
DETECTION OF FALLEN TREES IN ALS POINT CLOUDS BY LEARNING THE
NORMALIZED CUT SIMILARITY FUNCTION FROM SIMULATED SAMPLES

P. Polewskia, b, ∗, W. Yaoa, M. Heurichc, P. Krzysteka, U. Stillab

a Dept. of Geoinformatics, Munich University of Applied Sciences, 80333 Munich, Germany -
(polewski, yao, krzystek)@hm.edu

b Photogrammetry and Remote Sensing, Technische Universität München, 80333 Munich, Germany- stilla@tum.de
c Dept. for Research and Documentation, Bavarian Forest National Park, 94481 Grafenau, Germany -

marco.heurich@npv-bw.bayern.de

KEY WORDS: Fallen tree detection, graph cuts, virtual sample generation

ABSTRACT:

Fallen trees participate in several important forest processes, which motivates the need for information about their spatial distribution
in forest ecosystems. Several studies have shown that airborne LiDAR is a valuable tool for obtaining such information. In this paper,
we propose an integrated method of detecting fallen trees from ALS point clouds based on merging small segments into entire fallen
stems via the Normalized Cut algorithm. A new approach to specifying the segment similarity function for the clustering algorithm is
introduced, where the attribute weights are learned from labeled data instead of being determined manually. We notice the relationship
between Normalized Cut’s similarity function and a class of regression models, which leads us to the idea of approximating the task
of learning the similarity function with the simpler task of learning a classifier. Moreover, we set up a virtual fallen tree generation
scheme to simulate complex forest scenarios with multiple overlapping fallen stems. The classifier trained on this simulated data yields
a similarity function for Normalized Cut. Tests on two sample plots from the Bavarian Forest National Park with manually labeled
reference data show that the trained function leads to high-quality segmentations. Our results indicate that the proposed data-driven
approach can be a successful alternative to time consuming trial-and-error or grid search methods of finding good feature weights for
graph cut algorithms. Also, the methodology can be generalized to other applications of graph cut clustering in remote sensing.

1. INTRODUCTION

Fallen trees are considered an important part of forest ecosys-
tems. Studies have revealed that dead wood has a role in provid-
ing habitat for various plants and animals (Freedman et al., 1996)
as well as in tree regeneration (Weaver et al., 2009). Also, dead
wood contributes significantly to the total carbon stock in forests
(Woodall et al., 2008). For these reasons, qualitative and quanti-
tative information about the spatial distribution of dead wood in
forests is important for any organizations interested in monitoring
biodiversity, carbon sequestration and wildlife habitats.

Airborne LiDAR has been shown to be a valuable tool in assess-
ing various forest parameters at different scales. There have been
many contributions dealing with extracting individual trees from
the LiDAR data. The segmentations of the point clouds were
then used for tree species classification (Reitberger et al., 2008;
Heurich, 2008) or detection of standing dead trees (Yao et al.,
2012). In this work, we describe a method of detecting entire
fallen stems from ALS point clouds.

The problem of detecting fallen trees from ALS data has received
some attention from the remote sensing community. Among the
first methodological studies was the work of Blanchard et al.
(2011). This approach relies on rasterizing the point cloud with
respect to various point statistics as well as generating a vector
thematic layer for object based image analysis to detect downed
stems. The authors observe that their method has some difficulty
in more complex scenarios like proximity of the stems to ground
vegetation as well as large clusters of logs. Also, the process-
ing pipeline relies on multiple user-defined parameters, making it
more cumbersome to apply for an entirely new plot. Muecke et
al. (2013) also perform the classification on a vectorized layer de-
rived from the binarized point cloud filtered based on distance to
∗Corresponding author.

the DTM. Additionally, to remove ground vegetation and shrubs,
a pulse echo width filter is applied. The authors show that it is
possible to reliably detect stems which distinguish themselves
well upon the DTM. However, they note that applying the pulse
echo width filter together with the vectorized object shape fea-
tures is not always enough to separate stems from densely in-
tertwined ground vegetation and piles of twigs. This study does
not address the more complex scenario of multiple overlapping
stems. In a recent study, Lindberg et al. (2013) perform line
template matching directly in the point cloud, followed by height
homogeneity analysis on rasterized versions of the found lines.
An attempt to model the local neighborhood of stem candidates is
made using a height statistic on points lying within a fixed radius.
Upon validation on a complex test site, they find that although de-
tecting the lines directly in 3D is advantageous, the method some-
times fails in the presence of large clusters of overlapping stems,
and can also report false positives in dense vegetation, ditches
or road fragments. Also, a multitude of user-defined thresholds
restricts its application for other areas.

We believe that due to the complexity and variability of the target
objects’ appearance in the point cloud, methods which try to learn
the appearance from reference data based on highly expressive
shape descriptors could help solve some of the problems with the
aforementioned threshold-based approaches. We propose a two-
tiered procedure for detecting fallen trees. In the first step, stem
segments of equal length are detected, yielding a set of primi-
tives. In the second step, these segments are clustered together
to form entire fallen trees. This is the next step in our previous
work (Polewski et al., 2014), extending it from segment level to
object (fallen tree) level. The focus of this paper is to present the
clustering step in detail.

