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ABSTRACT: 

 

In this work we focused on the classification of Urban Settlement Types (USTs) based on two datasets from the TerraSAR-X 

satellite acquired at ascending and descending look directions. These data sets comprise the intensity, amplitude and coherence 

images from the ascending and descending datasets. In accordance to most official UST maps, the urban blocks of our study site 

were considered as the elements to be classified. The considered USTs classes in this paper are: Vegetated Areas, Single-Family 

Houses and Commercial and Residential Buildings. Three different groups of image attributes were utilized, namely: Relative Areas, 

Histogram of Oriented Gradients and geometrical and contextual attributes extracted from the nodes of a Max-Tree Morphological 

Profile. These image attributes were submitted to three powerful soft multi-class classification algorithms. In this way, each 

classifier output a membership value to each of the classes. This membership values were then treated as the potentials of the unary 

factors of a Conditional Random Fields (CRFs) model. The pairwise factors of the CRFs model were parameterised with a Potts 

function. The reclassification performed with the CRFs model enabled a slight increase of the classification’s accuracy from 76% to 

79% out of 1926 urban blocks. 
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1. INTRODUCTION 

1.1 Urban Structure Types  

Efficient urban planning and monitoring actions heavily rely on 

the spatial distribution of the city’s different settlements types. 

Waste production, traffic management, water and energy 

consumption are just a few socio-economic and environmental 

planning categories that should be tailored according to the 

spatial distribution of the city’s different types of settlements.  

In Germany, the term Urban Structure Types (USTs) 

(Stadtstrukturtypen) was conceived in the nineties to categorize 

these different urban settlements. Since then, this concept has 

been used as the main spatial indicator used in urban planning 

and monitoring actions in this country and others. Although 

there is no universally accepted definition of the term, USTs are 

usually understood as combining social and cultural aspects 

with the contextual and physical structure of the different 

settlements. More formally, USTs are characterized by: (1) the 

geometry, density and spatial configuration of buildings; (2) 

their social, cultural and economic usages (e.g. residential, 

commercial, industrial, amusement etc.) and (3) their 

environmental properties like the presence and type of 

vegetation and water bodies (Pauleit and Duhme (2000) and 

Heiden et al. (2012)).  

 

1.2 Related Works and Our Contribution 

Despite the tremendous potential of remote sensing data for 

rapidly providing accurate information on USTs, there has not 

been many works explicitly devoted to their automatic detection 

and classification based on remote sensing data. Most of these 

works have utilised multispectral (Banzhaf and Höfer, 2008; 

Wurm et al., 2009; Huck et al., 2011; Wade et al., 2014), 

hyperspectral (Heldens, 2010; Heiden et al., 2012) imagery or 

simply some elevation data or vector dataset of the buildings 

(Steiniger et al., 2008; Yu et al., 2010; Wurm and 

Taubenboeck, 2010).  

A common approach seems to be to extract first land cover 

objects and then, according to certain measures of their 

structure inside a spatial parcel (usually the urban blocks), 

estimate its UST. Huck et al. (2011) classified USTs at the 

block-level hierarchically applying thresholds on the relative 

area and density of land cover classes inside the blocks. Wade 

et al. (2014) also proposed the classification of USTs based on 

the topology of land cover objects extracted inside urban 

blocks. The topology is described by different measures of 

neighbourhood-graphs, which are then submitted to a random 

forest classifier. Heiden et al. (2012) used airborne 

hyperspectral and elevation data to map the USTs of Munich 

(Germany). They first perform land cover classification and 

correct it using elevation data, which is also used to derive 

urban volume indicators. Topographic maps and cadastral data 

on buildings in vector format have also been used for deriving 

the USTs of urban blocks. Steiniger et al. (2008) used cadastral 

vector data of the buildings from Zurich (Switzerland) and their 

morphological and contextual properties to distinguish USTs 

based on the results of different classifiers. They rely on the 

assumption that buildings from a same UST have similar shape 

and distances between each other. Hecht et al. (2013) extracted 

building footprints from topographic maps and classified them 

according to a considered building typology. Following, urban 

blocks are classified into USTs depending on the dominating 

building type. 

