature matching. The matching is 

conducted between points in the SHOT feature space, with 

Manhattan distance measured. Afterwards, the projection, alpha 

shape and rotating calipers algorithm are introduced to obtain 

the shape plane, shape boundary and convex polygon, 

respectively. In Figure 5, brief schematic diagrams are 

illustrated to explain the different procedures of modelling for 

tubes and toeboards. 

 

 
Figure 5.  a) The procedure of modelling the tube,  b) the 

procedure of modelling the toeboard. 

 

Some prior knowledge about the tubes and toeboards, such as 

radius and thickness, is also utilized to optimize the boundary of 

objects. The radius of tube is fixed to 4 cm, while the thickness 

of toeboard is set to 5 cm. 

 

3. EXPERIMENTS 

3.1 Datasets and construction site 

In this study, a construction site in Munich is selected as 

experimental site, with an area on the ground of 2300 m2 and 

consisting of three main façades being triangular in shape. The 

photogrammetric point clouds are generated from a structure 

from motion system and stereo matching method developed by 

Tuttas et al. (2014), in which the VSfM Software (Wu, 2013) 

and SURE (Rothermel et. al., 2012) are also used. In the 

following data processing steps, Point Cloud Library (PCL) 

(Rusu et al., 2012) is also used. In Figure 6a, an example for the 

image taken on the investigated construction site is shown 

(Tuttas et al., 2014). The dense photogrammetric point clouds 

created from the images are shown in Figure 6b. In total, there 

are 81 images used and 33 million points generated. The 

coordinate system of the point data is perpendicular to the earth 

ground.  It can be seen from Figure 6b that, the point clouds 

contain a lot of noise and many disturbing objects nearby the 

main body of building. Moreover, the points are sampled with 

very different point densities, ranging from 312 thousand pts/m2 

to 83 thousand pts/m2. The average distance between the inner 

scaffold row and the building surface is approximately [0.3m, 
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0.6m], while that between outer row and the scaffold is about 

[1.1m, 1.4m]. 
 

  
Figure 6.  a) The image of the construction site taken from the 

crane,  b) the dense point cloud generated from the images. 

 

3.2 Results and Discussion 

3.2.1 The preprocessing results: After the statistical 

filtering and voxelization, the datasets has been condensed to 

855 thousand points, seeing Figure 7. Here, the size of the cubic 

chosen for the voxel gird is 4 cm, and also the point densities 

have been evenly reduced to around 16 thousand pts/m2.   

 

 
Figure 7. a) The original photogrammetric point cloud, b) the 

reduced point clouds after the statistical filtering and 

voxelization. 

 
After the projection, the main structure of building, including 

mainly the structure of walls and the scaffolding components, 

shows apparent light patterns in the counting image in Figure 8a 

representing the high densities and revealing the high overlap of 

points in the perpendicular direction reflected by the main 

façade of building. Figure 8b gives the outcome of the selection 

of points of main building body from the whole point cloud by 

the use of counting image. Though a voxelization process is 

done, seen in Figure 8b, total amounts of points in each façade 

are still different.  Thus, in this work the façade with largest 

amount of points (hypotenuse) is chosen as our main targets.  

 

 
Figure 8. a) The projected counting image, b) the selected 

points of main building body by using the counting image. 

3.2.2 The separated building façades: As aforementioned, 

the planar surfaces, including building surfaces, the inner and 

outer rows of scaffolds, are extracted with plane fitting 

algorithm, and then grouped to form the building façades. In 

Figure 9, we can see the extracted result of one of the main 

building façades, in which Figure 9a displays an original image 

of the façade for comparison and the others show the extracted 

and grouped points of this façade. The red points represent the 

building surface, while the green and blue ones are the points 

belonging to the inner and outer rows of scaffolds, respectively. 

It can be seen from the figures that, the main part of this façade 

is separated and labelled.  However, in the divided façade, there 

are also hollows and points wrongly labelled due to the 

occlusion and the fitting errors. For example, the missing part in 

the middle left along perpendicular direction in Figure 9b and 

the wrongly labelled blue points in Figure 9d. The Figures 9e 

and 9f display the separated scaffolding components and 

building surface, respectively. 

