
 

DEEP NEURAL NETWORKS FOR ABOVE-GROUND DETECTION IN VERY HIGH 

SPATIAL RESOLUTION DIGITAL ELEVATION MODELS 
 

 

D. Marmanis a,b, F. Adam a, M. Datcu a, T. Esch a,  U. Stilla b 

 
a EOC, German Aerospace Center, Wessling, Germany - (Dimitrios. Marmanis, Fathalrahman.Adam,  

Mihai.Datcu, Thomas.Esch)@dlr.de 
b Chair of Photogrammetry & Remote Sensing, Technische Universitaet Muenchen, Germany - stilla@tum.de 

 

Commission III, WG III/7 
 

 

KEY WORDS: Deep Learning, Multilayer Perceptrons, Ground Filtering, DEM, Classification   

 

 

ABSTRACT: 

 

Deep Learning techniques have lately received increased attention for achieving state-of-the-art results in many classification 

problems, including various vision tasks. In this work, we implement a Deep Learning technique for classifying above-ground 

objects within urban environments by using a Multilayer Perceptron model and VHSR DEM data. In this context, we propose a novel 

method called M-ramp which significantly improves the classifier’s estimations by neglecting artefacts, minimizing convergence 

time and improving overall accuracy. We support the importance of using the M-ramp model in DEM classification by conducting a 

set of experiments with both quantitative and qualitative results. Precisely, we initially train our algorithm with random DEM tiles 

and their respective point-labels, considering less than 0.1% over the test area, depicting the city center of Munich (25 km2). 

Furthermore with no additional training, we classify two much larger unseen extents of the greater Munich area (424 km2) and 

Dongying city, China (257 km2) and evaluate their respective results for proving knowledge-transferability. Through the use of M-

ramp, we were able to accelerate the convergence by a magnitude of 8 and achieve a decrease in above-ground relative error by 

24.8% and 5.5% over the different datasets. 

 

 

 

1.  INTRODUCTION 

1.1 Previous Work 

 

Building and ground detection is a crucial step for many 

applications in the analysis of Digital Elevation Models (DEM) 

such as urban monitoring, real estate, disaster response and 3D 

city reconstruction. Automatic methods that can robustly detect 

above-ground objects in such context could prove very valuable 

as extended human labour and the large cost involved could be 

omitted. In the literature there is a plethora of such proposed 

methods where different techniques and input data are 

considered. Belli et al. (2001) proposed a method to extract and 

model above ground objects by estimating the Digital Terrain 

Model (DTM) from a DEM obtained from stereoscopic aerial 

colour images. The ground surface is estimated through the use 

of 2D harmonics and Fourier series. With respect to this 

framework, above-ground objects are considered outliers. 

Zingaretti et al. (2007) proposed a method using raw LIDAR 

data where a boosted decision tree-classifier was used to 

identify optimal classification rules and separate data in 

buildings, ground, and vegetation classes when applied over 

segmented data. Hao et al. (2009) was able to accurately detect 

the buildings using a combination of filtering, clustering, and 

thresholding over a LIDAR dataset. Baillard and Maitre (1999) 

used a stereopair of images to initially compute the DEM model 

and then segmented the above-ground objects using a Markov 

Random Field model. Afterwards, they differentiated between 

vegetation and buildings through the use of radiometric 

analysis. Ortner et al. (2007) proposed a method for directly 

extracting vectorial land registers from DEM data using an 

energy minimization model, where the assumption that 

buildings are composed by simple rectangles is considered.  

 

  

Furthermore, this method was improved by Tournaire et al. 

(2010), so it can process data more efficiently.   

     Despite the extended work in the field, above-ground and 

building detection still remains an open research area. In our 

view, algorithms that make strong assumptions upon the size or 

shape of the high-structures in the data are unlikely to robustly 

detect above-ground structures in different urban scenes. 

Therefore, our goal in this work is to construct a generic 

framework, without making presumptions upon the size, shape, 

extent or resolution of the input DEM data. 

 

1.2 Deep Neural Networks for Above-Ground Detection 

 

In this work, we investigate the potential of Deep Neural 

Network (DNN) systems in above-ground object detection 

within urban environments. Specifically, our target is to 

separate the high-standing structures (trees and building) from 

their surrounding terrain over large data extents with high-

accuracy. To achieve this goal we construct a generic algorithm 

based on Deep Neural Networks and argue that such a model is 

capable for detecting above-ground objects over unseen areas, 

even when data are generated using different sensors. To 

support our claim we conduct a series of experiments using two 

very heterogeneous DEMs acquired by different sensors with 

different resolutions. 

