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ABSTRACT:

This work is concerned with the fusion of inertial measurements (accelerations and angular velocities) with imagery data (feature
points extracted in a video stream) in a recursive bundle adjustment framework for indoor position and attitude estimation. Recursive
processing is achieved by a combination of local submaps and the Schur complement. The Schur complement is used to reduce the
problem size at regular intervals while retaining the information provided by past measurements. Local submaps provide a way to
propagate the gauge constraints and thereby to alleviate the detrimental effects of linearization errors in the prior. Though the presented
technique is not real-time capable in its current implementation, it can be employed to process arbitrarily long trajectories.
The presented system is evaluated by comparing the estimated trajectory of the system with a reference trajectory of a prism attached
to the system, which was recorded by a total station.

1. INTRODUCTION

1.1 Importance for autonomous indoor localization

For first responders or special forces operating in unknown en-
vironments, positioning is a crucial capability. Besides position,
users are often interested in their heading, i.e. the direction they
are facing. Both can in principle be computed from global navi-
gation satellite system (GNSS) signals, but recovering the head-
ing requires that the user is moving.

However, in indoor scenarios or urban canyons, where GNSS sig-
nals cannot be received or are severely distorted due to multipath
effects, alternative methods to determine position are required.
In contrast to position, heading can be obtained by magnetome-
ter measurements almost everywhere, but the local magnetic field
may be disturbed by reinforced concrete inside or near building
walls.

Thus, indoor positioning systems for firefighters have been de-
veloped using radio beacons which have to be placed around
the site of operation before a mission starts (McCroskey et al.,
2010). Such systems typically combine position estimates ob-
tained by trilateration with relative motion estimates. In the con-
text of pedestrian navigation, such relative motion measurements
are often obtained by inertial sensors placed on the foot where the
foot’s stand still phase can be exploited to obtain accurate motion
estimates even with inertial sensors of relatively low quality. But
in this case the question how estimates of the foot’s motion can be
fused with measurements of devices attached to the torso needs
to be addressed.

One possibility that does not rely on external infrastructure is to
fuse measurements from a camera and an inertial measurement
unit (IMU), to estimate one’s position as well as attitude rela-
tive to a starting point. The combination of visual and inertial
measurements is attractive because of the complementary error
characteristics of these sensors. Compared to systems relying on
foot-mounted inertial sensors, this setup allows to put all sensors
in a single housing fixed to the torso of a person and it does not
rely on a special motion pattern.
∗Corresponding author.

1.2 Related Work

The task of estimating the pose (position and attitude) of a mov-
ing platform occurs frequently in robotics and photogrammetry.
The main sensor of interest in classical photogrammetry is a sin-
gle camera and the dominant approach to estimate a camera’s
pose from a given image sequence is to solve a non-linear op-
timization problem over camera poses and the positions of ob-
served landmarks called bundle adjustment (Triggs et al., 2000).
However, such a batch processing approach quickly becomes in-
feasible for problems involving a large number of cameras and
landmarks. This has triggered attempts to employ alternative es-
timation techniques such as Kalman filtering (Jones and Soatto,
2011). A drawback of Kalman filtering approaches is that they
require accurate initial estimates of landmark positions relative
to the sensor due to their inherent susceptibility to linearization
errors. Unfortunately, such initial estimates are difficult to obtain
with a single camera. To alleviate this problem, (Beder and Stef-
fen, 2008) proposed a delayed-state Kalman filtering approach,
where a sliding window of poses is kept in the filter’s state and
the introduction of new landmarks in the state can be handled in
an optimal way by iterative optimization involving all observa-
tions from poses in the sliding window. On the other hand, a lot
of research is focused on modifying the bundle adjustment ap-
proach in a way that it can be applied in online applications. The
theoretically sound way to achieve this is to reduce the number of
estimated states by marginalizing old landmarks and poses from
the state vector using the Schur complement. This results in a
Bayesian filter working on the information form representation
of the estimated state, which is given by the information matrix
and information vector. A detailed discussion of this information
filtering approach can be found in (Sibley et al., 2010). Therein
a potential drawback of marginalization was already anticipated:
Linearization errors may accumulate in the prior and affect later
estimation. A detailed analysis of the effect of linearization er-
rors on estimator performance, especially consistency, has been
conducted in (Dong-Si and Mourikis, 2011). They show that
linearization errors render directions of state space observable
which are not observable by theory due to the symmetry of the
problem. It is also shown that fixing the linearization points for
states which are part of the prior remedies this effect.
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Motivated by the observation that the detrimental effect of lin-
earization discovered by (Dong-Si and Mourikis, 2011) is closely
related to the problem of gauge fixing in estimation problems, the
approach presented in this work tackles this problem by applying
the local submapping procedure presented in (Piniés and Tardós,
2008) in the context of information filtering. Local submaps pro-
vide a way for consistent gauge definition and thus may provide a
way to control the observable subspace. However, a formal proof
of this statement has to be deferred to future work.

