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ABSTRACT:

In this article we introduce new methods for the calibration of depth images from focused plenoptic cameras and validate the results.
We start with a brief description of the concept of a focused plenoptic camera and how from the recorded raw image a depth map can
be estimated. For this camera, an analytical expression of the depth accuracy is derived for the first time. In the main part of the paper,
methods to calibrate a focused plenoptic camera are developed and evaluated. The optical imaging process is calibrated by using a
method which is already known from the calibration of traditional cameras. For the calibration of the depth map two new model based
methods, which make use of the projection concept of the camera are developed. These new methods are compared to a common curve
fitting approach, which is based on Taylor-series-approximation. Both model based methods show significant advantages compared to
the curve fitting method. They need less reference points for calibration than the curve fitting method and moreover, supply a function
which is valid in excess of the range of calibration. In addition the depth map accuracy of the plenoptic camera was experimentally
investigated for different focal lengths of the main lens and is compared to the analytical evaluation.

1. INTRODUCTION

The concept of a plenoptic camera already has been developed
more than hundred years ago (Ives, 1903, Lippmann, 1908). Nev-
ertheless, only for the last few years the existing graphic pro-
cessor units (GPUs) are capable to evaluate the recordings of a
plenoptic camera with acceptable frame rates (≥ 30 fps).

Today, there exist basically two concepts of a plenoptic camera
which use a micro lens array (MLA) in front of the sensor. Those
two concepts are the ”unfocused” plenoptic camera developed by
Ng (Ng, 2006) and the focused plenoptic camera, which was de-
scribed for the first time by Lunsdaine and Georgiev (Lunsdaine
and Georgiev, 2008). The focused plenoptic camera can also be
found as plenoptic camera 2.0 in the literature. One big advan-
tage of it compared to the ”unfocused” plenoptic camera is the
high resolution of the synthesized image. This is beneficial for
estimating a depth map out of the recorded raw image (Perwass
and Wietzke, 2012).

A camera system which is supposed to be use for a photogram-
metric purpose has to be calibrated to transform the recorded im-
ages to the metric object space. While in (Dansereau et al., 2013)
the calibration of a Lytro camera (Ng, 2006) is described, (Jo-
hannsen et al., 2013) presents the calibration of a Raytrix cam-
era (Perwass and Wietzke, 2012) for object distances up to about
50 cm. The methods presented here were also developed to cal-
ibrate a Raytrix camera. Nevertheless, we are focused on de-
veloping calibration method for farther object distances then the
method described in (Johannsen et al., 2013).

This paper presents an analytical analysis of the depth accuracy
which cannot be found in the literature until now. Afterwards,
the developed calibration methods are presented. The presented
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methods are separated into the calibration of the optical imag-
ing process while disregarding the depth information and into the
calibration of the depth map supplied by the camera. For the
calibration of the depth map we present two newly developed ap-
proaches and compare them to an already known method. All
three methods are evaluated for different camera setups in a range
of approx. 0.7 m to 5 m.

Different from (Johannsen et al., 2013) we did not investigate the
distortion of the depth map by the main lens. However, for the
focal lengths used in this article and for the large object distances
we are operating with, the depth map distortion can be neglected
compared to the stochastic noise of the depth information.

All experiments presented in this paper were performed using the
camera Raytrix R5. In these experiments the impact of different
focal lengths of the main lens on the depth information was an-
alyzed and the different calibration methods were compared to
each other.

This article is organized as follows. Section 2 presents the con-
cept of a focused plenoptic camera. Here, we also derive the
analytical expression for the accuracy of the depth map. In Sec-
tion 3 the calibration of the image projection as well as the three
depth calibration methods are presented. Section 4 presents ex-
periments which were performed to evaluate the developed cali-
bration methods and Section 5 shows the corresponding results.

2. CONCEPT OF THE CAMERA

Different from traditional cameras, which only record the inten-
sity of incident light on the image sensor, a plenoptic camera
records the light-field inside the camera as a four dimensional
(4D) function. By retracing the path of rays through the main lens
the light-field outside the camera can be calculated. In (Gortler et
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Figure 1: Optical path of a thin lens

al., 1996) it is shown that in free space it is sufficient to define the
light-field as a 4D function. Since the intensity along a ray does
not change in free space, a ray can be defined by two position and
two angle coordinates. From the recorded 4D light-field a depth
map of the scene can be calculated or images focused on different
object distances can be synthesized after recording.