Without ever mentioning the term USTs, different research 

groups have tried to distinguish types of urban settlements 

based on medium-resolution Synthetic Aperture Radar (SAR) 
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data. These works rely most of the times on textural attributes 

and simple backscattering measures (Weydahl, 2002; Dekker, 

2003; Dell’Acqua and Gamba, 2006). Hoefner et al. (2009) in 

the other hand proposed jointly using high-resolution SAR and 

multispectral data to classify USTs. They suggest the use of a 

set of rules for USTs classification, which can be later improved 

based on textural features from SAR imagery. Nevertheless, 

they presented only very initial results. 

From this brief overview, it is possible to notice that the 

classification of UST based solely on high-resolution SAR 

imagery has explicitly not been tried yet. Motivated by that, we 

investigate the feasibility of automatically classifying general 

USTs based on high-resolution space-borne SAR data from 

ascending and descending look directions. Since the 

information content of SAR data is heavily related to the 

geometrical properties of the surface objects, we assume such 

data can be used to attain this goal. Differently from any other 

research in this direction, we focus in this paper on the 

classification of USTs followed by their reclassification by a 

probabilistic graphical model, more specifically, a Conditional 

Random Fields (CRFs) model (Lafferty et al. 2001). The 

consideration of the contextual relations between the USTs 

classes of neighbouring urban blocks was expected to increase 

the classification accuracy. 

 

2. METHODS 

2.1 Semantic Grouping of UST Classes 

Based solely on remote sensing data, it is very hard to 

distinguish two UST classes that do not differ on their physical 

aspects but only on their land use. Also, some UST classes are 

very specific on their land use and physical structure, what 

makes them rarely found on the urban area. Hence, we decided 

to exclude from our analysis these few rare and very specific 

classes and to group the remaining ones into three semantically 

broad USTs, namely: Parks and Vegetated Areas, Single-

Family Houses and Commercial and Residential Buildings. 

 

2.2 Data Preparation and Image Partitioning 

For the realization of our experiments, two interferometric 

datasets from the TerraSAR-X satellite from the city of Munich 

(Germany) were used, being one of these datasets acquired at 

ascending look direction and another at descending look 

direction (Table 1). All images were obtained in High-

Resolution Spotlight mode, which yields a pixel spacing of 

approximately 1,1 m. Each dataset comprises the intensity and 

amplitude images from the master acquisition, as well as the 

computed coherence image. All images were kept in their 

original acquisition orientation, so that no information 

distortion would be caused by re-projecting them. 

The first step of our processing chain was the partitioning of the 

images into segments. This was achieved by overlaying the 

vector data from the streets, water bodies and railroad tracks 

onto the images. In this way, the obtained segments coincided 

exactly with the borders of the vector objects. Since urban 

constructing blocks are usually delimited by the street and 

railroad networks, the borders of our segments coincide exactly 

with those from the urban blocks of the study area. This 

superposition of the vector and image data was possible because 

both are geo-referenced and it only demanded the turning of the 

vector data to the orientation of the images. 
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Ascending 
18.05.2011 

51.16 m 70.86 m 
09.06.2011 

Descending 
09.05.2011 

120.16 27.32 m 
20.05.2011 

Table 1. Acquisition parameters of the TerraSAR-X imagery. 

 

2.3 Image Attributes 

It is not easy to discover expressive image attributes for the 

classification of USTs. This task becomes even more difficult 

when deriving these attributes from SAR images. Ideally, the 

attributes must express the contextual, geometrical and spectral 

structure of the whole block in order to be informative 

regarding its USTs. In this paper, three different groups of 

image attributes were utilized, namely: (1) Relative Areas, (2) 

Histogram of Oriented Gradients (HOGs) and (4) geometrical 

and contextual attributes from the nodes of a Max-Tree 

Morphological Profile (MT-MP).  