1.2.1 The main contribution of this paper is presented in
Sec. 2.6, where it is shown how a new local reference coordinate
system is set up before marginalizing old states.

2. INFORMATION FILTERING WITH SUBMAPS

2.1 Coordinate systems and notation

Several coordinate systems are used in the following presentation
of the system model. All coordinate systems are assumed to be
right-handed. The purpose of the algorithm presented here is to
estimate the system’s trajectory and a sparse map of point feature
locations relative to an established frame of reference, which is
henceforth called navigation frame {n}. Its z-axis points in the
direction of local gravity, but its origin and rotation about the z-
axis may be chosen arbitrarily, reflecting the freedom in selecting
the gauge constraints. If some guess of initial position and head-
ing is available, the free parameters can be adjusted accordingly.
Each local submap is build up relative to its own frame of ref-
erence {si}, where i refers to the number of the local map. The
submap index is omitted wherever confusion is not possible. Fur-
thermore, the sensor system’s frame of reference (body frame) is
denoted {b}. It is assumed that the rigid transformations between
all sensors are fixed and known, possibly from a calibration pro-
cedure. As a result, all sensor readings can be written w.r.t. the
body frame.

The rigid body transformation between two frames, {a} and {b},
is described by a pair consisting of a rotation matrix (direction
cosine matrix) Cab and a translation vector apb. Since Cab trans-
forms coordinates written in the basis of {b} to the basis {a}
and apb is the position of {b} in {a}’s coordinates, the pair
T ab =(Cab ,apb), maps points from {b} to {a}.

For the refinement of initial estimates, the error state notation is
used (Farrell and Barth, 1999). Estimates are marked by a hat (̂·) ,
measurements by a bar (̄·), and errors by a tilde (̃·). For most state
variables an additive error model can be applied: (̃·) = (·)− (̂·).
However, attitude error is represented by a rotation vector Ψa

b ,
which is an element of the Lie algebra so(3) belonging to the
group of rotation matrices SO(3).

Attitude errors are corrected by left-multiplication:

Cab = C(Ψa
b )Ĉab (1)

The relationship between a rotation vector and the corresponding
rotation matrix is C(Ψ) = exp(Ψ) ≈ I + bΨc×. This can
also be stated as Ψ = vec(log(C(Ψ))). Rotation vectors can
be mapped between frames just like ordinary vectors using the
adjoint map Adg . These facts and more background material can
be found in (Murray et al., 1994). Whereas attitude is represented
by rotation matrices here, it is represented by quaternions in the
implementation.

To handle heterogeneous states, which may be composed of ro-
tation matrices and vectors, the different entities are combined to
a tuple. The tuple is then corrected by applying the corrections
to its elements individually, i.e. using Eq. 1 for rotations and ad-
dition for vectors. The operators ‘⊕’, ‘	’ are used to mark this
operation on the tupel’s elements: t = t̂⊕ t̃. Note, that the error
t̃ belongs to a vector space.

2.2 Camera measurement model

A camera can be regarded as a bearings measuring device. Thus
it is assumed that a camera projection model π(.) is available,
which allows to calculate the projection of a 3D-point onto the
image plane and its inverse. The projection of landmark number
j onto image plane i is given by:

z̄ij = πi(
bXj) + vij (2)

Where vij is an error term, which is usually assumed to arise
from a zero-mean white Gaussian noise process with covariance
Σcam.

2.3 IMU measurement model

IMUs measure angular velocity ω and specific force a relative to
their own reference frame. This work adopts the common as-
sumption that the measurement noise can be described by the
combination of a slow-varying bias and additive zero mean white
noise:

bā = ba + ba + na (3)
bω̄ = bω + bg + ng (4)

Here, ba and bg contain accelerometer and gyroscope bias and
na, ng are the corresponding noise terms.