 

 
Figure 9. a) The original image of the building façade, b)-d) the 

grouped façade formed by the extracted planar surfaces, e) the 

scaffolding components, f) the building surface. 

 

3.2.3 The classification of scaffolding elements: In this 

study, four kinds of representative objects are chosen in the 

point clouds of scaffolds, namely the scatters, the plane, the 

toeboard and the tube, in order to classify all the point dataset 

of the grouped façade. The scatters are the irregular point 

clusters with no specific shape, which is regarded as disturbing 

object. The planes are a common component of scaffolds, while 

the tubes and toeboards are our targets. 

 

An illustration of examples of these four kinds of objects and 

their corresponding feature histograms of 300 points in the 

FPFH hyperspace calculated by FPFH descriptor is exhibited in 

Figure 10. It can be easily seen from Figures 10e - 10h that, 

their FPFH features have obvious distinctions. For the points 

lying in different objects, the peaks in the histogram shows 

different distributions and various value, while for the points of 

same objects, the histograms of each points  reveal very similar 

distribution and tendencies, which can facilitate the 

classification process 
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Figure 10. Different kinds of objects (up) and their FPFH 

(down), a) and e) scatters, b) and f) plane, c) and g) tube, d) and 

h) toeboard. 

 

In Figure 11, the results of the classification using random 

forest and FPFH feature are given. It can be seen from Figures 

11a and 11b that, the majority of the points belonging to the 

toeboard and tube have been successfully distinguished, but 

there are also some points been classified into wrong classes. It 

is noticeable that in Figure 11a, there are many points that 

should not be classified as “toeboard” but be wrongly 

identified. One of the explanations is that although the FPFH 

features of toeboard and plane can be distinguished, the plane 

and toeboard are quite similar in geometry theoretically. The 

toeboard can be regarded as a special kind of plane with thin 

thickness and narrow shape, so they are easily to be 

misclassified. And also, four kinds of classes cannot cover all 

types of objects in the scaffolds. 

 

3.2.4 The recognition and modelling results: After the 

classification, the classes of points belonging to toeboard and 

tube are selected for the segmentation. The region growing 

segmentation results are also shown in Figure 11 in the form of 

color maps, where different colors represent different 

segmented point clusters. Nevertheless, the segmented point 

clusters also contain lots of disturbing points or ambiguous part 

as seen in Figure 11. For instance, the slant linear clusters in 

Figure 11a, which represent ladders in real scaffolds, should not 

be used for the further reconstructions. Hence, a matching 

process aiming at extracting the candidate points from the point 

cluster for the reconstruction is needed.  

 

For matching, two point sets of class toeboard are selected 

manually from the whole point cloud to use as training samples. 

In Figure 12, an example of the matching between the training 

sample and the point cluster using the SHOT shape descriptor is 

given. It is clear that most of the candidate points can be 

matched from the point cluster, but the points neighboring the 

disturbing parts can hardly be correctly matched, for instance, 

the hollow part of the red points in Figure 12c. Figure 13 shows 

comparisons between the rebuilt objects (already sampled by 

red points) and the original point clusters (the blue points). 

 

 
Figure 11. Classifiacation and segmentation results, a) points of 

toeboards, b) points of tubes. 

 

 
Figure 12. Matching of candidate points for toeboard 

modelling, a) the training sample, b) the point cluster used,  

c) the matched candidate points. 
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Figure 13. Examples of reconstructed objects, a) for toeboard. 

b) for tube. 

 

The final modelling results are given in Figure 14. In Figure 

14a, the green points are original points of the divided building 

façade, while blue points represent the single reconstructed  

models, more exactly, the fragments of objects. Similarly, in 

Figure 14b, the red points show the merged objects, while the 

green background points are the original points of the separated 

building façade. For tubes, the rebuilt objects are mainly 

discontinuous fragments, with their directions slightly biased 

due to the disturbing errors. For toeboards, the errors are mainly 

caused by the segmentation process, in which the segmented 

clusters result in the discontinuity and the wrongly segmented 

points lead to the uncertainty of boundaries. As a consequence, 

a merging process is applied to combine and unify these 

fragments together. The geometric characteristics of the 

scaffolds, for example, the perpendicular direction of the tubes, 

facilitate the design of geometric constraints during the 

merging.  