Since this article describes the calibration of a Raytrix camera,
only the concept for this camera is presented here. Neverthe-
less, the existence of other concepts (Ng, 2006, Lunsdaine and
Georgiev, 2008) has to be mentioned.

Figure 1 shows the projection of an object which is in the distance
aL in front of a thin lens to the focused image in a distance bL
behind the lens. The relationship between the object distance aL

and the image distance bL is defined by the thin lens equation as
given in eq. (1).

1

fL
=

1

aL
+

1

bL
(1)

In eq. (1) fL is the focal length of the main lens.

The easiest way to understand the principle of a plenoptic camera
is to look behind the main lens. Figure 2 shows the path of rays
inside a Raytrix camera. There, the sensor is not arranged on the
imaging plane, which is in the distance bL behind the main lens,
like it is for a traditional camera. In a Raytrix camera the sensor
is placed closer than bL to the main lens. Besides, in front of the
sensor a MLA is assembled which focuses the virtual main lens
image on the sensor. One distinct feature of Raytrix cameras is
that they have MLAs which consist of micro lenses with three dif-
ferent focal lengths. Each type of micro lenses focuses a different
image distance on the sensor. Thus, the depth of field (DOF) of
the synthesized image is increased by a factor of three.

The following Section 2.1 explains, how a depth map can be cal-
culated based on the recorded raw image. For this description
the MLA is assumed to be a pinhole grid which simplifies the
path of rays. Nevertheless, within the DOF of the camera this
assumption is valid. In this article the image synthesis will not be
described. A detailed description can be found in (Perwass and
Wietzke, 2012).

2.1 Calculating the depth map

As one can see from Figure 2, each of the three middle micro
lenses projects the virtual main lens image, which would occur
behind the sensor, on the sensor. Each micro image (image of
a micro lens) which is formed on the sensor shows the virtual
main lens image from a slightly different perspective. Based on
the focused image of a point in two or more micro images the
distance between the MLA and the virtual main lens image b can
be calculated by triangulation (see Fig. 2 and 3).

Figure 3 shows how the distance between any virtual image point
and the MLA b can be calculated based on its projection in two
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Figure 2: Optical path inside a Raytrix camera
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Figure 3: Principle of depth estimation in a Raytrix camera. The
distance b between a virtual main lens image point and the MLA
can be calculated based on its projection in two or more micro
images.

micro images. In this figure pxi (for i ∈ {1, 2}) defines the dis-
tance of the points in the micro images to the principal point of
the respective micro image. Besides, di (for i ∈ {1, 2}) defines
the distance of the respective principal point to the orthogonal
projection of the virtual image point to the MLA. All distances
pxi, as well as di are defined as signed values. Thus, distances
with an upwards pointing arrow in Figure 3 are positive values
and those with an downwards pointing arrow are negative val-
ues. Triangles which have equal angles are similar and thus, the
following relations hold:

pxi

B
=
di

b
−→ pxi =

di ·B
b

for i ∈ {1, 2} (2)

Besides, the base line distance between the two micro lenses can
be calculated as given in eq. (3).

d = d2 − d1 (3)

If we define the parallax of the virtual image point px as the dif-
ference between px2 and px1 from eq. (2) and (3) the definition
given in eq. (4) is received.

px = px2 − px1 =
(d2 − d1) ·B

b
=
d ·B
b

(4)

After rearranging eq. (4) the distance between a virtual image
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point and the MLA b can be described as a function of the base
line length d, the distance between MLA and sensor B, and the
estimated parallax px, as given in eq. (5).

b =
d ·B
px

(5)

A point occurs in more or less micro images depending on the
distance of its virtual image to the MLA. Thus, dependent on this
distance, the length of the base line d, which is used for triangu-
lation, changes. If the triangulation would be performed by using
two neighbored micro images, the based line would be equivalent
to the micro lens aperture (d = D). Since in a Raytrix camera
two neighbored micro lenses have different focal lengths, they
never focus the same point on the sensor and thus, the baseline is
always greater than the micro lens aperture (d > D).