Integrating the inertial measurements yields an estimate of the
sensor system’s motion during the integration interval. For this
purpose the inertial mechanization equations are implemented
w.r.t. the strapdown frame, as suggested by (Lupton, 2010). As a
consequence, the error of the rigid body transformation relating
the {n} to the {s} frame does not affect the projection of a land-
mark onto the image plane, because the quantities in Eq. 2 only
depend on the system’s position w.r.t. {s}. Additionally, intro-
ducing an intermediate {s}-frame facilitates the enforcement of
the conditional independence properties for the local submaps as
detailed in Sec. 2.6. The inertial mechanization equations for one
timestep can be stated as follows:

sa ← Csb

(
bā − ba − na

)
+ Csn

ng (5)
sv ← sv + saτ (6)
spb ← spb + svτ +

1

2
saτ2 (7)

Csb ← CsbC
([

bω̄ − bg − ng
]
τ
)

(8)

ba ← ba + nba (9)
bg ← bg + nbg (10)

Where the quantities on the left hand side refer to the point in time
t + τ while quantities on the right hand side are given at time t.
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In the above equations, τ is the timespan between two samples
and ng = [0, 0, 9.81]T is the vector of gravitational accelera-
tion. Note, that at least the attitude (roll and pitch angles) of the
{n} frame relative to the {s} frame needs to be known to com-
pensate gravitational acceleration. By setting the noise terms to
zero and replacing all quantities by their estimated counterparts,
the mechanization equations for estimated quantities follow from
Eqs. 5-10.

Combining the state variables into a tupel st and writing the
above equations as a single state transition function f gives:

st+τ = f(st,u,n) (11)
≈ f(ŝt,u,0)⊕ (Φs̃t +Gn) (12)

s̃t+τ = st+τ 	 f(ŝt,u,0) (13)
= Φs̃t +Gn (14)

Here, u contains all inertial measurements, n contains all the
noise terms, and Φ, G are f ’s derivatives w.r.t. s and n. When
calculating the Jacobians, the states related to attitude require spe-
cial attention. Explicitly writing Eqs. 5 and 8 in terms of incre-
mental rotations yields:

sa ← C(Ψs
b)Ĉ

s
b

(
bā − ba − na

)
+ . . .

ĈsnC(−Ψn
s )ng (15)

≈ (I + bΨs
bc×)Ĉsb

(
bā − b̂a

)
+ . . .

Ĉsn(I − bΨn
s c×)ng (16)

C(Ψs
b)Ĉ

s
b ← C(Ψs

b)Ĉ
s
bC
([

bω̄ − bg − ng
]
τ
)

(17)

Using the facts about rotation vectors and matrices presented in
Sec. 2.1, the state transition function for Ψs

b is obtained from
Eq. 17:

Ψs
b ← Ψs

b + Csb

([
−b̃g − ng

]
τ
)

(18)

Likewise, Eq. 16 yields the derivatives of sa w.r.t. Ψs
b , Ψn

s :

∂sa

∂Ψs
b

= −
⌊
Ĉsb

(
bā − b̂a

)⌋
×

(19)

∂sa

∂Ψn
s

= Ĉsn bngc× (20)

Thereby, the entries of Φ are obtained by standard calculus from
Eqs. 5-10 and 18-20.

Concatenating the non-linear state transition functions (Eq. 11)
yields the state transition function f ′ = fk+m:m for several mea-
surements between measurement number m and k +m. The Ja-
cobians Φ, G provide a linear error propagation model between
successive inertial measurements. To propagate the error over
several inertial measurements between exteroceptive sensor read-
ings, a cumulative state transition matrix Φ′ and covariance Σ′imu
are computed as follows:

Φ′ = Φk+m:m =

k+m−1∏
i=m

Φi+1:i (21)

Σ′imu =

k+m−1∑
i=m

Φi:mGQG
TΦT

i:m (22)

By the chain rule Φ′ is the Jacobian of f ′. Eqs. 21-22 provide
a linearized constraint for successive pose and velocity estimates
between exteroceptive sensor readings, which can be used within
a bundle adjustment framework.

2.4 Inference

Graphical models have become popular tools to formalize op-
timization problems. There are two types of graphical models
which are commonly used: Dynamic Bayesian networks (DBNs)
and factor graphs (Bishop, 2006). While DBNs are useful to ex-
amine the stochastic independence properties between variables
in a model, factor graphs relate directly to the Gauss-Newton
algorithm in the case that the distribution of state variables is
jointly Gaussian. Thus, factor graphs can facilitate the imple-
mentation and description of optimization problems by providing
a formal framework, which directly translates to a class hierar-
chy in object-oriented programming languages. In what follows,
a factor graph formulation is used in the presentation of the esti-
mation procedure, especially the marginalization of older states.