Our method of choice for merging the segments is the Normal-
ized Cut algorithm (Shi and Malik, 2000), a spectral clustering

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-111-2014 111

procedure which has found applications in many fields, includ-
ing computer vision, speech processing, and also remote sensing.
Like several other clustering algorithms, Normalized Cut uses a
pairwise object similarity function as input. Most authors employ
the similarity model originally proposed by Shi and Malik, which
aggregates different features using a set of weights. However, the
individual feature weights are usually very application-specific,
and considerable effort is required to find near-optimal weights
for a new problem. The search for the weights is not part of the
clustering algorithm itself, and in practice is carried out based on
intuition, trial and error, or via a coarse grid search on discretized
weight values. All of these methods are either very computation-
ally intensive, or do not offer significant advantages over random
weight generation. This motivates research towards finding ways
to automatically learn the similarity function from reference seg-
mentations. In this paper, we propose to regard the Normalized
Cut similarity function as a probabilistic binary classifier which,
for any pair of objects, determines how likely it is that they be-
long to the same cluster. We investigate the hypothesis that a
high-performing binary classifier leads to a high-quality similar-
ity function for Normalized Cut. Such a relationship would be
useful in that it would allow us to reduce the problem of a learning
similarity function to the much simpler and well-studied task of
learning a classifier from labeled data. We then propose a virtual
sample generation scheme for synthesizing complex stem scenar-
ios and use the generated exemplars as training data to learn the
similarity function for merging segments into entire fallen trees.

We consider the main contributions of this paper to be (i) the
processing pipeline for obtaining entire stems from a set of over-
lapping segments, (ii) the fallen stem simulation which leads to
high-quality classifiers capable of recognizing segments belong-
ing to the same stem, and (ii) the idea to approximate the prob-
lem of learning the similarity function for Normalized Cut with
the problem of training a binary classifier. The rest of this pa-
per is structured as follows: in Section 2. we explain the details
of our approach including the mathematical background. Section
3. describes the study area, experiments and evaluation strategy.
The results are presented and discussed in Section 4. Finally, the
conclusions are stated in Section 5.

2. METHODOLOGY

2.1 Overview of strategy for detecting fallen trees

We develop an integrated, data driven method for detecting sin-
gle tree stems from unstructured ALS point clouds given by the
three-dimensional coordinates of their constituent points. The ap-
proach is suitable for both discrete and full waveform data. The
output of our method is a list of subsets of the original points
which correspond to individual detected fallen trees. We assume
that reference data in the form of accurate fallen stem positions,
lengths and diameters is available. The entire processing pipeline

ALS point cloud
Individual tree
point sets

Generate and
classify segments

Representative
segment selection

Merge segments
to form stems

Learn segment
 similarity

Figure 1: Overview of fallen tree strategy.

is depicted in Fig. 1. Conceptually, our approach tries to decom-
pose the task of detecting entire stems into two simpler problems:
first detecting stem segments in the point cloud, and then merging
the segments to produce single fallen trees. This paper focuses on
the latter task.

2.2 Generation and classification of segments

The goal of this stage is to detect linear structures in the ALS
point cloud which are likely to correspond to segments of fallen
stems. This is done in four steps:

DTM generation and filtering. We start by partitioning the
area defined by the 2D bounding box of the input points into
square cells of width 10 cm. For every cell ck, we define the
measured height Hk as the minimum height of all points p ∈ ck.
For calculating the DTM we use an Active Shape Model formu-
lation (Elmqvist, 2002). In this setting, the terrain model is an
elevation function z(p) defined over an evenly spaced grid. We
can associate a surface energy with every z(p):

E(z) =
∑
p

Eimg(p) + Eint(p) (1)

In Eq. 1 the summing is over the discrete grid points. The term
Eext refers to the image energy and usually is defined as sum
of the distances between z and the measured heights on the grid.
The term Eint is related to the energy of the surface. It intro-
duces smoothness/rigidity constraints into the model. We obtain
the DTM by minimizing the energy functional (Eq.1) on the grid
defined by the cells ck with their associated measured heights
Hk with respect to the model heights z(p). The minimization is
carried out using the iteratively reweighted least squares method.
Since this is a highly non-convex problem, attaining a global min-
imum is not guaranteed. Therefore, we use multiple randomized
re-runs and pick the best solution. Finally, we retain only points
lying within an interval of 15 to 100 cm over the ground.

Point-level classification. We use the 3D shape descriptor Point
Feature Histograms (PFH) (Rusu et al., 2008) to train a prob-
abilistic binary classifier in order to distinguish between fallen
stem points and other points. We can then for each input point
p obtain an estimate of the probability P (p ∈ Cstem|PFH(p))
that p belongs to a fallen stem (Cstem refers to the class of fallen
stem points in the binary classification setting). See Polewski et
al. (2014) for details.

Candidate segment generation. In this step, feasible candi-
dates for fallen stem segments are generated. We restrict our
attention to high-probability stem points (above 0.5) only. We
exhaustively examine all pairs of such points which are close
enough to each other. Each point pair determines a segment
in 3D. We consider each segment as the axis of a fixed-radius
cylinder, and retain only segments whose corresponding cylin-
ders contain a minimal number of points.

Segment classification. We classify the candidate segments gen-
erated in the previous step into the classes ’good’ and ’bad’. The
’good’ class corresponds to segments which are really parts of
fallen stems, and the ’bad’ class involves DTM artifacts, ground
vegetation, and other irrelevant objects. We train a classifier on
manually labeled reference data using two groups of features: (i)
a coarse histogram of the pointwise stem probabilities of points
belonging to the segment, and (ii) a cylindrical variation of the
shape descriptor 3D Shape Context (Frome et al., 2004).