The distance B between sensor and MLA is not known exactly,
thus, the depth map which is supplied by the plenoptic camera is
the distance b divided by B. This relative depth value is called
virtual depth and is denoted by v. From eq. (5) the virtual depth
v as a function of the estimated parallax px and the base line
distance d can be derived, as given in eq. (6).

v =
b

B
=

d

px
(6)

The virtual depth can only be calculated for a point which occurs
focused in at least two micro images. Thus, caused by the hexa-
gonal arrangement of the MLA with three different focal lengths,
as it is in a Raytrix camera, a minimum measurable virtual depth
of vmin = 2 results (Perwass and Wietzke, 2012). Since one
point usually occurs focused in more than two micro images, its
parallax can be estimated by using more than two images.

2.2 Depth accuracy

Based on the rules know from the theory of propagation of un-
certainty one can see how an error of the estimated parallax will
effect the depth accuracy. From the derivative of v with respect
to the measured parallax px the standard deviation of the virtual
depth σv can be approximated as given in eq. (7).

σv ≈
∣∣∣∣ ∂v∂px

∣∣∣∣ · σpx =
d

p2
x

· σpx =
v2

d
· σpx (7)

From eq. (7) it is obtained that the accuracy of the virtual depth
decays proportional to v2. The base line distance d is a discon-
tinuous function of the virtual depth v, because depending on the
virtual depth v of a point the maximum base line length of micro
lenses which see this point changes. This finally leads to a dis-
continuous dependency of the depth accuracy as function of the
object distance aL. However, on average the base line distance d
is proportional to the virtual depth v. So in total the accuracy of
the virtual depth decays approximately proportional to v.

The relationship between the image distance bL and the virtual
depth v is defined by the linear function given in eq. (8).

bL = b+ bL0 = v ·B + bL0 (8)

Here bL0 is the unknown but constant distance between main lens
and MLA. Using the thin lens equation (1) one can finally express
the object distance aL as function of the virtual depth v. If the
derivative of aL with respect to bL is calculated, the standard de-
viation of the object distance σaL can be approximated as given

in eq. (9).

σaL ≈
∣∣∣∣∂aL

∂bL

∣∣∣∣ · σbL =
f2

L

(bL − fL)2
· σbL

=
(aL − fL)2

f2
L

· σbL =
(aL − fL)2

f2
L

·B · σv (9)

For object distances which are much higher than the focal length
of the main lens fL the approximation in eq. (9) can be further
simplified as given in eq. (10). From eq. (10) one can see, that
for a constant object distance aL the depth accuracy increases
proportional to f2

L.

σaL =
(aL − fL)2

f2
L

·B · σv

≈ a2
L

f2
L

·B · σv for aL � fL (10)

For a constant focal length of the main lens the depths accuracy
decays proportional with a2

L. But, since large object distances
are equivalent to a small virtual depth, the depth accuracy as a
function of the object distance aL is of better nature than given in
eq. (10).

3. METHODS OF CALIBRATION

This section presents the developed methods to calibrate the fo-
cused plenoptic camera. We divide the calibration into two sepa-
rate parts. In the first part we calibrate the optical imaging process
disregarding the estimated depth map. The second part addresses
the calibration of the depth map.

3.1 Calibration of the optical imaging

For the calibration of optical imaging process the synthesized im-
age is considered to result from a central projection, as it is also
done for regular cameras. The intrinsic parameters of the pin-
hole camera and the distortion parameters are estimated by the
calibration method supplied by OpenCV. This method is mainly
based on the approach described in (Zhang, 1999). Only the lens
distortion model is the one described in (Brown, 1971).