A factor graph consists of vertices, which represent state vari-
ables, and edges representing relationships or constraints between
them. Typically there are different kinds of edges connecting dif-
ferent kinds of state variables. The relationship between vertices
associated with an edge is expressed by an objective function that
often depends on measured values. The strength of a constraint
is determined by a weight matrix, typically the inverse of a mea-
surement covariance. The following types of constraint edges are
of interest in this work:

Landmark measurement: Each landmark observation gives
rise to a constraint according to the model described in
Sec. 2.2. The constraint function is

hcam(Vlm,ij) = z̄ij − πi(bXj) (23)

with weight matrix Λcam = Σ−1
cam. Vlm,ij is the set of

connected vertices. The number of vertices in Vlm,ij de-
pends on the employed parameterization and measurement
model. For instance, Vlm,ij may contain a vertex containing
the camera’s calibration or a landmark anchor vertex.

Motion constraint: Motion constraints can be obtained by inte-
grating inertial measurements as described in Sec. 2.3. The
constraint can be stated as:

himu(Vmotion,k+m:m) = Π (ŝk+m 	 f(ŝm,u,0)) (24)

The associated weight matrix is Λimu = Σ′−1
imu. In Eq. 24,

Π projects the error to the states corresponding to the sen-
sor’s pose and velocity. The dimension of the error vec-
tor is therefore nine. Hence, bias and global pose are
not part of the projected error vector, but the projected
constraint error depends on these states nonetheless. The
vertices connected by a motion edge are: Vmotion,i:j =
{vTs

bi
, vvi , vTs

bj
, vvj , vTn

s
, vbba,g

}, where the trailing sub-
scripts indicate which state variables belong to a vertex.
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Equality Constraint: Equality constraints between vertices are
used to model slow varying random walk processes, like bi-
ases:

heq({va , vb}) = a 	 b (25)

The corresponding weight matrix depends on the random
walk parameters.

Transformation constraint: These are used when a new
submap is created to link transformed coordinates of state
variables to their estimates in the preceding submap. De-
pending on the type of transformed vertices, there may be
different types of transformation constraints. For velocity
vertices the following constraint is used:

htrans,vel(
{
vav , vbv , vTa

b

}
) = av − Cab bv (26)

The weight matrix is a design parameter that can also be
used to model process noise.

Here, inference refers to the process of estimating the state of a
system based on available measurements. The sets of all con-
straint edges and all vertices belonging to the graph are denoted
by E and V , respectively. Each edge e ∈ E connects a set of
vertices denoted V (e). At the beginning of an inference step the
current state dimension is calculated and each vertex is assigned
an index in the state vector x, which is formed by concatenat-
ing the state of all relevant vertices. Then, an empty information
matrix Ω and information vector ξ are created. Let He be the
Jacobian of Edge e, w.r.t. its vertices. A normal equations system
is built up based on the constraints defined by all edges:

Ω ← Ω +
∑
e∈E

HT
e ΛeHe (27)

ξ ← ξ +
∑
e∈E

HT
e Λeεe (28)

In Eq. 28, εe is the error associated with an edge and Λe its
weight as described above. Some vertices can be fixed, for in-
stance to enforce gauge constraints. In this case the correspond-
ing rows and columns are deleted from Ω and ξ.

Solving the normal equations yields a vector of improvements
x̃+, which are applied to correct the current state estimate:

x̂i+1 = x̂i ⊕ x̃+ (29)

In the implementation, the inference step is performed using
the Levenberg-Marquardt algorithm based on the description in
(Lourakis and Argyros, 2005).

2.5 Landmark parameterization

This work makes use of the feature bundle parameterization for
landmarks (Pietzsch, 2008) in combination with the negative log
parameterization (Parsley and Julier, 2008) for landmark depth.
For this purpose all landmarks are assigned to an anchor pose,
which is usually the pose of the sensor frame they were observed
in first. Anchors are created by cloning the pose vertex of the
associated sensor pose and adding an equality constraint edge be-
tween the anchor and the associated sensor pose. Thus, they can
be altered even when their associated pose has been marginal-
ized. Only the anchor’s pose and the negative logarithm of the

depth of its associated landmarks are treated as free parameters
during estimation. This reflects the point of view that the first
observation of a feature determines its direction and all follow-
ing observations are noisy measurements of the directions to the
same point.