2.3 Selecting representative segments

Because we generate segment candidates in an exhaustive man-
ner, it is expected that many segments classified as ’good’ will
strongly overlap or even be duplicates in terms of the points they
cover. In practice, we found that in a dense enough plot, hundreds
of thousands of segments can still remain after the classification

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-111-2014 112

phase. Therefore, we need a way to select a small subset of seg-
ments which will be representative of the entire set in the sense
that it covers the same set of input points that is covered by the
entire set. More formally, define S = {s1, s2, . . . , sK} - the set
of all ’good’ segments, P (si) - the set of points contained by seg-
ment si, and P =

⋃
si
P (si) - the set-theoretic union of all input

points belonging to any segment in S. Each of the si may now be
viewed as a subset of P . This gives rise to the formulation of the
classic set cover problem:

minimize
K∑
i=1

xi

subject to ∀p∈P
∑

i:p∈P (si)

xi ≥ 1, ∀ixi ∈ {0, 1}
(2)

Unfortunately, the optimization version of this combinatorial prob-
lem is NP-hard, which means that an efficient polynomial algo-
rithm probably does not exist. We use the MetaRAPS heuristic
algorithm (Lan et al., 2007). It proceeds in an iterative fash-
ion by constructing random covers of P based on a randomized
greedy decision rule (highest probability of picking the segment
which covers the most previously uncovered points). The algo-
rithm then tries to improve the solution s by randomly removing
a subsetR of segments from s, approximately solving the smaller
set cover problem induced by R, and then reintegrating the two
partial solutions.

2.4 Segment merging

As a final step in our detection strategy, we perform merging of
the representative segments. For this purpose, we define a set of
differential features on the space of segment pairs (Sec. 2.4.2).
Once the features have been defined, we can calculate the seg-
ment similarity matrix (Di,j) = fs(si, sj) (Eq. 4) for all pairs of
segments si, sj . We enforce a spatial constraint by calculating the
similarity between a pair of segments only if there exists a cylin-
der with length 10 m and radius 2.4 m which contains both their
midpoints (otherwise the similarity is assumed to be 0). We then
employ the Normalized Cut algorithm (2.4.1) to cluster the seg-
ments into individual stems. Once this is done, the original input
points corresponding to each detected tree can be calculated as
the union of point subsets belonging to its constituent segments.

2.4.1 Normalized Cut The Normalized Cut algorithm, intro-
duced by Shi and Malik (2000), belongs to the class of spectral
methods for data clustering. These methods exploit the eigen-
structure of the pairwise object similarity matrix to partition the
data points into several disjoint clusters with high intra-cluster
similarity and low inter-cluster similarity. Normalized Cut can be
used for clustering arbitrary objects, since it only interacts with
these objects through a pairwise similarity function fs(o1, o2)
which is nonnegative and attains a maximum for o1 = o2. For-
mally, given a set of N objects O = {oi}i=1..N represented by
their pairwise similarity matrix S = {fs(oi, oj)}i=1..N,j=1..N ,
the objective is to partition the objects into K disjoint clusters
A1, A2, . . . , AK such that the following criterion, the Normal-
ized Cut, is minimized:

Ncut(A1, A2, . . . , AK) ≡
K∑
i=1

cut(Ai, O −Ai)
assoc(Ai, O)

(3)

where cut(A,B) ≡ ∑
a∈A,b∈B fs(a, b) and assoc(A, V) ≡∑

a∈A,v∈V fs(a, v). A very desirable property of the partition
criterion (Eq. 3) is that maximizing the within-cluster similarity
of objects corresponds to simultaneously minimizing the cross-
cluster similarity, which leads to balanced clusters. Since finding

an exact minimizer of Eq.3 is an NP-hard problem, usually an
approximation based on a relaxed generalized eigenvalue prob-
lem is used instead. The classical choice for the pairwise object
similarity function is the multiplicative exponential model:

fs(oi, oj) ≡
M∏
k=1

e
− dk(oi,oj)

2

σ2
k (4)

The values dk(oi, oj) represent the M abstract differential fea-
tures which quantify various aspects of the difference between
objects oi and oj , e.g. spatial distance, color disparity etc. A
popular variation of the Normalized Cut algorithm is the recur-
sive bi-partitioning strategy, where the object set is always split
into two parts which are then recursively bi-partitioned until a
stopping criterion is met. Usually, a stopping criterion based on a
threshold for the Normalized Cut value is used.

2.4.2 Differential features for merging In order to be able
to model the concept of two segments belonging to the same or
different stems, we introduce several groups of features.

Starting point and direction. This group of features concerns
the distance between starting points and headings within the seg-
ment pair (si, sj). Let pS,k, pE,k denote respectively the start
point and end point of segment sk. Then, we define the unit di-
rection vector of segment sk as vk =

pE,k−pS,k
||pE,k−pS,k||2 . To achieve

invariance with respect to choosing the start and end points, we
make the direction vector vi assume the sign which minimizes
the norm of the difference in heading ∆vi,j = vi − vj . The el-
ements of ∆vi,j constitute our first 3 features. The last feature
in this group corresponds to the Euclidean distance between the
starting points of the direction-aligned segments. It is defined as
min(||qi − qj ||2, ||ri − rj ||2), where qi and ri are respectively
the start and end points of segment si according to the direction
vector vi.

Spatial intersection. As already noted (Sec. 2.2), we can re-
gard segments as the axes of fixed-radius cylinders. We make use
of this perspective and define a differential feature based on the
ratio of the spatial intersection volume of the two cylinders and
the volume of one cylinder. Note that since the cylinders have
equal lengths and radii, this ratio is the same for both of them.
Analytically calculating this intersection volume is rather com-
plex, therefore we turn to a Monte Carlo-type simulation. For-
mally, let C1, C2 denote two cylinders with length l and radius
r and define q as the intersection volume ratio between C1 and
C2. If we uniformly draw a point P from the interior of C1, q is
also the probability that P ∈ C1 ∩ C2. Let X1, X2, . . . , XN be
binary random variables representing N uniform draws of points
P1, P2, . . . , PN from C1. Each of the Xi variables assumes a
value of 1 if Pi ∈ C1 ∩ C2, otherwise it has a value of 0. We
now see that the X1, X2, . . . , XN are independent, identically
distributed Bernoulli variables with probability of success q. We

use the maximum likelihood estimator q̂ =
∑N
i=1Xi
N

to estimate

q. Note that because E(
∑N
i=1Xi
N

) = 1
N
Nq = q, the estimator

q̂ is also unbiased. To retain the convention of distance between
segments, we define the spatial intersection feature value as 1− q̂.
It attains the minimum value of 0 when the two cylinders overlap
completely, and the maximum value of 1 if there is no overlap at
all. Fig. 2 shows the concept of the intersection volume feature.