This calibration method uses a number of object points on a plane
which are recorded from many different perspectives. The pro-
jection from an object point on the plane to the corresponding
image point can be described by a planar homography as given
in eq. (11). Here, the object point coordinates are denoted by
xW and yW while zW = 0 and the image point coordinates are
denoted by xI and yI .w · xI

w · yI

w

 =

h11 h12 h13

h21 h22 h23

h31 h32 1

 ·
xW

yW

1

 (11)

From the planar homography, which has to be estimated for each
perspective, eight independent equations are received. From those
eight equations six extrinsic parameters have to be calculated.
Thus, from each perspective two equations are left to estimate
the intrinsic parameters. Since OpenCV defines a pinhole camera
model with four intrinsic parameters, the object points have to be
recorded from at least two different perspectives. Those four in-
trinsic parameters are the focal lengths of the pinhole camera in
x- and y-coordinates fx and fy and the coordinates of the princi-
pal point cx and cy . In reality much more than two perspectives
are used to average measurement errors.
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After the determination of the intrinsic parameters, the distortion
parameters can be estimated out of the difference between the
projection of the object points on the image plane using the es-
timated extrinsic and intrinsic parameters and the corresponding
measured image points.

Based on the corrected image points, again the extrinsic and in-
trinsic parameters are estimated. This procedure is repeated until
consistency is reached.

3.2 Calibration of the depth map

Purpose of the depth map calibration is to define the relationship
between the virtual depth v supplied by the Raytrix camera and a
metric dimension o which describes the distance to an object.

As described in Section 2 the relationship between the virtual
depth v and the object distance aL relies on the thin lens equation,
which is given in eq. (1). Nevertheless, a real lens usually can not
be described properly by an ideal thin lens. Thus, for instance the
position of the lens’ principal plane is not known exactly or the
lens conforms to a thick lens with two principal planes.

From Figure 2 one can see, that the image distance bL is linearly
dependent on the virtual depth v. This dependency is defined as
given in eq. (12).

bL = v ·B + bL0 (12)

Since the position of the main lens’ principal plane cannot be de-
termined, the object distance aL cannot be measured explicitly.
Hence, the object distance aL is defined as the sum of a measur-
able distance o and a constant but unknown offset aL0 as given in
eq. (13).

aL = o+ aL0 (13)

The definitions for the image distance bL and the object dis-
tance aL (eq. (12) and (13)) are inserted in the thin lens equa-
tion (eq. (1)). After rearranging the thin lens equation with the
inserted terms, the measurable object distance o is described as a
function of the virtual depth v as given in eq. (14).

o =

(
1

fL
− 1

v ·B + bL0

)−1

− aL0 (14)

This function depends on four unknown but constant parameters
(fL, B, bL0, and aL0). The defined function between the virtual
depth v and the measurable object distance o has to be estimated.
This estimation can be performed from a bunch of measured cal-
ibration points for which the object distance o is known. In this
paper we present two novel model based calibration methods. For
comparison the function will also be approximated by a tradi-
tional curve fitting approach.

3.2.1 Method 1 - Physical model: The first model based ap-
proach estimates the unknown parameters of eq. (14) explicitly.
However, one additional condition is missing to receive a unique
solutions for eq. (14) depending on all four unknown parame-
ters. Thus, to solve this equation the focal length of the main lens
fL is specified first by an assumed value. Then the other three
unknown parameters are estimated iteratively.

Firstly, the estimated value of the object distance offset âL0 is
set to some initial value. Based on this initial value and the focal
length fL, for each measured object distance o{i} the correspond-
ing image distance b{i}L is calculated.

Since the image distance bL is linearly dependent on the virtual
depth v, the calculated image distances b{i}L and the correspond-
ing virtual depths v{i} are used to estimate the Parameters B and
bL0. Eq. (15) to (17) show the least squares estimation of the
parameters.(

B̂

b̂L0

)
=
(
XT

Ph ·XPh

)−1

·XT
Ph · yPh (15)

yPh =
(
b
{0}
L b

{1}
L b

{2}
L · · · b

{N}
L

)T

(16)

XPh =

(
v{0} v{1} v{2} · · · v{N}

1 1 1 · · · 1

)T

(17)

Based on the estimated parameters B̂ and b̂L0, for each virtual
depth v{i} the corresponding object distance â{i}L is calculated.
From the difference between the calculated object distances â{i}L

and the measured object distances o{i} the estimated object dis-
tance offset âL0 is updated as given in eq. (18).