      The rest of this work is organized as follows. Chapter 2 

analyses the DNN algorithm in detail. Chapter 3 discusses the 

algorithms and workflow processes used for above-ground 

object detection. Chapter 4 and 5 deal with the description of 

test datasets and their experimental results. We end this work in 

Chapter 6 where we discuss our results and summarize our 

contributions. 
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2. THE DEEP LEARNING ALGORITHM 

2.1 Deep Neural Networks 

Deep Neural Networks is a sub-field of Deep Learning (DL) 

expressed by ordinary Artificial Neural Networks with multiple 

hidden-layers.  These multiprocessing stage distributed 

architectures allow the system to learn hierarchical 

representations by combining features of different abstraction 

levels generated by the various layers. The key element of such 

Deep Learning systems is the projection of their input data into 

a new space through the use of a non-linear function on each 

processing stage (hidden-layer). Via such a procedure, DNNs 

are capable of effectively extracting features over high-

dimensional structured data and achieve high performance in 

various classification tasks.    

 

2.2 Multilayer Perceptrons for Above-Ground Object 

Detection 

Probably the most broadly known architecture in the context of 

Artificial Neural Networks is the Multilayer Perceptron 

algorithm (MLP) which is a discriminative, supervised 

classification and regression model trained through standard 

Backpropagation (Rumelhart et al., 1986). Furthermore, MLPs 

are fully connected networks which mean that they relate each 

and every variable of a hidden-layer to all variables in the 

proceeding layer. Interestingly, MLPs are a modification of the 

standard Linear Perceptrons, introduced by Rosenblatt in the 

1950s (Rosenblatt, 1957) 

     Despite their overall simplicity when compared to more 

complex and statistically promising Deep Leaning architectures, 

(e.g. Deep Belief Networks, Convolutional Neural Networks, 

etc.) with respect to our experiments, MLPs formulate a very 

concrete framework for accurately classifying large amounts of 

remotely sensed data, such as above-ground objects. 

Furthermore, their computational simplicity allowed us to 

conduct a very large number of different experiments that 

significantly improved our results and strengthened our 

understanding over these methods. Considering all these 

aspects, we concluded that it should suffice to focus on MLPs 

for conducting all our experiments, keeping in mind that other 

DL architectures may result in quantitatively better outcomes. 

 

2.3 Deep Multilayer Perceptron 

As long as Artificial Neural Networks are implemented using a 

single hidden layer, as commonly found in most of the software 

packages (e.g. MATLAB Neural Networks toolbox), the user 

has limited choices concerning the network’s architecture, 

mainly selecting the number of hidden nodes or different 

optimization algorithms. However when one decides upon a 

deep architecture, finding an ideal local minimum in the error 

surface becomes a much harder task for the algorithm due to 

multiple non-linearities. Therefore in DL, it’s essential for one 

to understand the individual components forming the neural 

network and then decide upon different techniques for achieving 

a good classification performance. Below, we refer to these 

individual parts which form our MLP model. 

 

2.4 Layer Architecture 

Our MLP is composed by 8 layers where layer-1 is the input, 

layer-8 is the output (Softmax Classifier) and the rest are hidden 

non-linear layers. The intuition lying behind this architecture is 

that the MLP model will be able to construct high level features, 

allowing it to adequately generalize over unseen data, even 

when trained with very few training data. 

     Formally, a MLP is a function h, that maps an input vector x, 

to a label vector y, through a set of non-linear functions f, with 

parameters W and b (weights and bias terms). Concretely, a 

single-layer neural network is expressed mathematically as: 
 

ℎ𝑊,𝑏(𝑥) = 𝑓 (∑ 𝑊𝑖𝑥𝑖 + 𝑏

𝑖

)                             (1) 

 

2.4.1  ReLU Activation Function: One option for the non-

linear activation function in a deep MLP network is the 

Rectified-Linear Unit function (ReLU) which has some strong 

advantages towards the most frequently used sigmoid and 

hyperbolic-tangent activations. Specifically ReLU is preferable 

due to its sparse activation properties, it does not saturate or 

suffer from the vanishing gradient problem and it’s 

computationally more efficient with respect to construction of 

large networks. The rectified linear function is denoted by: 
 

𝑓(𝑥) = max(𝑥, 0)                                      (2) 
 

 

2.5 Learning the Weights – Model Optimization 

Our classification algorithm is trained by adjusting its weights 

using the Backpropagation algorithm (Rumelhart et al., 1986) 

with mini-batch gradient descent and a standard quadratic cost 

function for penalizing over misclassified examples. 