Distance along axis. The final group of features is meant to ac-
curately describe the spatial relationship between two segments.
For this purpose, we define the asymmetric distance profile PD of
two segments s1, s2 relative to s1. The profile PD(s1, s2) con-
sists of a series of measurements of the distance between the seg-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-111-2014 113

Figure 2: Estimating the cylinder intersection ratio.

ments along equally spaced points on s1 (see Fig.3). The result-
ing descriptor is a concatenation of PD(s1, s2) and PD(s2, s1).
To make our descriptor symmetric, we set the order of concate-
nation based on which segment in the pair has the starting point
with the smallest x, y and z coordinate (tie breaking in this order).

Figure 3: Distance profile for a pair of segments.

2.5 Learning the similarity function

Before calculating the object similarity matrix, it is necessary do
define the feature weights σi (Eq. 4). This is usually done us-
ing trial and error. Another, more systematic approach relies on
discretizing the weights and performing a grid search with re-
spect to some measure of quality of the resulting Normalized Cut
segmentation. Such an approach can be extremely computation-
ally expensive, since for every combination of weights the entire
segmentation must be calculated from scratch. Also, the number
of weight combinations increases exponentially with the number
of features (or feature groups), rendering this method intractable
for large problems. For these reasons, we propose an alternative
approach where the similarity is learned from external training
data. Although there have been attempts to directly learn the ob-
ject similarity matrix as part of the Normalized Cut optimization
objective (Bach and Jordan, 2003), we take a different route and
approximate this task with the one of training a probabilistic clas-
sifier which for any pair of segments labels them as belonging to
the same or different stems. Our hypothesis is that classifiers
which attain a high binary classification rate will also produce
high quality segmentations as similarity functions for Normal-
ized Cut. In the rest of this section, we show that manipulating
the weights σi is equivalent to implicitly specifying a General-
ized Linear Model classifier (Sec. 2.5.2). We also address the
issue of obtaining the aforementioned ’external training data’ for
our application of fallen tree detection (Sec. 2.5.3). We show how
complex scenarios with multiple overlapping lying stems can be
generated by means of simulation. Our classifier is then trained
on the simulated data.

2.5.1 Generalized Linear Models Generalized Linear Mod-
els are a regression technique which generalizes ordinary linear
regression for certain cases where its assumptions do not hold.
In particular, consider a regression task on N predictor variables
X1, X2, . . . , XN with a response variable Y . The task is to esti-
mate the expectation of Y conditioned on the predictor variables
E(Y |X1, X2, . . . , XN). In a GLM, we assume the following re-
lationship between the conditional mean µ of the distribution of
Y and the linear regression sum of the predictor variables:

g(µ(X)) = θ0 + θX (5)

In the above, g is called the link function. The vector θ represents
the linear regression coefficients, and θ0 is the intercept. In order
to define a concrete GLM, we need to specify the link function as
well as the distribution which generates the response variable.

Binary Logistic Regression. Consider a regression task where
the response variable Y is binary. This corresponds to the occur-
rence of some event, or the lack thereof. Such a binary random
variable has a Bernoulli distribution with p probability of suc-
cess (the event occurring). If we encode a success in a single
trial as ’1’ and a failure as ’0’, then p is also the mean of Y :
E(Y) = 1∗p+ 0∗ (1−p) = p. Define the logistic function and
its inverse (logit):

flog(z) =
1

1 + e−z
, f−1
log (µ) = glogit(µ) = ln

µ

1− µ (6)

The logistic function maps the real line onto the interval (0; 1),
giving a probability interpretation to the regression sum. We thus
arrive at the binary logistic model (compare to Eq. 5):

glogit(µ(X)) = ln
µ(X)

1− µ(X)
= θ0 + θX (7)

Fitting Binary GLMs. Fitting a binary GLM involves finding
the weights θ which maximize the log-likelihood over the training
data (Xi, Yi)i=1..N :

lθ =

N∑
i=1

lnP (Y = Yi|Xi; θ) (8)

For a binary GLM, the conditional mean is equal to the probabil-
ity of success. Therefore:

P (Y = 1|X; θ) = µ(X), P (Y = 0|X; θ) = 1− µ(X) (9)

From Eq. 5 we have that µ(X) = g−1(θ0 + θX) Finally, by
defining h(X) = g−1(θ0 + θX) we can rewrite Eq. 8 as:

lθ =

N∑
i=1

Yiln[h(Xi)] + (1− Yi)ln[1− h(Xi)] (10)

By plugging a specific link function into Eq. 10, we obtain the
concrete optimization objective. Optimization (with respect to
the weights θ) is usually carried out using Newton’s method.

2.5.2 Similarity function as a GLM Shi and Malik (2000)
note that the similarity function for a pair of primitive elements
should reflect the likelihood that the two elements are part of the
same cluster. Indeed, we may regard this as a regression task
on the set of all object pairs OP = O × O with the differential
features di,j (Sec. 2.4.1):

{di,j ≡ [d1(oi, oj), . . . , dM (oi, oj)]
T }i=1..N,j=1..N (11)

For an element oi,j ∈ OP , we want to estimate the posterior
probability that objects oi and oj belong to the same cluster Ax,
conditioned on the differential features:

fs(oi,j) ≈ P (oi ∈ Ax ∧ oj ∈ Ax|di,j) (12)

The response variable Y is therefore binary. We can encode the
event that the objects oi and oj belong to the same cluster with
value 1 and the opposite event with value 0. Then, fs approxi-
mates P (Y = 1|di,j) = µY (di,j), the conditional mean of Y .