 

 
Figure 1. Example of a MT-MP from a synthetic image. The 

CCs are groups of neighbouring pixels whose values are above 

the level’s threshold (represented in red at the images on the 

right). On the left side the corresponding hierarchically 

structured tree is depicted. 

 

Relative Areas concern the proportion of pixels inside an urban 

block whose values are below or above a certain threshold. 

Although simple, this group of attributes can be very powerful, 

especially when combined with other attributes in a 

classification scheme. The high-threshold and low-threshold 
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were defined by calculating ten percentiles of each image and 

selecting the second and the eighth percentile values as the 

high- and low-thresholds respectively. A third threshold value 

was calculated using the Otsu’s method, which calculates an 

optimal threshold by maximizing the variance between two 

classes of pixels (separated by the threshold). Equivalently, this 

threshold minimizes the intra-class variance. For this paper we 

calculated (1) the proportion of pixels from the amplitude and 

intensity images above the high-threshold; (2) the proportion of 

pixels from the amplitude and intensity images below the low- 

threshold and (3) the proportion of pixels from the coherence 

images above and below the Otsu threshold. These calculations 

were done on the images from the ascending and descending 

datasets, adding to a total of twelve attributes. In this way, we 

were able to extract for each block the proportions of (1) strong 

backscattering objects; (2) shadowed or occluded areas and (3) 

vegetated areas, since vegetation and water have low coherence 

values whereas man-made structures have high coherence 

values.   

HOGs are powerful image descriptors regarding computer 

vision applications (Dalal and Triggs, 2005). Their 

expressiveness as attributes for classifying remote sensing 

imagery has not yet been extensively exploited. HOGs can 

describe an urban block by the magnitude and direction of the 

gradients and then accumulating a histogram over it. The 

gradients are calculated over a certain number of squared cells 

with a certain size. 

The third type of image attributes used in this paper required 

the creation of a MT-MP by the application of several 

thresholds on the images with increasing values. At the 

application of each threshold a binary image is produced, where 

pixels receive value 1 in case they have values above the 

threshold and 0 otherwise. Pixels spatially grouped whose 

values are above the threshold are called connected components 

(CC). As the application of the subsequent higher thresholds 

proceeds, other, smaller, CCs are extracted. The CCs from all 

levels (threshold) get in this way structured into a hierarchical 

net, for each CC is a subset of a CC from the previous level. 

Figure 1 exhibits the creation of a MT-MP for a synthetic 

image. We created MT-MPs from the amplitude and intensity 

images from both datasets. Each MT-MP was created with 

twenty levels whose values are the twenty percentiles of the 

images. 

As explained, each CC represents a geographical region in the 

image. From these regions, several geometrical, positional and 

contextual attributes can be calculated. In this work, the 

considered geometrical attributes were area, rectangular fit and 

length-width division. We also considered the position of the 

CC’s region in relation to the borders of the urban block and in 

relation to other CCs whose geometrical attributes are in 

accordance to a CC considered as a building hypothesis. In 

other words, we check for each CC, based on its geometrical 

attributes, whether it can be considered to be a building or a 

house or none of the two. In case, it can be considered to be a 

building, we calculated its distance and angle difference to the 

borders of the block (Figure 2a). As mentioned, each pair of 

CCs understood as buildings had their relative angle and 

distance calculated (Figure 2b) 

 

2.4 Classification Attributes and Strategy 

In this work we created one MT-MP for each block and for the 

intensity and amplitude images of each of the two SAR 

datasets, making a total of four MT-MPs four each block. After 

creating each three, we counted (1) the number of CCs 

considered as buildings, (2) the number of CCs considered as 

house, (3) the number of buildings parallel to one of the borders 

of the block and close enough to it, (4) the number of CCs pairs 

that were considered as buildings and that were orthogonal to 

each other and (5) the number of CCs pairs that were 

considered as buildings and that were orthogonal to each other. 