2.6 Marginalization of old states

To reduce problem size and thus processing time, this work com-
bines conditionally independent local maps (Piniés and Tardós,
2008) and marginalization via the Schur complement (Dong-Si
and Mourikis, 2011). Pose and velocity vertices are added to
the graph for each detected keyframe until a maximum number
of pose vertices is reached. In this case a new submap is cre-
ated. The last n/2 pose and velocity vertices remain in the graph,
where n is the number of sensor pose vertices present in the graph
when marginalization is started. This enables further refinement
of the associated estimates when new measurements are added.
Additionally, all landmark vertices connected to the remaining
poses via measurement edges, the bias vertex, and the global
pose vertex remain in the graph. The set of remaining vertices
is henceforth denoted Vrem and the set of vertices to marginal-
ize, which belong to the last submap, is Vmarg . The set of edges
connecting at least one vertex in Vmarg is denoted Econn and
Vconn are all vertices connected by at least one Edge in Econn.
Vborder is the set of remaining vertices which are connected to
vertices in Vmarg via an edge in Econn.

The vertices remaining in the graph are transformed to a new co-
ordinate system whose origin is the first pose vertex present in the
new submap. To this end, the vertices in Vborder are cloned. The
resulting set of new vertices is then Vnew. A coordinate transfor-
mation is then applied to each vertex in this set to transform it to
the origin of the new map and a new edge is created and added
to Enew, the set of new edges. This edge generally connects the
new vertex, its template in Vborder , and the pose vertex that de-
termines the transformation and becomes the first pose vertex in
the new map. Note however, that different types of vertices in
Vborder are affected by this coordinate transformation in differ-
ent ways and are thus connected to their counterparts in Vnew by
different kinds of edges. E.g., the bias vertices are not affected
at all by a change of coordinates. Hence, the bias vertices for the
new submap are connected to the preceding bias vertices via an
equality constraint whose uncertainty is determined by the bias
random walk parameters. Furthermore, since the new first pose
vertex is the new map’s origin, its coordinates in the new map are
fixed and it is not connected to any vertex in Vborder at all. For
those remaining vertices which are not connected to the previous
submap, it is sufficient to transform the coordinates to the new
origin. New edges do not have to be inserted in this case. Fig-
ure 1 illustrates the structure of the network after performing the
coordinate transformation and adding new vertices as a DBN. It
can be seen that the new layer of transformed border vertices ren-
ders the remaining vertices conditionally independent from the
vertices in the previous submap. Hence, it constitutes a sufficient
statistic for the remaining vertices.

Next, a set of transformed vertices (Vtrans) is defined containing
all vertices which were transformed to the new submap’s origin
by the procedure described above. This set of vertices constitutes
the new submap. By contrast, the border vertices are added to the
set of vertices to marginalize and the set of connected edges is
redefined to take this into account. The redefined sets are hence-
forth denoted by a prime. The preparations on the network prior
to calculating the Schur complement can be summed up by the
following sequence of operations:
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Submap 1 Submap 2transformed border

b1 b2

Tns,1 Tns,2

x11 x12 x21 x22

z11,1 z11,s z12,1 z21,s z21,2 z22,s z22,2

m1 ms,1 ms,2 m2

Figure 1. Dependencies between nodes in the Bayesian network corresponding to the SLAM problem before performing marginal-
ization with the Schur complement. Green nodes with a single boundary are state variables. Rectangular green nodes represent states
which are held fixed during optimization to impose the gauge constraints. Blue nodes with a double boundary represent measurements
(landmark observations). Inertial measurements and velocities are not shown in this simplified network.

Vmarg = V \ Vrem (30)
Econn = {e ∈ E|∃vi ∈ Vmarg : vi ∈ V (e)} (31)
Vconn = {v ∈ V |∃ei ∈ Econn : v ∈ V (ei)} (32)
Vborder = Vrem ∩ Vconn (33)
Vnew = cloneAndTransform(Vborder) (34)
Enew = createTransformationEdges(Vborder, Vnew) (35)
∀v ∈Vrem \ Vborder : applyTransform(v) (36)
Vtrans = Vnew ∪ (Vrem \ Vborder) (37)

V ′ = V ∪ Vnew (38)

E′ = E ∪ Enew (39)

V ′marg = V ′ \ Vtrans (40)

E′conn = {e ∈ E′|∃vi ∈ V ′marg : vi ∈ V (e)} (41)

V ′conn = {v ∈ V ′|∃ei ∈ E′conn : v ∈ V (ei)} (42)

V ′rem = V ′conn \ V ′marg (43)

Here, the function cloneAndTransform(V ) clones
each vertex in V and transforms its coordinates,
createTransformationEdges(V1, V2) creates constraint edges
between the vertices in V1 and V2, and applyTransform(v)
applies the coordinate transformation to vertex v. The applied
coordinate transformation must not change the internal geometry
of the network. Therefore, it is related to a S-transformation,
which can be used to change between gauges during computa-
tions (Triggs et al., 2000).