Now we take a closer look at the canonical Normalized Cut sim-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-111-2014 114

ilarity function. We can rewrite Eq. 4 as:

fs(oi, oj) = e−
∑M
k=1 θkd

2
i,j,k (13)

where θ ≡ [1
σ2
1
, 1
σ2
2
, . . . , 1

σ2
M

]T . Further, if we define ri,j ≡
[d2
i,j,1, d

2
i,j,2, . . . , d

2
i,j,M]T and set θ0 = 0, we can achieve the

following concise form:

fs(oi, oj) = e−(θ0+θT ri,j) (14)

Note that because all the values θi, ri,j are nonnegative, we can
guarantee that the sum θ0 + θT ri,j is also nonnegative. This
coincides with the fact that the function h(z) = e−z maps the
interval [0;∞) onto the interval (0; 1], which corresponds to valid
probability values. We can rewrite Eq. 14 as:

−ln[fs(oi, oj)] = −ln[µY (ri,j)] = θ0 + θT ri,j (15)

Comparing with Eq. 5, we immediately see that Eq. 15 specifies
a Generalized Linear Model with a link function g(µ) = −ln(µ)
on the squared differential features. The model for generating
the response variable is the Bernoulli distribution. This entire
derivation shows that whenever we define a set of weights σi for
the Normalized Cut similarity function, we are implicitly defining
a probabilistic regression model. This could be interpreted as
a theoretical justification for Eq. 4, but also as an explanation
why it performs so well in practice. Throughout this paper, we
will refer to the GLM defined by Eq. 15 as negative exponential
regression.

Optimizing the model. Since negative exponential regression
is a binary GLM, we can apply the mathematical apparatus de-
scribed in Section 2.5.1 in order to optimize the model on a train-
ing set. We could simply plug in the inverse of the link function
g(µ) = −ln(µ) into Eq. 10 and use any numerical optimization
technique to obtain the maximum likelihood solution. However,
due to how our GLM is formulated, we would have to include
nonnegativity constraints for every weight θ, making the opti-
mization problem harder than necessary. Therefore, we decided
to slightly reformulate Eq. 14 to allow for negative weights:

fs′(r) = e−|θ0+θT r| (16)

Now we can find the maximum likelihood weights by solving an
unconstrained optimization problem. To do so, we apply a vari-
ation of Newton’s method. Assume θ′ = [θ0, θ1, . . . , θM]T and
r′i = [1, ri,1, . . . , ri,M]T . Plugging fs′ into Eq. 10 (substituting
h) and differentiating twice with respect to the weights θ′ yields:

∇l(θ′) =
∂l(θ′)
∂θ′

=

N∑
i=1

r′i
sgn(fs′(ri))(fs′(ri)− Yi)

1− fs′(ri) (17)

∇2l(θ′) =
∂2l(θ′)
∂θ′∂θ′T

=

N∑
i=1

r′ir
′T
i ρ(ri)[

Yi
1− fs′(ri) − ρ(ri)− 1]

(18)
In the above, the function ρ(x) =

fs′ (x)
1−fs′ (x)

, and sgn(x) refers to
the sign function. The optimization is carried out in an iterative
fashion starting from an initial guess θ′0 and updating the solution
using the Newton ascent direction pi+1 = −[∇2l(θ′i)]

−1∇l(θ′i):

θ′i+1 = θ′i + αi+1pi+1 (19)

We apply a backtracking line search on the step lengths αi to
ensure they satisfy the Armijo condition (sufficient increase in
the function value):

l(θ′i + αi+1pi+1) ≥ l(θ′i) + c1αi+1∇l(θ′i)T pi+1 (20)

where c1 is a small positive constant (we used a value of 0.001).
The result of this optimization is the regression model given by
the weights θi.

2.5.3 Simulating fallen stem scenarios We set up a virtual
fallen stem generation pipeline inspired by a similar approach
due to Enzweiler and Gavrila (2008) applied to virtual pedes-
trian appearance synthesis in raster images. The goal is for the
classifier to learn the decision boundary between pairs of seg-
ments which belong to the same stem versus pairs which belong
to different stems. As input for the simulation, a set of sample
fallen tree prototypes is required, in the form of their individual
point subsets. We then calculate an approximate skeleton for each

Figure 4: Cylinder-based representation of sample stem.

prototype based on least-squares line fitting. From the skeleton, a
cylindrical representation can be computed (Fig.4). The cylinders
define the physical behavior of the fallen stems in the simulation.
We can now repeatedly randomly pick a sample tree and drop it
from a certain height onto the ground plane. The force of gravity
pulls the stem towards the ground, while the cylinder rigidity con-
straints prevent the stems from passing through each other (Fig.
5(a), 5(b)). Thus we can obtain rather complex scenarios with
multiple interlaced stems lying on the ground in several layers.
The translations and orientations defined by the final positions
of the individual trees can then be applied to the point sets and
segments associated with the corresponding tree prototypes (Fig.
5(c)). To generate new positive examples (segments belonging to
the same stems), we recalculate the representative segments (see
Section 2.3) for each tree copy, which can lead to new spatial con-
figurations of segment pairs. The negative examples are defined
by multiple stems lying in close proximity to each other. The set
of segments is completely labeled (since the segment member-
ship in the individual trees is known by construction) and it can
be regarded as the training set in a supervised learning setting.
We now specify the top-level simulation loop (Alg. 1): The al-