 

2.6 Regularization 

One weakness that all neural networks exhibit is their tendency 

to strongly overfit the training data. Therefore, in order to 

prevent this from occurring, multiple regularization techniques 

have to be employed, as suggested by the literature. Due to our 

limited training data, our model is very venerable to such 

overfitting phenomena therefore regularization becomes a 

crucial issue. Below we briefly present all regularization 

methods used in this study.  

 

2.6.1  Weight Decay: Weight Decay (namely L2 regularization) 

is a common choice for including an additional term to the loss 

function by which large weights are penalized more, hence 

avoided by the system. The effect is that eventually the weights 

converge to smaller absolute values that would have done 

otherwise. Below, the loss-function including a weight-decay 

term is shown: 
 

𝐸(𝑊, 𝑏) =
1

2𝑚
 ∑‖𝑦𝑖 − ℎ(𝑥𝑖  ; 𝑊, 𝑏)‖2 +  

𝜆

2
  ∑ 𝑊𝑙

2         (3)

𝐿−1

𝑙=1

𝑚

𝑖=1

 

 

Where m is the total number of training examples, L denotes the 

respective layer in the network and 𝜆 is the weight decay 

coefficient. 

 

2.6.2  Momentum: A powerful method to avoid local minima 

and speed-up convergence is to use yet another regularization 

method, called momentum. Accordingly, by adding a 

momentum term in the loss function, one can avoid fluctuations 

between the weight-updates through the epochs during training. 

This is implemented by partially considering the effect of the 

previous weight update to the current gradient computation 

(epoch). Mathematically this is expressed as: 
 

∆𝑊(𝑡 + 1) = 𝑊 −  𝛼
∂𝐸

𝜕𝑊
+  𝛽∆𝑊(𝑡)  − 𝜆𝑊(𝑡)          (4) 
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Where parameter t denotes the epochs, W the weight matrix, E 

the loss-function and α, β 𝜆 are the learning rate, momentum 

and weight-decays coefficients respectively. 

 

2.6.3  Max-norm: Even though momentum can be a powerful 

technique for speeding up convergence and helping avoid local 

minima, this can cause the weight to grow very large  (Srebro et 

al., 2005). A good solution for this problem is given by Max-

norm regularization which constrains the sum of all weights 

connected to a unit to be smaller than a pre-defined constant. 

This can be mathematically expressed as: 
 

𝑁(𝑊) =  min ((∑ 𝑊𝑖,𝑗
(𝐿)

), 𝜇

𝑗

)                                (5)   

 

Where i denotes a particular unit in the network, j a certain 

weight-connection and L the respective layer. The maximum 

allowed norm-value is defined by the μ variable. Typically, 

good values for constraining the max-norm are within the range 

of 3 and 4. 

 

2.6.4  Dropout: Using a large number of units on each hidden 

layer is considered an advantage as the system learns very 

“powerful” representations, however to avoid extensive 

overfitting one should also employ a regularization technique 

called ‘Dropout’. This method stochastically removes a 

percentage of the initial network units and their respective 

connecting-weights and can be seen as training an exponential 

number of “thinned” networks which extensively share the same 

weights (Srivastava et al., 2014). So for a neural network with n 

units, dropout actually implements a collection of 2n thinned 

neural networks with O(n2) or less number of units. Within this 

framework, one can then train very large networks without the 

concern of overfitting.   

  

2.7 Network Hyperparameter Random Search 

Finding a good set of hyperparameters for training an MLP 

model is probably one of the toughest aspects when one 

considers DL. Since there isn't any concrete rule for defining 

them, one can implement either a brute-force method (grid-

search) or a random-search within a predefined range of values. 

For standardizing our set of parameters, we used a random 

search method and the best values found over a validation 

dataset were used throughout our experiments. These values are 

listed in the Table 1 below.  
 