Let x denote the state vector obtained by stacking the states of
vertices in V ′rem and y the state vector associated with V ′marg .
First, a normal equations system is build up as described by
Eqs. 27 and 28, but using only edges in E′conn. Then the Schur
complement is used to marginalize the states in y, resulting in a
new information matrix and -vector for the remaining states x:

Ω′x,x = Ωx,x − Ωx,yΩ−1
y,yΩy,x (44)

ξ′x = ξx − Ωx,yΩ−1
y,yξx (45)

Next, a new edge, eprior , is created to hold the prior information
which is represented by Ω′x,x and ξ′x. To this end, all vertices
belonging to x are cloned and the cloned vertices are added to
V (eprior). Furthermore, the weight matrix for eprior is set to
Ω′x,x. To calculate the error associated with this edge, the vertices
in V (eprior) are stacked to a tuple xprior . Then the edge error is
calculated by:

hprior = xprior 	 x (46)

The error is initially zero because x and xprior are equal, but
when the estimate of x is adapted due to new measurements, de-
viations from xprior are penalized according to the weights in
Ω′x,x. Finally, the marginalized vertices and all edges connecting
to them can be removed from the graph since the corresponding
information is now represented by the prior edge:

E = (E′ \ E′conn) ∪ {eprior} (47)
V = V ′ \ V ′marg (48)

3. EXPERIMENTAL RESULTS

3.1 Simulation experiments

3.1.1 Scenario Experiments with real data demonstrate the
applicability of an approach under similar conditions. When eval-
uating real datasets, the results are probably affected by synchro-
nization errors, systematic feature matching errors, inaccuracies
of the employed sensor model, and sensor-to-sensor calibration
errors. Thus, it is difficult to draw conclusions about the perfor-
mance of the employed sensor data fusion algorithm alone based
on the evaluation of real datasets.

One possibility to evaluate the sensor data fusion algorithm is to
compare the estimation error for several trajectories with the the-
oretical lower bound for accuracy. This was done to assess the
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Figure 2. Evaluation of a simulated walk through a hallway. Top:
Reference trajectory (dark red), estimated trajectory (dark green),
landmark reference positions (red) and estimated landmark posi-
tions (green) for one simulation run. Thereunder: Position error
in the x-, y- and z-direction for 13 simulation runs (blue) with the
square root of the Cramér-Rao lower bound (dashed green).

performance of different approaches to structure and motion esti-
mation from two views in (Weng et al., 1993) using the Cramér-
Rao lower bound (CRLB). The CRLB is a lower bound for the
variance of unbiased estimators which can be stated as follows
(Bar-Shalom et al., 2001):

Σ ≥ Ω̌−1 (49)

Where Ω̌ is the Fisher information matrix, i.e., the information
matrix built up in Eq. 27 with the Jacobians He calculated at the
true values and Σ is the covariance matrix for the estimation error.
Eq. 49 is valid for Gaussian, zero-mean measurement noise.

Since the calculation of the CRLB requires knowledge of the
true state values, its application is essentially limited to Monte
Carlo simulations. In this case it is also possible to simulate zero-
mean, normally distributed measurement noise, hence satisfying
another prerequisite to the application of Eq. 49. It can not be
assumed that the estimation process described in Sec. 2. is un-
biased. However, as stated in (Weng et al., 1993) the CRLB can
still be regarded as a lower bound for the mean squared error.

A walk through a hallway was simulated in order to compare the
proposed method to the CRLB. The walk starts in the middle of
a hallway that is approximately 3.5 m wide and 3 m high. Af-
ter following the main hallway for approximately 30 m it turns
to the right into a smaller corridor that is approximately 2.5 m
wide. The trajectory of the sensor system’s origin was specified
by a C2-spline. The control points for this spline were chosen
so as to resemble the typical up and down pattern of a walking
person. White Gaussian noise was added to these control points
to make the motion less regular. Another spline was used to de-
termine the viewing direction for each point in time. The second
derivative of the former spline can be calculated analytically and

was used to generate acceleration measurements. Likewise, gy-
roscope measurements were generated by calculating the rotation
vector pertaining to the incremental rotations between sampling
points. The true acceleration and angular rate values obtained this
way were distorted by artificial white Gaussian noise and constant
offsets to match the sensor error model described in Sec. 2.3.