Algorithm 1 Learning segment pair classifier
1: procedure LEARNCLASSIFIER(pThr)
2: trainSet← createSampleScenario()
3: classifier← trainClassifier(trainSet)
4: for i = 1..Niter do
5: auxSet← createSampleScenario()
6: for o ∈ auxSet do
7: p(o)← getContinuousDecision(classifier,o)
8: if p(o) > pThr ∧ p(o) < 1− pThr then
9: trainSet← trainSet ∪ o

10: classifier← trainClassifier(trainSet)

gorithm initializes the training set with a random stem scenario
and trains the classifier c on it. Then, the training set is itera-
tively augmented. In each iteration, a new stem scenario is gener-
ated and its elements are classified by c. Note that we obtain not
only the class label, but a continuous decision value normalized
on the interval [0; 1]. Elements whose continuous decision lies
far enough (more than pThr) from the interval bounds 0 and 1
are considered to lie in the classifier’s uncertainty region and are
added to the training set, since they contain relevant information
about the decision boundary. The classifier c is then retrained on
the augmented training set and the iteration continues. We re-
peat the loop a predefined number of iterations. This approach
can be viewed as a simple implementation of the active learn-
ing paradigm, since we are trying to actively guide the learning

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-111-2014 115

(a) (b) (c)

Figure 5: Simulating fallen stems. (a) and (b) depict randomly generated scenarios, (c) shows the ALS points transformed according to
the rotations and translations of the stems in scenario (b).

process by selecting the most informative (most uncertain) ex-
emplars. The described strategy can use any classifier which is
capable of supplying a continuous decision value as its output.
The result of Alg. 1 is the probabilistic classifier c, which can
be applied as the similarity function for Normalized Cut either
directly or after undergoing a power transformation (Sec. 2.5.4).

2.5.4 Power transformations. During our initial experiments
with setting the weights σi in Eq. 4, we noticed that similarity
functions with values more closely clustered around 0 resulted in
better segmentations. To model this, we introduce a power trans-
formation u(x) = xz, z > 1 of the similarity function. Since
the similarity values lie in [0; 1], the transformed values will also
be contained in this interval. Also, by forcing the exponent z
to be greater than one, the power transformation shifts all val-
ues (except 0 and 1) closer to zero. Note that this transformation
changes the relative distances between elements, but not the or-
dering of elements. In practice, we use u(x) as a post-processing
function for the output of the classifier c described in Sec. 2.5.3.

3. EXPERIMENTS

3.1 Material

The developed approach was tested on two sample plots located
in the Bavarian Forest National Park (49◦3′19′′ N, 13◦12′9′′ E),
which is situated in South-Eastern Germany along the border to
the Czech Republic. From 1988 to 2010, a total of 5800 ha
of the Norway spruce stands died off because of a bark beetle
(Ips typographus) infestation (Lausch et al., 2013). The dead
trees were not removed from the area and form the basis for
the study. The airborne full waveform data were acquired us-
ing a Riegl LMS-Q560 scanner in April 2011 in a leaf-off con-
dition with a nominal point density of 30 points/m2. The verti-
cal sampling distance was 15 cm, the pulse width at half maxi-
mum reached 4 ns and the laser wavelength was 1550 nm. The
flying altitude of 400 m resulted in a footprint size of 20 cm.
The collected full waveforms were decomposed according to a
mixture-of-Gaussians model (Reitberger et al., 2008) to obtain a
3D point cloud. The plot characteristics are summarized in Table
1, whereas the point cloud of Plot B is depicted in Fig.6.

Plot Size
[ha]

Trees/ha Fallen
stems/ha

Deciduous
[%]

Overstory
cover [%]

A 1.2 230 200 28 20
B 0.86 210 150 45 65

Table 1: Properties of sample plots

3.2 Reference data

To create reference data for our merging algorithm, we first gen-
erated a set of probable stem segments according to the process-
ing pipeline described in Sec. 2.2. We then selected the segments

Figure 6: Point cloud of Plot B colored by height over DTM.

actually corresponding to stems in the ALS data and manually la-
beled them into groups forming individual trees. The total num-
ber of stems obtained in this manner was 235 and 196 respec-
tively for Plot A and Plot B.

3.3 Evaluation strategy

In order to be able to make quantitative statements about the qual-
ity of a segmentation produced by Normalized Cut in relation to
a reference clustering, we need a way to compare two clusterings
of the same set of objects. Designing such methods and studying
their properties is an active area of research. For a comprehen-
sive review, see Albatineh et al. (2006). For this study, we chose
two methods based on counting pairwise relationships between
objects: the adjusted Rand index and the Jaccard index. They are
both normalized on the interval [0; 1] with the value of 1 indicat-
ing that the clusterings are identical, and a value of 0 representing
total dissimilarity.

3.4 Detailed experiments

We designed and conducted three groups of experiments to verify
several hypotheses proposed in this work. As a baseline method
for all experiments, we used a coarse grid search on the space de-
fined by four weights {σi}i=1..4 discretized on the set [0; 1] into
5 equally spaced values. This yields a total of 54 = 625 con-
figurations per plot. The four weights correspond to the feature
groups: starting point distance, difference in direction, spatial in-
tersection, distance profile (Sec. 2.4). For each weight configura-
tion (for both plots), we recreated the similarity matrix according
to Eq. 4 and calculated the Normalized Cut segmentation. We
recorded the adjusted Rand index and Jaccard index with respect
to the manual reference segmentation and the number of clusters
(fallen stems) found.

3.4.1 Similarity function as classifier This group of experi-
ments was supposed to answer the question whether a similarity
function’s performance as a binary classifier is correlated with the
quality of the segmentation it produces (Sec. 2.5). For each plot

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-111-2014 116

we trained three distinct classifiers on the entire data and used
them as the similarity function for normalized cut after apply-
ing the power transformation (2.5.4). To eliminate the influence
of the stopping criterion, we used a ’perfect’ stopping criterion
which had knowledge of the actual segment labels and thus was
able to terminate the recursive bi-partitioning once all segments
in a cluster had the same label.