These image attributes are referred from now on as 

morphological attributes (MAs). 

 

 
Figure 2. Distance of a CC to the borders of the block (a) and 

relative distance and orientation between two CCs considered 

as buildings. 

 

The HOGs features were calculated separately for each block 

and for the intensity, amplitude and coherence images of each 

of the looking-directions, making a total of six histograms for 

each block. Each histogram was accumulated for nine directions 

from nine different cells. The size of the cells varied according 

to the size of the urban block. The magnitudes of the gradients 

at each direction were also considered as attributes, together 

with the highest gradient magnitude of each histogram and its 

corresponding angle. This added up to 66 attributes calculated 

for each block. We refer to this group of attributes from now on 

as HOGs Descriptors. 

Each group of attributes was submitted separately to three 

powerful soft classifiers of our choice, namely: Random Forest 

(Breiman, 2001), Logistic Regression and Nearest-Neighbours. 

These classifiers are soft because they deliver a membership 

value (between 0 and 1) to each class for each urban block. 

Figure 3 shows how the classification strategy was organised. 

Since we have three groups of attributes, three classifiers and 

three classes, each block is associated to twenty-seven 

membership values, i.e. nine to each class. We aggregated them 

by calculating their arithmetic mean. Each block was in this 

way associated to one membership value to each of the three 

classes.  A first classification was then performed by selecting 

for each block the class with the highest membership value. 

 

 
 

Figure 3. Ensemble of soft classifiers used for our experiments. 

Each group of attributes was submitted to each of the classifiers 

adding to a total of nine output membership values for each 

class and for each block.  
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2.5 Construction of the CRFs graph 

A CRFs model possesses two types of factors: the ones 

composed of at least one observed variable and one not-

observed variable and the ones composed only of not-observed 

variables. In our case, the not-observed variables are the 

unknown USTs class of each block. The observed variables are 

the membership of each block to each of the three USTs classes 

we consider in this study. Their computation is explained on 

section 2.4. Our simple CRFs model has two different types of 

factors with exactly two variables each. One is composed of 

one observed variable and one not-observed variable. We call 

this factors unary factors. Each urban block has exactly one 

unary factor. The other type of factor present in our model is 

the one involving the not-observed variable of a block and the 

not-observed variable of one of its neighbours. Each block has 

the same amount of this factor as the number of neighbours it 

has. We call these factors the pairwise factors. The 

parameterization of the unary factors is straightforward: the 

parameters are exactly their membership values to the classes. 

The parameters of the pairwise factors were defined using a so-

called Potts function: 

 

10 if 
( , )

2 otherwise

i jBlock Block

i j

Class Class
F Block Block


 


            (1) 

 

The Potts pairwise parameterization defines that preferably the 

classes of two neighbouring blocks should be the same. This 

assignment receives potential 10. The potential to the case were 

the classes of two neighbouring blocks differ is 2. 

In order to define whether two blocks are neighbours, a distance 

criterion was applied. The centroid of each block was extracted 

along with their image coordinates. Following, the distance 

matrix containing all blocks was generated. Finally, two blocks 

are considered to be neighbours if the distance to each other is 

below the threshold of 300 meters. Figure 4 enables an intuitive 

understanding of our CRFs graph. The squares are the variable 

containing the membership values to the UST classes for each 

block. The circles represent the unknown UST class of the 

block. Each block is associated to one unary factor on the graph 

and to the amount of pairwise factors as its number of 

neighbours.    

Once we have created and parameterized the CRFs model, the 

next step was to run inference over it in order to estimate the 

most probable classification of the scene. We used the standard 

and powerful algorithm  for approximate inference named 

Loopy Belief Propagation (Kschischang et al., 2001) for this 

task. This algorithm together with other functions for the 

creation of probabilistic graphical models is available in the 

OpenGM library (Andres and Kappes, 2012). 