Image measurements were generated according to the model de-
scribed in Sec. 2.2 using a fisheye projection model and the true
values for landmark location and camera pose. To this end a
backward-looking camera was assumed.

The CRLB was calculated once for each keyframe by building up
the graphical model as described in Sec. 2.4 using all measure-
ments available up to this point in time and setting the state vari-
ables contained in each vertex to their true values. Then the Jaco-
bians were calculated and the system matrix was built up accord-
ing to Eq. 27. This matrix was inverted to obtain the CRLB for the
point in time corresponding to the keyframe. Note that marginal-
ization was not performed in the computation of the CRLB.

3.1.2 Results In order to illustrate the spread of estimation
errors, the errors pertaining to position estimates in each direc-
tion are shown in Figure 2 together with the square root of the
calculated CRLB for 13 Monte Carlo runs using the scenario de-
scribed in the previous section. The limitation to position errors
in this investigation is justified by the fact that they depend on
the remaining motion parameters through integration. Therefore,
it can not be expected to achieve good position estimates when
the estimates for attitude or velocity are severely distorted. When
interpreting the error plots in Figure 2 it has to be considered that
the optimization of the whole graph was only performed when
the reprojection error exceeded a threshold at irregular time inter-
vals. In the meantime the estimation error could grow arbitrarily.
This explains the ragged appearance of the error curves.

For an estimator that attains the CRLB it can be expected that ap-
proximately 70% of all error plots lie below the square root of the
CRLB. This is because the CRLB is the lower bound on the error
covariance and for a normally distributed variable approximately
70% of all realizations lie in the one sigma interval. Therefore,
approximately four out of the 13 error plots shown in Figure 2 are
expected to exceed the square root of the CRLB, if the estimator
is efficient.

A visual inspection of the plots shows that the trend in the error
curves generally follows the square root of the CRLB. Further-
more, the number of error curves exceeding the square root of the
CRLB is slightly higher than the expected number of four. This
indicates that the proposed method does not make full use of the
information available. However, the deviation from the CRLB
appears to be acceptable in this example.

After approximately 24 sec., a drop in the position error plots and
the square root of the CRLB can be observed. This corresponds
to the point in time when the trajectory bends to the right into the
next corridor, which goes along with a notable rotation about the
yaw axis. A possible explanation for this behavior is that the roll-
and pitch angles become separable from the acceleration biases
by this motion. If the error in z-direction (height) is correlated
with the roll- and pitch errors, this would also cause a correction
of the estimated height.

3.2 Real-data experiments

3.2.1 Experimental setup The submapping approach pre-
sented in this paper was tested on datasets recorded inside a uni-
versity building. The experimental site features wide and long
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Figure 3. Experimental results for one run with the camera looking forward (left), and a run with the camera looking backwards (right).
The reference trajectories recorded by the total station are shown as dashed red lines, the estimated trajectories are shown as green
lines.

hallways and varying illumination conditions. In the experiments
the sensor system was attached to the torso of a person walking
through a hallway. For each test run, a reference trajectory was
recorded by tracking the position of a prism with a total station
while the system was recording data. The prism was attached to a
rod which in turn was mounted on a plastic plate that was rigidly
attached to the sensor system. The leverarm between the prism
and the camera was calibrated prior to the experiments while be-
ing in standstill. For this purpose, a mirror-based calibration pro-
cedure similar to the one presented in (Hesch et al., 2009) was
developed, which allows to obtain an estimate of the leverarm
without the necessity to resort to additional sensors. Moreover,
visual markers whose position were measured by the total sta-
tion were placed such that they were in the camera’s field of
view at startup. In combination with the leverarm, this allows to
transfer the reference trajectory to the frame of reference the esti-
mates are calculated in. The employed sensor system comprises
an XSens MTi-G-700 IMU which triggered an industrial camera
at approximately 28 Hz to obtain synchronized video data. The
camera was equipped with a Fisheye-lens to facilitate the tracking
of features in indoor scenarios.