3.4.2 Similarity function from virtual data In this group of
experiments, we investigated the quality of the similarity func-
tion learned from the virtually generated data (Sec. 2.5.3). To
obtain sample fallen tree prototypes for the simulation, we man-
ually segmented ca. 180 stems from ALS data. We applied the
learned function to the two test plots and compared the results
against the grid search. We also use the ’perfect’ stopping crite-
rion for this category.

3.4.3 Segmentation with real stopping criterion Finally, we
studied the effects of applying a ’real’ stopping criterion to the
Normalized Cut segmentation based on the similarity function
obtained from the virtually generated data. We used a threshold
on the Normalized Cut value combined with an oriented bound-
ing box condition as the stopping criterion.

4. RESULTS AND DISCUSSION

In this section, we present the quantitative results of the exper-
iments described in Section 3.4. We use the following abbrevi-
ations for the classifiers: SVM - support vector machine, LR -
logistic regression, NER - negative exponential regression, GS -
the baseline grid search. The two clustering similarity measures
are referred to as: ARI - adjusted Rand index, JI - Jaccard index.

4.1 Similarity function as classifier

We used the manually labeled reference data to train three classi-
fiers (Section 2.5): an SVM (in regression mode to obtain a con-
tinuous decision value), the NER as well as the LR model. For
each plot, all of the segment pairs were used as training data since
the GS was also performed with respect to the entire segment set.
The exponent of the power transformation was found using a line
search. The results are summarized in Table 3, whereas Table
2 characterizes the best solutions found by the baseline GS. For
Plot B, all three classifiers are able to beat the best GS weights.
Although the LR and NER models are slightly inferior to the best
solution found by GS on Plot A, it should be noted that both of
them are still significantly better than choosing random weights
(compare to mean value in Tab. 2). Furthermore, the LR and NER
models had respectively a 99.5% and 93.2% chance of being bet-
ter then a randomly drawn weight configuration on the grid. The
results from this section show that there is a correlation between
classification accuracy and the segmentation quality as measured
by the both ARI and the JI. Moreover, the segmentation quality
obtained with the classifiers is similar to the best results obtained
with GS. Together, these two facts support the hypothesis put for-
ward in Sec. 2.5 about learning the similarity function via train-
ing a classifier. Also, the quality of the baseline GS results is
perhaps surprisingly high, which can explain the widespread use
of the Normalized Cut algorithm without a formal procedure for
specifying the attribute weights.

Plot maxARI µARI σARI maxJI µJI σJI

A 0.948 0.912 0.02 0.903 0.840 0.03
B 0.982 0.872 0.06 0.965 0.779 0.10

Table 2: Grid search - results

Classifier Classification
accuracy

ARI JI Num. trees

Plot A
SVM 0.954 0.956 0.917 277
LR 0.931 0.944 0.894 270
NER 0.919 0.934 0.877 310

Plot B
SVM 0.959 0.994 0.989 200
LR 0.930 0.990 0.980 203
NER 0.919 0.984 0.969 210

Table 3: Classifier with power transformation - results

4.2 Similarity function from virtual data

We now discuss the quality of the similarity function trained on
the simulated virtual stem data (Sec. 2.5.3). We carried out the
learning procedure (Alg. 1) for two models, the LR and the NER.
The power transformation was also applied with the exponent
found using a linear search procedure. For the LR model, the
test classification accuracy was 92.8% and 92.5% respectively on
Plot A and Plot B, whereas the NER model attained a value of
91.8% on both plots. We applied each model to both plots ob-
taining the Rand and Jaccard index values presented in Table 4.

Model Exponent z ARI JI Num. trees
Plot A

LR 8 0.956 0.917 272
NER 2.5 0.957 0.918 277

Plot B
LR 13.5 0.962 0.927 216
NER 2.5 0.982 0.965 211

Table 4: Segmentation quality - learning from virtual samples

The NER model was able to outperform the GS baseline for both
plots, despite the GS’s advantage of having access to the test data.
This confirms the suitability of this similarity model for use with
Normalized Cut. For Plot A, LR performs almost equally as well,
while exhibiting a somewhat weaker performance on Plot B. The
fact that the single NER model leads to such strong segmentation
quality on both test plots supports the hypothesis that the pro-
posed simulation is accurate enough so that the learned classifier
can generalize well. Furthermore, it is also an argument in favor
of the ideas described in Sec. 2.5, i.e. learning the similarity func-
tion reduced to learning the classifier. One small weakness of our
method is the necessity to perform the line search for the optimal
exponent in the power function on test data. We envision making
this a part of the learning procedure in the hope that the exponent
learned from training data will also generalize well across plots.
The equality of the optimal exponents for NER bolsters this hope.

4.3 Segmentation with real stopping criterion

As described in Sec. 3.4, for the first two experiment groups we
used an unrealistic stopping criterion which knew the actual seg-
ment labels. We now apply a ’real’ stopping criterion using a
threshold on the Normalized Cut value to investigate how much
the segmentation quality will drop. A line search was performed
on the threshold values to find the one maximizing the adjusted
Rand index for each plot, for the NER and LR models. The NER
model experienced a drop in the ARI to values of 0.926 and 0.962
respectively on Plot A and Plot B. The LR model seemed to be
less affected, attaining ARI values of 0.951 and 0.952. While
there is some room for improvement in the stopping criterion, the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-111-2014 117

Figure 7: Segmentation result - Plot A.

Figure 8: Segmentation result - Plot B.

overall performance is still good enough for a practical applica-
tion. The segmentation results are depicted in Figures 7 and 8.