âL0 =
1

N + 1
·

N∑
i=0

â
{i}
L − o{i} (18)

By using the updated value âL0, again the image distances b{i}L

are calculated and the parameters B̂ and b̂L0 are updated. The
estimation procedure is continued until the variation of âL0 be-
tween two iteration steps is negligible small.

For this method the focal length of the main lens fL does not
have to be known precisely. There exists an optimum solution
for any focal length greater than zero. However, the estimated
parameters change when the assumed focal length is changed to
a different value. Though, if the specified focal length does not
comply with the real one, the estimated parameters differ from
the real physical dimensions. Nevertheless, the estimated set of
values is consistent and will not affect the limits of accuracy of
the object distance o.

3.2.2 Method 2 - Behavioral model: The second model based
approach relays also on the function defined in eq. (14). How-
ever, this method does not estimate the physical parameters ex-
plicitly as done in method 1, but a function which behaves similar
to the physical model.

Eq. (14) can be rearranged to the term given in eq. (19). Since
the virtual depth v and the object distance o both are measurable
dimensions, a third measurable variable u = o · v can be defined.

o = o · v · B

fL − bL0
+ v · B · aL0 −B · fL

fL − bL0

+
bL0 · aL0 − aL0 · fL − bL0 · fL

fL − bL0
(19)

Thus, from eq. (19) the term given in eq. (20) results. Here,
the object distance o is defined as a linear combination of the
measurable variables u and v.

o = u · c0 + v · c1 + c2 (20)

The coefficients c0, c1, and c2 are defined as given in eq. (21) to
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(23).

c0 =
B

fL − bL0
(21)

c1 =
B · aL0 −B · fL

fL − bL0
(22)

c2 =
bL0 · aL0 − aL0 · fL − bL0 · fL

fL − bL0
(23)

Since for eq. (20) all three variables o, v, and u are measurable
dimensions, the coefficients c0, c1, and c2 can be estimated based
on a number of calibration points. For the experiments presented
in Section 4 the coefficients c0, c1, and c2 are estimated by using
the least squares method as given in eq. (24) to (26).ĉ0ĉ1

ĉ2

 =
(
XT

Be ·XBe

)−1

·XT
Be · yBe (24)

yBe =
(
o{0} o{1} · · · o{N}

)T
(25)

XBe =

o{0}v{0} o{1}v{1} · · · o{N}v{N}

v{0} v{1} · · · v{N}

1 1 · · · 1

T

(26)

After rearranging eq. (20) the measurable object distance o can
be described as a function of the virtual depth v and the estimated
parameters c0, c1, and c2 as given in eq. (27).

o =
v · c1 + c2
1− v · c0 (27)

3.2.3 Method 3 - Curve fitting: The third method presented
in this paper is a common curve fitting approach. This approach
approximates the function between the virtual depth v and the
measurable object distance owithout paying attention to the func-
tion defined in eq. (14).

It is known that any differentiable function can be represented by
a Taylor-series and thus, by a polynomial of infinite order. Hence,
in the approach presented here the functions which describes the
object distance o depending on the virtual depth v will be defined
as a polynomial as well. A general definition of this polynomial
is given in eq. (28).

o ≈
M∑

k=0

pk · (v)k (28)

Similar to the second method the polynomial coefficients p0 to
pM are estimated based on a bunch of calibration points. In the
experiments presented in Section 4 a least squares estimator as
given in eq. (29) to (31) is used.

p̂0

p̂1

...
p̂M

 =
(
XT

Pol ·XPol

)−1

·XT
Pol · yPol (29)

yPol =
(
o{0} o{1} · · · o{N}

)T
(30)

XPol =



1 1 · · · 1

v{0} v{1} · · · v{N}

v{0}
2

v{1}
2 · · · v{N}

2

...
...

. . .
...

v{0}
M

v{1}
M · · · v{N}

M



T

(31)

For this method a trade-off between the accuracy of the approxi-

mated function and the order of the polynomial has to be found.
A high order of the polynomial results in more effort for calcu-
lating an object distance from the virtual depth. Besides, for high
orders the matrix inversion as defined in eq. (29) results in nu-
merical inaccuracy. For such cases a different method for solving
the least squares problem has to be used (e.g. Cholesky decom-
position).