To obtain a quantitative measure for the similarity of estimated
trajectories to their associated reference trajectories, the trajecto-
ries are downsampled to polygonal curves with an equal and fixed
number of segments. Here, 250 segments were used. Then, the
Fréchet distance between the downsampled polygonal curves is
computed using a publicly available implementation of the algo-
rithm described in (Alt and Godau, 1995). The Fréchet distance
can be imagined as the minimum length of a rope needed to con-
nect two curves while moving along them without going back-
wards. Thus, it provides a parameterization-independent measure
of the resemblance of polygonal curves. If the samples are evenly
spaced we expect the error introduced by sampling to be below
0.5 m as long as the overall length of the trajectory is less then
125 m.

3.2.2 Results Figure 3 shows the results obtained for two
walks under the conditions described in the previous section.
Both experiments were conducted in the same hallway, but while
the camera was pointing in walking direction during the first ex-
periment (left figure), it was mounted on the pedestrian’s back
during the second experiment (right figure). By visual inspection
the estimated trajectory seems to match the reference trajectory
well in the first experiment, but there is a significant error for

the second experiment. This is also reflected by the calculated
Fréchet distances of 2.3 m for the forward-looking and 8.4 m for
the backward-looking configuration, respectively.

Due to the flexibility of the plastic plate, the rod holding the prism
was able to swing. This resulted in a deviation of the prism’s
position from the equilibrium position in the order of a few cen-
timeters. However, it is assumed that this effect can be neglected
compared to the estimation error, which is in the order of some
meters.

The large deviation between the estimated and the reference tra-
jectory observed for the run with the backward-looking camera
shown on the right side in Figure 3 raises questions about the
presence of systematic, unmodeled errors. The simulation results
presented in Sec. 3.1.2 suggest that the backward-looking config-
uration itself is not the cause of those errors.

At startup the walls with observed features were further away
from the camera when it was looking backwards than in the first
experiment with a forwad-looking camera. Hence, the prior for
the depth of landmarks observed at startup described the true
depth distribution better for the forward-looking configuration.
However, an investigation of initial depth prior edges for the
backward-looking configuration showed that their energy (i.e. the
normalized sum of squared residuals) is generally small com-
pared to the energy associated with measurement edges. More-
over, prior edges for landmark depth with high energy are re-
moved from the graph. Thus, prior edges should not contribute
spurious information.

Image features are extracted and tracked using the algorithms de-
scribed in (Förstner and Gülch, 1987) which provide a measure
that is used to prune false matches between successive frames. In
addition, the epipolar constraint is enforced for all pairs of match-
ing features between successive frames using a RANSAC-based
algorithm. However, as illustrated in Figure 4 these steps can not
prevent a gradual drift of feature locations over time. Therefore,
the maximal track length was limited to 25 frames. A compar-
ison of the distribution of landmark measurement edge energies
during one simulation run and the real-data experiment with the
backwards-looking camera indicates that the noise distribution
can not be described by white Gaussian noise for the real-data
experiment, cf. Figure 5. Based on this observation, it is ex-
pected that gradual feature track drift is the most probable cause
for the error observed in the second experiment.
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Figure 4. Observed drift of feature tracks over time. Left image:
Red crosses mark detected features. Right image: Blue crosses
mark the tracked features after 160 images (camera facing back-
wards).
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Figure 5. Relative frequency of landmark measurement edge en-
ergy at one point in time for the real dataset with the camera fac-
ing backwards (left) and for one simulation run (right). The cor-
responding χ2 pdf is drawn in red assuming a stdv. of 0.33 pixel
for real measurement noise and 1 pixel stdv. for simulated mea-
surement noise. Under the white Gaussian noise assumption the
χ2 pdf should provide a upper bound for the distribution of edge
energies.

4. CONCLUSIONS AND FUTURE WORK

This work presents a local submapping approach to the inertial-
aided visual odometry problem which allows to relinearize over
past poses in an information filter framework. The key idea is to
establish a consistent gauge based on local submaps. However,
the quality of the trajectories estimated by the current approach
does not seem to justify the excessive processing time due to
repeated relinearization and inversion of densely populated nor-
mal equations. A possible application of the presented algorithm
would be to use it as a reference for simpler algorithms in situa-
tions where accurate reference data is not available.

Future work should concentrate on improving the condition num-
ber of the system matrix built up during the inference step. For
this purpose it might be of interest to consider alternative gauge
specifications. As a step towards real-time capability it would be
beneficial to obtain a sparse approximation for the prior informa-
tion matrix, for instance by applying a sparsification step as it is
done in SEIFs (Thrun et al., 2005).
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