Hyperparameters  Value 

Dimension hidden h1 550 nodes 

Dimension hidden h2 500 nodes 

Dimension hidden h3 400 nodes 

Dimension hidden h4 350 nodes 

Dimension hidden h5 300 nodes 

Dimension hidden h6 Size of input vector 

Drop-out probability input 72 % 

Drop-out probability h1 57 % 

Drop-out probability h2 57 % 

Drop-out probability h3 55 % 

Drop-out probability h4 54 % 

Drop-out probability h5 54 % 

Weight Decay 0.001635 

Initial Momentum 0.256 

Final Momentum 0.5759 

Start Epoch Momentum 5 

Saturate Momentum Epoch 38 

Learning Rate 0.244 
 

Table 1. Standardized MLP hyperparameters 

3. METHODOLOGY 

3.1 Processing Steps 

This section presents all the individual steps of our workflow 

process. Specifically, methods for merging and enhancing 

individual prediction are discussed in details, in addition to a 

novel method presented for improving overall accuracy and 

model convergence. The complete processing steps of our 

method are summarized in the diagram of Figure 2.    

 

3.2 Improving Classification with M-ramp 

Inspired by the idea that DNNs construct better feature 

representations when provided with an artificial destructed input 

(Vincent et al., 2008), we expanded this concept by artificially 

transforming the elevation of our input DEM model to partially 

mimic this behaviour. More precisely, by introducing intense 

artificial relief to the initial elevation model, we are forcing the 

MLP to detect strong dependencies and patterns that 

characterize above-ground objects within the urban environment 

and omit noise artefacts and less expressive features robustly. 

Such a hypothesis is logical considering the high dimensionality 

and redundancy generally contained within image data. 

     We cluster these artificial relief alterations/regularization 

methods under the name M-ramp (Make a ramp), as ramps are 

probably the simplest modification one can introduce over an 

elevation model. To our knowledge, there isn’t any previous 

study considering this kind of artificial relief transformations for 

delineating features from DEMs, despite the fact that in 

machine learning literature there is extensive research for 

constructing transformation invariant feature detectors (Dalal et 

al., 2005). Even though M-ramp method can be seen as a noise-

corruptor applied over an input image, considering the distinct 

nature of 3D-elevation models, one can strongly experiment 

with large variations over the input that probably would not 

make sense over a set of multispectral images. Furthermore, our 

experiments suggest that a DEM classification could strongly 

benefit from such artificial relief generation, especially when 

extended modifications are applied over the input data. The gain 

from using M-ramp alterations affects the above-ground 

detection in four distinct ways. 
 

i) Speeds-up model’s convergence by a large factor 

ii) Helps the model avoid localized, non-regular errors 

iii) Increases overall detection accuracy 

iv) Generates “new” data 
 

To better understand the impacts and benefits of M-ramp 

models, we constructed a set of randomly modified DEMs 

where different types of template-waveforms (with varying 

magnitudes & frequencies) were considered along the 

horizontal and vertical image dimensions. Continuously, these 

artificially generated DEMs are appended over the initial DEM, 

creating the final M-ramp models (Figure 1). At this point, it is 

important to underline that our M-ramp models were randomly 

designed without conducting any prior study regarding their 

effects over the accuracy of the above-ground detection 

problem. Therefore, their positive impact towards our 

classification results wasn’t guaranteed. In addition, it is 

important to note that the MLP hyperparameters were set using 

initial untransformed data, hence the MLP is not optimally 

tuned for these particular M-ramps. 

      All different construction parameters of the M-ramps DEM 

models considered in this study are summarized in Table 2. 
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Waveform 

Type 

Magnitude 

x-direction 

(m) 

Frequency 

x direction 

(Hz) 

Magnitude 

y-direction 

(m) 

Frequency 

y-direction 

(Hz) 

Ramp 0 - 100 - 

Ramp 300 - 200 - 

Ramp 200 - 0 - 
Sawtooth 100 8 ∙10-5 20 5∙10-6 
Sawtooth 100 8 ∙10-5 200 7 ∙10-5 
Sawtooth 200 8 ∙10-5 30 6∙10-4 

Sine 100 3 ∙10-5 150 5 ∙10-5 
Sine 200 9 ∙10-5 150 10-4 

Waveform 

Type 

Noise 

magnitude 

(m) 

Gaussian 

filtering 

Gaussian 

std 

 

Noise 150 No - 

Noise 5000 Yes 15 

Noise 3000 Yes 5 
 

Table 2. M-ramp waveform construction parameters 

 