4. EXPERIMENTS

To evaluate the calibration methods presented in Section 3 dif-
ferent experiments were performed. Firstly, Section 4.1 presents
the experiments which were performed to evaluate the calibra-
tion of the optical imaging process. Secondly, the experiments
performed for the evaluation of the depth calibration methods are
described in Section 4.2. The results corresponding to the exper-
iments are presented in Section 5.

4.1 Calibration of the optical path

The calibration method for the optical imaging process was per-
formed for a main lens with focal length fL = 35 mm and one
with fL = 12 mm.

To calibrate the optical path we used for both focal lengths a pla-
nar chessboard pattern with seven times ten fields. This results in
a total number of 54 reference points per recorded pattern (one
reference point is the connection point of four adjacent fields).
One square of the chessboard has a size of 50 mm× 50 mm.

For calibration the pattern was recorded from 50 as different as
possible views and it was tried to cover the whole image with cali-
bration points. For both lenses three series of measurements were
recorded to determine the variance of the calibration method. The
results corresponding to this experiment are presented in Sec-
tion 5.1.

4.2 Calibration of the depth map

The experiments to investigate the properties of the three pre-
sented depth map calibration methods were also performed for
the main lens focal length fL = 35 mm and fL = 12 mm.

Based on the chessboard pattern, which was already used to cal-
ibrate the optical imaging process, for both focal lengths a series
of measurements was recorded. This time, for the 35 mm lens
a chessboard with squares of the size 25 mm× 25 mm was used.
For the 12 mm lens again the one with square size 50 mm× 50 mm
was used. For each object distance, the distance between a de-
fined point close to the camera and a certain point on the chess-
board was measured with a laser rangefinder (LRF). Here it can
not be guaranteed that the chessboard stands parallel to the im-
age plane of the camera. Thus, the object distance for each of
the 54 reference points can be sightly different from the distance
measured by the LRF. It is known that the object distance aL

of a square on chessboard is inversely proportional to the size of
its image. Thus, for each square on the chessboard a relative ob-
ject distance can be calculated out of the size of its image. Since
it is known that all squares lay on the same plane, this plane is
estimated based on the relative distances. Thus, the orientation
of the chessboard with respect to the camera is received. Based
on the object distance which was measured for one certain point
accurately by the LRF and the estimated orientation of the chess-
board, for each of the 54 corners in the chessboard pattern a very
precise object distance is calculated.

For the 35 mm lens the chessboard pattern was recorded at 50 dif-
ferent object distances o in the range from approximately 0.7 m
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series no. 1 2 3
fx [Pixel] 1058.8 1053.8 1048.1
fy [Pixel] 1064.3 1060.9 1053.9
cx [Pixel] 494.0 488.4 475.8
cy [Pixel] 496.9 528.4 502.4

σRep [Pixel] 0.703 0.870 0.830

Table 1: Optical path calibration results for fL = 12 mm. The
optical path calibration was performed three times for the 12 mm
focal length. For each calibration series a chessboard pattern was
recorded from 50 different perspectives.

to 5.2 m. For the 12 mm lens the pattern was recorded at 50 dif-
ferent object distances o in the range from approximately 0.7 m
to 3.9 m. Since each pattern has 54 reference points, 54 measure-
ment points are received for each object distance o.

To evaluate the three calibration methods different experiments
were performed based on the two series of measurements. Beside
the physical model and the behavioral model based calibration
method, the curve fitting approach was performed by using a third
and a sixth order polynomial.

In the first experiment only the values of five measured object
distances o were used for calibration. This experiment was per-
formed to evaluate if a low number of calibration points is suffi-
cient to receive reliable calibration results.

In a second experiment only the 50 % of the measurement points
with the lowest object distances (for fL = 35 mm object dis-
tances up to approx. 2.6 m and for fL = 12 mm object distances
up to approx. 2.1 m) were used for calibration. In this experiment
it was supposed to investigate how strong the estimated functions
are drifting off from the real model outside the range of calibra-
tion.