5. CONCLUSIONS

In this work we have presented an integrated method for detect-
ing fallen stems from ALS point clouds. A set of differential fea-
tures has been proposed which can be the basis for merging stem
segments into entire stems using the Normalized Cut algorithm.
We have then shown that manipulating the attribute weights in
the Normalized Cut similarity function is equivalent to specify-
ing a regression model, which gave rise to the idea of reducing the
problem of learning the similarity function from a reference seg-
mentation to training a binary classifier on the labeled data. Our
results show that such an approximation can yield high-quality
segmentation results, while saving vast amounts of computational
effort necessary to optimize the weights in a grid search scheme.
Finally, we have set up a simulation where virtual fallen stems
are randomly generated to produce complex scenarios, which are
then used to train a similarity function. Interestingly, this similar-
ity function trained on synthesized data is able to outperform the
grid search methods (which have access to the real data), a result
that attests to its generalization capability. This would allow us to
perform the learning only once and reuse its output on multiple
plots. We believe that the proposed methodology can be utilized
for other applications in remote sensing which require learning
the concept of similarity between object parts that belong to a
greater whole. As a future step, we would like to validate our
entire processing pipeline on data for which ground truth is avail-
able in order to obtain estimates of how reliably our method can
detect single fallen trees.

REFERENCES

Albatineh, A. N., Niewiadomska-Bugaj, M. and Mihalko, D.,
2006. On similarity indices and correction for chance agreement.
J. Classif., 23(2), pp. 301–313.
Bach, F. R. and Jordan, M. I., 2003. Learning spectral clustering.
In: Adv. Neur. In., Vol. 16.
Blanchard, S. D., Jakubowski, M. K. and Kelly, M., 2011. Object-
Based Image Analysis of Downed Logs in Disturbed Forested
Landscapes Using Lidar. Remote Sensing, 3(12), pp. 2420–2439.
Elmqvist, M., 2002. Ground surface estimation from airborne
laser scanner data using active shape models. In: Photogram-
metric Computer Vision-ISPRS Commission III Symposium, Vol.
XXXIV, Part A, pp. 114–118.
Enzweiler, M. and Gavrila, D., 2008. A mixed generative-
discriminative framework for pedestrian classification. In: Com-
puter Vision and Pattern Recognition, pp. 1–8.
Freedman, B., Zelazny, V., Beaudette, D., Fleming, T., Johnson,
G., Flemming, S., Gerrow, J. S., Forbes, G. and Woodley, S.,
1996. Biodiversity implications of changes in the quantity of dead
organic matter in managed forests. Environ. Rev., 4(3), pp. 238–
265.
Frome, A., Huber, D., Kolluri, R., Bülow, T. and Malik, J., 2004.
Recognizing Objects in Range Data Using Regional Point De-
scriptors. Computer Vision - ECCV 2004, 3023, pp. 224–237.
Heurich, M., 2008. Automatic recognition and measurement of
single trees based on data from airborne laser scanning over the
richly structured natural forests of the Bavarian Forest National
Park. Forest Ecol. Manag., 255, pp. 2416–2433.
Lan, G., DePuy, G. W. and Whitehouse, G. E., 2007. An effective
and simple heuristic for the set covering problem. Eur. J. Oper.
Res., 176, pp. 1387–1403.
Lausch, A., Heurich, M. and Fahse, L., 2013. Spatio-temporal
infestation patterns of Ips typographus (L.) in the Bavarian Forest
National Park, Germany. Ecological Indicators, 31, pp. 73–81.
Lindberg, E., Hollaus, M., Mücke, W., Fransson, J. E. S. and
Pfeifer, N., 2013. Detection of lying tree stems from airborne
laser scanning data using a line template matching algorithm. In:
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, Vol. II-5, Part W2, pp. 169–174.
Muecke, W., Deak, B., Schroiff, A., Hollaus, M. and Pfeifer,
N., 2013. Detection of fallen trees in forested areas using small
footprint airborne laser scanning data. Can. J. Remote Sens., 39,
pp. S32–S40.
Polewski, P., Yao, W., Heurich, M., Krzystek, P. and Stilla, U.,
2014. Detection of fallen trees in ALS point clouds of a temperate
forest by combining point/primitive-level shape descriptors. In:
Gemeinsame Tagung 2014 der DGfK, der DGPF, der GfGI und
des GiN. DGPF Tagungsband, Vol. 23.
Reitberger, J., Krzystek, P. and Stilla, U., 2008. Analysis of full
waveform LIDAR data for the classification of deciduous and
coniferous trees. Int. J. Remote Sens., 29, pp. 1407–1431.
Rusu, R., Marton, Z., Blodow, N. and Beetz, M., 2008. Learn-
ing informative point classes for the acquisition of object model
maps. In: 10th International Conference on Control, Automation,
Robotics and Vision, pp. 643–650.
Shi, J. and Malik, J., 2000. Normalized cuts and image segmen-
tation. IEEE T. Pattern Anal., 22(8), pp. 888–905.
Weaver, J. K., Kenefic, L. S., Seymour, R. S. and Brissette, J. C.,
2009. Decaying wood and tree regeneration in the Acadian Forest
of Maine, USA. Forest Ecol. Manag., 257, pp. 1623–1628.
Woodall, C., Heath, L. and Smith, J., 2008. National invento-
ries of down and dead woody material forest carbon stocks in
the United States: Challenges and opportunities. Forest Ecol.
Manag., 256(3), pp. 221–228.
Yao, W., Krzystek, P. and Heurich, M., 2012. Identifying Stand-
ing Dead Trees in Forest Areas Based on 3D Single Tree Detec-
tion From Full Waveform Lidar Data. In: ISPRS Annals of the
Protogrammetry, Remote Sensing and Spatial Information Sci-
ences, Vol. I-7, pp. 359–364.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-3-111-2014 118