3.3 Merging Prediction Models  

Model combination is known to nearly always improve the 

performance of machine learning methods (Srivastava et al., 

2014). To tackle this aspect, one can either use multiple 

different DL architectures and combine their outcomes or 

change the input data provided to the system and use a 

standardized classifier. Since finding a proper architecture in 

DL proves to be a hard task, we decided to use the approach of 

altering the input data of the MLP classifier. For implementing 

this, one needs to have a classification outcome that can be 

combined. Therefore instead of assigning a class-label as 

predicted outcome, we computed probability-maps which 

designate the probability of a particular pixel being an above-

ground structure. Below we present two indicative ways we 

considered for merging models without using additional training 

data. 

 

3.3.1 Altering the Input: Altering the input data of a 

classifier becomes a trivial process when implementing the 

previously discussed M-ramp method. In order to proceed with 

the alteration, one just needs to combine the predictions 

generated by the individual models trained over the various 

artificial terrains, constructed by the M-ramp method. This 

technique provided the MLP model with “new” data which 

trained the MLP model in distinct ways. 

 

3.3.2  Changing the Contextual Information: For further 

enhancing the model’s prediction accuracy, we constructed two 

sets of input data-tiles of 15x15 and 31x31 pixels respectively. 

This change in the input size-dimension has a strong impact on 

the classification outcome as it significantly alters the 

contextual information provided to the network per class-label. 

Even though further investigation on this direction is required, 

initial results suggest that smaller tiles drive the system towards 

detecting localized information where large tiles force the 

system to learn more general, larger-scale features. 

     The two distinct tile-sizes were defined through a logical and 

visual analysis of the spatial resolution of the scene, in relation 

to the size of contextual information that would be adequate for 

differentiating between ground and above-ground through 

human perception. However, despite our choice upon these 

particular sizes other values could also be suitable for the task. 

 
 

 

Figure 2. Complete workflow diagram, presenting all 

procedural steps for above-ground object detection  

 

3.4 Downsampling DEM Data 

As one of our main goals is to detect the above-ground objects 

contained within a lower spatial resolution DEM, namely 

Dongying city, it is necessary to construct a model capable of 

detecting data in the scale of the prediction-target. One simple 

approach towards this goal is to train our standardized 

architecture over a downsampled version of the initial data, as 

well as some M-ramp variations of it.  

             A B 

           C  D 
 

 

 

Figure 1. Munich center DEM subset with various M-ramp 

modifications. Image A initial DEM no-modification. Image 

B ramp waveform modification. Images C two directional 

sawtooth wave. Image D white-noise modifications  
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      We found the downsampling step to be crucial for 

predicting data with significantly different resolutions like the 

ones considered in our experiments with a different scale-factor 

equal to 16 (Munich 1x1 m2/pixel, Dongying 4x4 m2/pixel). 

However, preliminary experiments suggest that when data with 

small variations in resolution are considered, the algorithm can 

predict scenes accurately throughout the different spatial-scales. 

Nevertheless, the spatial invariance of the method is not 

investigated further in this study 

 

 

4. STUDY AREA 

4.1 Study Area and Training Challenges 

In our  experiments, we used two very heterogeneous DEMs, 

one delineating the urban and peri-urban area of Munich with an 

extent of 424 km2 and spatial a resolution of 1-meter, as well as 

a DEM of Dongying city in China, extending over an 257 km2 

with a spatial resolution of 4-meters. Our hypothesis is that a 

trained Deep Neural Network will be able to correctly detect all 

above-ground structures in both Dongying and Munich datasets 

under the following two-constrains: 
 

i) Limit potential training area to a small subset of Munich 

with an extent of 25 km2 

ii) Only allow the classifier to sample 20000 random single 

pixel-labels from this subset and use it for training 

(comprise ~0.08% of Munich subset or ~0.005% of 

complete Munich data) 
 

The Munich subset we selected depicts the city center of 

Munich (extent ~25 km2). Additionally, for detecting the above-

ground objects in Dongying dataset, we trained the very same 

MLP model over a downsampled version of the Munich subset 

(downsampled to 4-meters), using again 20000 randomly 

selected point-samples.  