To evaluate the accuracy of the depth map, based on all mea-
sured points the root mean square error (RMSE) with respect to
the object distance was calculated for both focal lengths. In this
experiment the object distances which were calculated from the
virtual depth were converted to metric object distance by using
the behavioral model presented in Section 3.2.2.

Section 5.2 presents the results corresponding to the experiments
performed for the depth map calibration.

5. RESULTS

This section presents the results of the performed experiments.
In Section 5.1 the results of the calibration of the optical imaging
process are presented, while Section 5.2 shows the results corre-
sponding to the calibration of the depth map.

5.1 Calibration of the optical path

As already mentioned in Section 3.1 the used calibration method
described in (Zhang, 1999) calculates four intrinsic as well as dis-
tortion parameters. The intrinsic parameters are the focal lengths
of the underlying pinhole camera (fx and fy) and the correspond-
ing principal point (cx and cy). Table 1 and 2 show the calibration
results for the 12 mm and 35 mm focal length respectively. For
both focal lengths the results of the three calibration series are
presented in the tables. Besides, for each calibration series the
root mean square (RMS) of the reprojection error σRep was cal-
culated. The reprojection error eRep is the Euclidean distance be-
tween a measured two dimensional (2D) image point and the im-
age point which results from the projection of the corresponding

series no. 1 2 3
fx [Pixel] 3259.1 3261.6 3284.0
fy [Pixel] 3262.3 3261.0 3291.0
cx [Pixel] 520.7 430.0 426.3
cy [Pixel] 346.6 389.5 323.6

σRep [Pixel] 0.332 0.333 0.342

Table 2: Optical path calibration results for fL = 35 mm. The
optical path calibration was performed three times for the 35 mm
focal length. For each calibration series a chessboard pattern was
recorded from 50 different perspectives.

three dimensional (3D) object point, based on the camera model.
Eq. (32) gives the definition of the RMS of the reporjection error.

σRep =

√√√√ 1

N
·

N∑
i=1

(
ei

Rep

)2 (32)

As one can see, the reprojection error for the 12 mm focal length
is about twice to three times as high as the one for the 35 mm
focal length. This can be explained since the effective image res-
olution depends on the virtual depth. For a low virtual depth the
effective resolution is higher than for a high virtual depth. The
12 mm focal length results in a larger field of view (FOV) than
the 35 mm focal length. Thus, for the 12 mm focal length the
pattern had to be recorded from a much closer distance than for
the 35 mm focal length. This likely resulted in a higher virtual
depth. Nevertheless, since the calibration results showed a very
high variance between the single calibrations we did not investi-
gate this phenomena further.

As one can see from Table 1 and 2, the estimated intrinsic param-
eter are varying a lot from one calibration series to the next, es-
pecially for fL = 35 mm. The reason therefore is that especially
for large focal lengths the extrinsic parameter, which have to be
estimated for each recorded pattern and the intrinsic parameters
are strongly correlated and thus cannot be separated accurately.
The calibration could be improved by using a 3D calibration ob-
ject. From a 3D object three conditions more than from a planar
object are received per perspective.

5.2 Calibration of the depth map

In this section only the results for the calibration of the 35 mm
lens are presented. For fL = 12 mm comparable results were
achieved.

Figure 4 shows the results corresponding to the first experiment.
The red dots represent the calibration points for the five object
distances. The green dots are the remaining measured points
which were not used for calibration. As one can see, the phys-
ical model as well as the behavioral model are almost congru-
ent. Both curves match the measured distances very well over the
whole range from approx. 0.7 m to 5.2 m. For the polynomials
of order three and six instead, five object distances are not suf-
ficient to approximate the function between virtual depth v and
object distance o accurately. Both functions fit to the points used
for calibration but do not define the underlying model properly in
between the calibration points.

Figure 5 shows the results of the second experiment. Again, the
points used for calibration are represented as red dots and the
green dots represent the remaining points. Both model based
calibration approaches again are almost congruent and describe
very well the measured distances in the range of calibration up
to 2.6 m. In this range also the to estimated polynomials fit the
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Figure 4: Results of the first experiment for the depth map cal-
ibration. Five object distances were used for calibration. The
calibration was performed based on the physical model, the be-
havioral model and the curve fitting approach.