 

 

3. RESULTS AND DISCUSSION 

In this section we present and discuss the classification and re-

classification results and discuss them. Figure 5 shows three 

classifications. The UST ground-truth map is shown on Figure 

5a. It was produced by semantically grouping the UST classes 

(section 2.1) from the official UST map from Munich. This map 

was kindly provided to us by the prefecture of this city and it 

considers the urban blocks as the elementary mapping units, 

which enabled a one-to-one comparison between the map and 

the classifications.  

The classification achieved with the three groups of image 

attributes submitted to the classification strategy presented on 

section 2.4 is shown in Figure 5b. This classification has an 

overall accuracy of 76%. Its confusion matrix along with its 

per-class accuracies are shown in Table 2. 

 

 
 

Figure 4. Construction of the CRFs model. Squares represent 

the observed variables and the circles represent the unknown 

UST class of the blocks. A pairwise factor is created between 

two blocks if they are considered to be neighbours by a distance 

criterion.  

 

With the application of the CRFs model, an increase of only 3% 

was achieved. On the other hand, one notices by looking at 

Figure 5 that the CRFs classification is slightly smoother and in 

little more accordance with the distribution of the classes in the 

ground-truth map. In the other hand, as shown in Figure 6a, 

some mistaken class changes occurred with the reclassification. 

Figure 6b show example of successful class changes. They 

outnumber the incorrect changes, but the overall improvement 

of the classification is less than expected. Nevertheless, the fine 

tuning of the Potts function parameters and the distance 

criterion for neighbourhood definition may improve the results 

significantly. Because of that we will focus on the development 

of rules to regulate the pairwise interaction of neighbouring 

blocks based not only on their distance, but also on their 

geometrical similarities. Also, the potential of each class 

combination on the pairwise factors can be further tuned based 

on their a priori probabilities extracted from the sample set used 

for training the soft classifiers. 

 

4.  DISCUSSION 

This paper shows our first efforts to classify general UST 

classes based on simple statistical and geometrical image 

attributes. Despite the existence of a few papers that propose 

the classification of UST based on urban blocks and other 

remote sensing datasets, none of them evaluate the possibility 

of using solely (In)SAR data. This research has the additional 

novelty hence of also including a second InSAR dataset into 

play. Despite the fact that we did not consider the elevation data 

possible to be obtained by interferometric means, we showed a 

simple way of considering the distribution of objects inside the 

urban blocks and using this information as an attribute. This, 

together with the extraction of vegetation and man-made 
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structures from the coherence, intensity and amplitude images, 

enabled the classification of general USTs with good accuracy. 

The main contribution of this paper is though the fact that the 

context between neighbouring urban blocks is considered in a 

probability-based reclassification of the image based on a 

simple but elegant CRFs model. We expect to transmit our 

acquired motivation to other researchers in the field for putting 

efforts in the direction of considering broader contexts in the 

block-based urban land-use and UST classification. 

 

 
Figure 5. Ground-truth UST map (a), classification obtained 

with the ensemble of classifiers (b) and the reclassification 

obtained by the application of the CRFs model (c). 

 

 

Confusion Matrix 

 VA SFH CRB Sum 

VA 240 0 12 252 

SFH 21 279 275 575 

CRB 5 16 951 972 

Unclassified 108 4 15 127 

Sum 374 299 1253  

Accuracy Indexes (Classes) 

Producer 0.64 0.93 0.76  

User 0.95 0.48 0.97  

Kappa 0.58 0.90 0.51  

Totals 

Overall Accuracy 76%    

Kappa 0.61    

Table 2. Confusion matrix and class accuracy indexes of the 

UST classification. The name of the classes is shown 

abbreviated – Vegetated Areas (VA), Single Family Houses 

(SFH) and Commercial and Residential Buildings (CRB). 

 

 
Figure 6. Examples of erroneous (a) and successful (b) class 

changes performed by the CRFs-based reclassification step.  
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