4.2 Information on DEMs 

The first dataset of this study is a VHSR DEM produced from 

optical stereotypical, aerial images with a ground resolution of 

1-meter. This data covers the greater area of Munich with an 

overall extent of 424 km2 (22800 x 18600 pixels). Additionally, 

in order to test our prediction model over a different urban 

landscape, a second DEM of 4-meters resolution was also 

considered. The latter was generated from a stereopair of 

Pleiades-sensor optical images and depicts the complete extent 

of Dongying city, located in Yellow River Delta, China. The 

Dongying dataset covers an area of about 257 km2 and has very 

different architectural characteristics compared to the Munich 

dataset. Precisely, apart from the different resolution of the data 

which significantly affects the level of details, the Munich 

dataset is rather elevated with about 100 meter height difference 

between its north and south side. Comparatively, the Dongying 

dataset is very flat, with minimal changes in ground-elevation. 

Furthermore, noticeable differences occur with respect to the 

density, shapes and sizes of the building structures between this 

dataset, as both resemble two very different city models. For 

instance, Munich’s structures are homogenously distributed 

with an overall low height-level where Dongying’s buildings 

are higher and sparsely located, with periodic dense 

concentrations. 

 

4.3 Above-Ground Labels  

Since the datasets used in this study are quite large, obtaining a 

ground truth necessary for the training and statistical evaluation 

of the model was a challenging task (Munich city center subset 

& complete Dongying city). Therefore, a reasonable solution 

was to use another algorithm to generate the above-ground 

labels. To this aim we employed a method we have previously 

proposed (Marnoncini et al., 2014) which was constructed to 

deal with medium resolution DEM data, acquired by the 

TanDEM-X/ TerraSAR-X mission. However, due to the fact 

that this algorithm was not designed to deal with VHSR data, 

some manual post-editing processing was found necessary. 

Furthermore, due to some residual mistakes, we estimate that 

we still have an error in our ground-truth data of about ~7% 

over all of our label-data. 

      Figure 3 depicts the DEM of an area in Munich along with 

its’ labelled map. It is clear that the labels have a considerable 

amount of errors which results in some statistical inaccuracies. 

By implementing manual editing, many of the errors were 

corrected, however due to the large extent of the data, a detailed 

correction on a structure-by-structure basis was not feasible. 

 
  

  
A B 

 

Figure 3. Small extent of Munich city center dataset. Image A 

depicts the initial DEM where image B the respective 

ground-truth labels, containing some significant errors 

 

 

5. EXPERIMENTS 

5.1 Experiments and Accuracy Assessment 

In contrast to highly-specialized algorithms which can only be 

applied over small data sets containing few buildings 

(computational constraints), our model is capable of detecting 

above-ground structures over very large extents – in just a few 

minutes, robustly. For supporting this statement we 

quantitatively assessed our method’s performance, considering 

a strict error measurement on pixel-by-pixel basis using 

confusion matrices. Statistical results were calculated over the 

subset of Munich city-center and the complete extent of 

Dongying-city. The only post-processing step considered (prior 

to the statistical evaluation) was a filtering of the prediction map 

with a 5x5 pixel-size median filter (compensate for localized 

false positives errors). In the rest of this section, we present the 

different considered experiments and their respective results.  

      

5.2 Training the Flat-Model 

In our experiments, when we refer to the term “Flat-model” we 

indicate using the initial DEM with no M-ramp alterations as an 

input to the MLP. Hence, in our first experiment, we only 

considered this flat-model over the Munich center dataset. 

Interestingly, the results reflected that we can achieve high 

detection performance even with this limited model. Statistical 

and visual results can be found in Figure 4 and Table 3 

respectively.  
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3  

1 

A B 
 

Figure 4. Small area of the initial Munich DEM. Image A 

illustrates initial DEM. Image B depicts respective prediction 

map with tiles of size 31x31, Flat-model  
 

 

 

Model Munich City 

Center 

Above-

ground [%] 

Ground 

[%] 

Flat-model, 15X15 tiles 86.3 85.6 

Flat-model, 31X31 tiles 86.6 88.6 

Ramp-3 , 15X15 tiles 88.3 83.1 

Ramp-3 , 31X31 tiles 87.5 87.7 

Best four M-ramps merged  89.7 89.1 

Model Dongying City 
Above-

ground [%] 

Ground 

[%] 

Flat-model, 15X15 tiles 89.1 89.7 

Flat-model, 31X31 tiles 72.8 85.3 

Ramp-3 , 15X15 tiles 85.1 76.2 

Ramp-3 , 31X31 tiles 87.2 83.3 

Best four M-ramps merged 89.7 89.3 
 

Table 3. Prediction accuracy of all investigated models for 

Above-Ground & Ground classes (pixel-by-pixel).    