2 3 4 5 6 7

1000

2000

3000

4000

5000

virtual depth v

ob
je

ct
di

st
an

ce
o

[m
m

]

measured object distance
calibration points
physical model

behavioral model
polynomial of order 3
polynomial of order 6

Figure 5: Results of the second experiment for the depth map
calibration. Object distances up to approx. 2.6 m were used for
calibration. The calibration was performed based on the physical
model, the behavioral model and the curve fitting approach.

measured distances very well. Nevertheless, for object distances
larger than 2.6 m especially the third order but also the sixth
order polynomial are drifting away from the series of measure-
ments. The functions of both model based approaches still match
the measured values very well up to an object distance of 5.2 m.
Thus, the functions underlying the two model based calibration
methods conform with the reality. Both functions are able to con-
vert the virtual depth to an object distance even outside the range
of calibration points with good reliability.

As mentioned in Section 4.2, to evaluate the depth resolution of
the plenoptic camera the complete series of measurement points
was used. For each of the 50 object distances the RMSE is cal-
culated. The RMSE is calculated from the 54 values oMeas mea-
sured for each object distance and the corresponding values o (v)
calculated as a function of the virtual depth v. The virtual depth
values v are transformed into object distance based on the func-
tion received from the behavioral model. The RMSE is defined

1000 2000 3000 4000 5000
100

101

102

103

object distance o [mm]

σ
[m

m
]

fL = 35 mm
fL = 12 mm

Rx Spec. fL = 31.98 mm

Figure 6: Depth accuracy of a Raytrix R5 camera with two dif-
ferent main lens focal lengths (fL = 35 mm and fL = 12 mm)

as given in eq. (33).

σ =

√√√√ 1

54
·

53∑
i=0

(
o
{i}
Meas − o (v{i})

)2

(33)

Figure 6 shows the RMSE of the depth for the 12 mm and the
35 mm focal length respectively. Besides, the figure shows the
simulated accuracy of the camera which is given by Raytrix. For
the simulation a maximum focus distance of 10 m and a focal
length of fL = 31.98 mm was defined. Since the RMSE for the
12 mm focal length increases strongly with rising object distance,
the axis of ordinates is scaled logarithmically.

The results for the focal length fL = 35 mm conform very well
with the specification given by Raytrix. However, it cannot be
guaranteed that the object distances measured during the exper-
iments are equivalent to the distance given by Raytrix. The dis-
tance given by Raytrix is the distance between an object and the
sensor plane. Thus, the Raytrix specification actually might be
shifted by a small offset along the axis of abscissas.

As one can see, the accuracy measured for fL = 12 mm is worse
by a factor of approx. 8 to 10 compared to fL = 35 mm. This
conforms to the evaluation made in Section 2.2, according to
which 352

122 = 8.5 holds true.

6. CONCLUSION

In this article we developed an analytical expression for the depth
map accuracy supplied by a focused plenoptic camera. The ex-
pression describes the dependency of the depth accuracy from
camera specific parameters like the focal length of the main lens
fL.

Besides, it was shown that the image synthesized from the cam-
era’s raw image can be described by the projection model of a
pinhole camera. Hence, the intrinsic and distortion parameters of
the synthesized image can be estimated by traditional calibration
methods.

The most important contribution of the article is the development
of two novel, model based methods for the depth map calibra-
tion which proved to be superior to traditional methods. The per-
formed experiments showed that both methods correspond to the
behavior of the camera very well. Thus, only a small number of
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measurements is needed for calibration. Besides, it was shown
that the estimated functions are valid in excess of the calibration
range.

In future development the method for calibrating the optical imag-
ing process has to be improved since the estimated intrinsic and
distortion parameters showed high variances. A reliable estima-
tion of the camera parameters is needed to calculate an accurate
3D point cloud from the depth map supplied by the camera.

In near future the plenoptic camera is supposed to operate in nav-
igation applications for visually impaired people. The camera
seems to be suited for such an applications because of its small
dimensions. Furthermore, the depth map accuracy is sufficient
for this purposes.
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