 

 
Figure 14. The matching results of the façade, a) the 

reconstructed objects (blue) and the original point clouds 

(green), b) the merged reconstructed objects (red) and the 

original point cloud (green). 

 

 

3.3 The evaluation of performance: To evaluate the 

performance of the proposed workflow, the number and the 

quality of reconstructed objects are regarded as two significant 

evaluation criterions. The number of reconstructed objects 

reflects the effectiveness of the proposed workflow. Here, both 

the numbers of the directly reconstructed objects and the result 

after merging process are counted. For the investigated façade 

used in Figure 14, Table 1 gives a statistical result. 

 

 Tubes Toeboards 

True 108 60 

Before 

merging 
53 49% 35 58% 

After 

merging 
68 63% 52 87% 

 

Table1. The number of reconstructed objects 

 

Meanwhile, the quality of the reconstructed objects will give an 

assessment of the accuracy for the proposed approaches. Here, 

the quality of reconstruction can be divided into three levels: 

well reconstructed objects, badly reconstructed objects and 

failed ones.  For the well reconstructed object, it is correctly 

identified and more than 75% of itself is reconstructed with an 

acceptable accuracy (the errors of geometric parameters is 

smaller than 25%). The badly reconstructed objects are those 

who is correctly identified but only 25% to 75% parts is 

reconstructed or the errors of its geometric parameters range 

from 25% to 50% . With regard to the failed ones, it means that 

the objects cannot be reconstructed or wrongly identified. Those 

object with its reconstructed part less than 25% and geometric 

error larger than 50% are also accounted as failed ones.  Table 2 

gives a manual evaluation result of the reconstructed objects 

after merging in the investigated façade shown in Figure 14. 

 

 Tubes Toeboards 

Total 68 52 

Well 39 57% 21 40% 

Badly 21 31% 22 42% 

Failed 8 12% 9 18% 

 

Table2. The statistic of quality of reconstructed objects 

 

It can be seen from the tables that, before the merging, only 

one-half of the objects are reconstructed. Then, by means of 

merging process, more than 60% of the tubes and approximately 

90% of the toeboards can be successfully reconstructed in the 

investigated façade. As for the quality of outcomes, about 60% 

of the tubes are well reconstructed, while the value of that for 

toeboards is only 40%. In contrast, there are still 31% of the 

tubes and 42% of the toeboards are reconstructed in an inferior 

status with incompletion or large errors. Besides, the 

reconstructions of 12% of the tubes and 18% of the toeboaeds 

are failed, which is mainly due to the incorrect matching, lack 

of candidate point and rebuilding errors. It is worth to note that 

the merging process contributes a lot the final reconstruction, 

which can partly overcome the uncertainty of insufficient points 

and systematic errors caused by rebuilding.  

 

4. CONCLUSIONS AND FUTURE WORK 

In this work, a workflow of identifying and rebuilding the 

scaffolding components is introduced for monitoring of the 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: U. Stilla, F. Rottensteiner, and S. Hinz 

doi:10.5194/isprsannals-II-3-W5-401-2015

 
407



 

construction site. The results indicate that the proposed 

approaches are competent to the identification and 

reconstruction of two basic scaffolding elements: tubes and 

toeboards. By the use of involved methods and algorithms, the 

points belonging to these objects are correctly identified and 

then rebuild with cylinder and cuboid models. Over 60% of the 

tubes and nearly 90% of the toeboards are finally reconstructed 

in the investigated façade, and more than 40% of the 

reconstructed objects are rebuilt with a good quality. However, 

there are also some drawbacks, such as the missing information 

during the preprocessing and the projection process, the errors 

due to the classification and the inaccuracies when reconstruct 

the objects. 

 

In future, our work will focus on the classification of points and 

the recognition of objects, the performance of which can largely 

influence the final reconstruction. The performance evaluation 

should be further investigated. Furthermore, more types of 

objects in scaffolds will also be taken into consideration. The 

acquisition of photogrammetric point cloud needs to be 

optimized as well, because there are some parts in the cloud 

where points are insufficient in terms of coverage or accuracy. 

This part of work is now working in progress. 
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