 

5.3 Training on M-ramp Models 

In order to increase our prediction accuracy, we continuously 

employed the previously discussed M-ramp method. Figure 5 

shows the error rates throughout training epochs over the 

various M-ramp models (formerly constructed), over a test set. 

It’s important to observe in the graph (Figure 5) that most of the 

M-ramp models achieve lower error-rate (higher accuracy) than 

the initial flat model and furthermore converge significantly 

faster.  Detailed information regarding the gains in respect to 

the use of the various M-ramps are summarized in the Table 4. 

A visual result is given in Figure 6. 
 

E
rr
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 Ramp 1  Sawtooth 2  Noise 1 

 Ramp 2  Sawtooth 3  Noise 2 

 Ramp 3  Sine 1  Noise 3 
 

 

Figure 5. Error rates of different M-ramp 31x31 models 

during training epochs over a test-dataset 

M-ramp Models 
Convergence 

Epoch 

Test Set 

Error [%] 

Flat 41 14.8 

Ramp-1 72 14.9 

Ramp-2 9 12.6 

Ramp-3 5 12.5 

Sawtooth-1 5 12.8 

Sawtooth-2 5 13.9 

Sawtooth-3 5 12.5 

Sine -1 6 14.9 

Sine-2 41 15.1 

Noise-1 5 32.0 

Noise-2 8 19.5 

Noise -3 56 22.0 
 

Table 4. Detailed results of various M-ramps on convergence 

time and error rates (test-set). Results are 

 calculated over 31x31 data-tiles  
 

3  1 

A B 
 

Figure 6. Subset of Munich city center dataset. Image A 

initial DEM. Image B prediction map trained over M-ramp, 

Ramp-3 model 
 

 
 

5.4 Varying the Input Dimension  

In our experiments, as an input-dimension to the MLP, we have 

considered two separate tile-sizes. Precisely, tests were 

conducted over 31x31 and 15x15 pixel-size tiles and 

statistically evaluated (Table 3). This additional step was 

included due to non-systematic, localized errors, occurring 

when different tile-sizes were considered (due to the minimal 

training dataset). Despite the different tile-sizes, the models 

overall agree in their predictions, nonetheless little difference 

occur over limited areas throughout the scene (low tree 

vegetation, large bushes, cars etc.) Furthermore, we may argue 

that both tile-sizes were found to produce accurate results and 

their outcomes can be considered complementary and non-

redundant.  

 

5.5 Merging Top Performance M-ramp Models 

Even though most of the individual M-ramp models improved 

the overall accuracy of above-ground detection, localized errors 

still occur in the individual prediction maps. As these errors 

were found to be non-systematic throughout the various models, 

a good solution was to merge the individual prediction maps. 

This averaging process enforces the detection over structures 

that are repeatedly detected correctly and cancels out the 

individual-localized errors which exist only in particular 

models. This hypothesis is further supported by the statistical 

results of the discussed merged-model where the top four M-

ramp models {15x15 Ramp-3, 31x31 Ramp-3, 15x15 Sawtooth-

3 & 31x31 Sawtooth-3} produced the best outcome with an 

accuracy of approximately 90% (24.8% relative-error 

improvement in relation to Flat model). The improvements are 

displayed in Table 3 and Figure 7 and 8 respectively. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W4, 2015 
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-II-3-W4-103-2015

 
108



 

3  
1 

A B 
 

Figure 7. TUM test-area. Image A initial DEM model. Image 

B Merged M-ramp prediction map  

 

 

A  
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Figure 8. Complete Munich city center test area. Image A 

depicts label / ground-thruth data. Image B illustrates the 

computed Merged prediction map 

 

 

A B 
 

Figure 9. Prediction over unseen extent from the greater area 

of Munich. Image A depicts the initial DEM. Image B 

pictures the predicted above-gournd 31x31, Ramp-3 map 

 

5.6 Predicting the Greater Munich Area 

One important step towards proving transferability of the MLP 

was the prediction of the greater unseen Munich dataset. This 

encapsulates the complete Munich city in addition to various 

neighbouring suburbs, agricultural fields, forests and lakes lying 

around the core city. For this larger extent, a ground-truth 

dataset was not available therefore, only a qualitative assessment 

was feasible. Nevertheless, throughout this area, the algorithm 

achieved great visual performance, as can be seen in Figure 9, 

where a large area is accurately separated in above-ground and 

ground classes. 

 

5.7 Training Over Munich – Predicting over Dongying 

As a challenging experiment towards model-transferability, we 

performed yet another classification over a very diverse dataset, 

without providing any insight to the classifier regarding this 

urban DEM. The only necessary step was to retrain our 

standardized top-four performing M-ramps models over a 

downsampled version of Munich-center dataset. This allowed 

the individual datasets to acquire same spatial resolutions (4-

meters) so the classifier can adapt on a new level of spatial 

detail. Final results were again considered after the merging of 

the individual M-ramp models, as in the Munich-subset study. 

The quantitative evaluation was computed over the complete 

extent of the Dongying DEM, on a pixel-by-pixel basis. In this 

case the algorithm again achieved high performance of about 

~90% (5.5% relative-error improvement in relation to Flat 

model). Statistical and visual results of this experiment can be 

found in Table 3 and Figure 10 respectively. 
 

A  B 

C 
 

D 
 

Figure 10. Prediction over unseen Dongying city, China. 

Image A and C depict different parts of the initial DEM 

where images B and D contain the respective prediction maps 
 

 

 

6. DISCUSSION & SUMMARY 

6.1 Computational Efficiency & Model Reusability 

One strong advantage of the proposed method pertains to the 

computational efficiency of the algorithmic model. Precisely, 

due to the difficulty of defining the hyperparameters of the 

MLP, the algorithm requires quite some time to be constructed. 

However, once the model is composed, the actual detection of 
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the above-ground objects concludes in just a few minutes. 

Furthermore, through a series of experiments, we provided 

evidence regarding the transferability of the model without the 

need of re-training the system (for data with same spatial 

resolution). This key aspect further supports the potential re-

usability of DL classifiers in the context of above-ground 

detection. 

 

6.2 Remarks on M-ramp 

Even though our experiments suggest that M-ramp can 

generally improve the above-ground object detection within the 

urban extent, it is important for one to understand the 

limitations imposed by the classification algorithm prior to 

using it. M-ramp can improve DEM classification as long as the 

algorithm has a large enough capacity to accurately detect and 

model all variations contained within the training data and still 

have enough potential left to compensate for the information 

introduced by the M-ramp method. Therefore providing 

extensively altered relief to a strongly restricted / regularized 

classifier may result in a decrease in classification accuracy. 

Such a case is visible in Figure 5 where the white-noise models 

clearly drop in overall accuracy. Nonetheless, despite this 

decline the majority of the other M-ramps significantly 

enhanced model correctness and convergence time. All the 

above facts establish M-ramp as an additional regularizer in the 

context of DL and DEM classification and suggests that their 

engaging properties should be further investigated in future 

studies. 

      

6.3  Remarks over Classification Accuracies 

Even though the accuracies we have acquired in the task of 

above-ground object detection were quite high, we strongly 

believe that the actual predictions are more precise than 

statistically presented. Considering the error rate of the labels 

lying around 7%, one can understand the significant impact they 

result over our final error estimation. This argument can be 

further supported by visual comparison where the prediction 

maps state the truth and the labels are wrong. In addition, a 

separation in ground and above-ground classes over a 

label/ground-truth dataset is a non-trivial and quite subjective 

task due to the existence of multiple objects that could 

potentially belong to either class (bushes, cars, large rock 

formations, etc.) 

 

6.4 Summary 

In this work, we presented a generic framework for above-

ground object detection using MLP over a raw DEM model. We 

have showed that even by extensively shrinking the training 

dataset, we can still achieve very good performance and even 

re-use the classifier over different unseen datasets. Additionally, 

we introduced a new method, called M-ramp which 

significantly improves performance and convergence time. 

These aspects clearly highlight the potentials of DL in the field 

of remote sensing and we hope that our work will inspire 

researchers in the field to implement these techniques to 

accomplish new milestones. 

     As future implementations of DL in DEM object extraction, 

we would be interested in trying to separate between building-

structures and vegetation by again using raw DEM data. 

Additionally, in the same context, the implementation of 

different DL models such as Convolutional Neural Networks 

and Deep Belief Network would be also of great interest.  
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