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Detection of fallen trees in ALS point clouds of a temperate 
forest by combining point/primitive-level shape descriptors 

PRZEMYSLAW POLEWSKI1, WEI YAO2, MARCO HEURICH3, PETER KRZYSTEK4 & UWE STILLA5 

Abstract: In this work, we show how local 3D shape descriptors can be used to efficiently 
detect segments of fallen trees in LiDAR point clouds. Our approach takes advantage of two 
types of highly expressive classes of shape features known from computer vision: Point 
Feature Histograms (PFH) at the single point level as well as 3D Shape Contexts (SC) at the 
primitive (segment) level. The low-level point information forms a basis for determining 
potential segment candidates, which are then classified by a binary support vector machine 
(SVM). Based on manual labeling of points, we tested our method on two sample plots from 
the Bavarian Forest National Park acquired using full waveform LiDAR data with a point 
density of 30 pts/m2. The results, obtained using 5-fold validation, show that the studied 
shape descriptors have a high discriminative capability for the task of detecting fallen tree 
segments, yielding an overall classification accuracy of above 90%. 
 

1 Introduction 

Fallen trees form an important component of forest ecosystems. Aside from supporting 
biodiversity by providing habitat for a wide variety of species (Freedman et al., 1996), they also 
play a key role in forest nutrient cycles (Finér et al., 2003) and facilitate tree regeneration 
(Weaver et al., 2009). Also, since carbon constitutes about 50% of wood by mass, dead wood 
amounts to a significant portion of forest carbon stocks (Woodall et al., 2008). For these reasons, 
qualitative and quantitative information about the spatial distribution of dead wood in forests is 
important for national government agencies as well as other organizations interested in 
monitoring biodiversity, carbon sequestration and wildlife habitats. 

Airborne LiDAR has been shown to be a valuable tool in assessing various forest parameters at 
different scales. In previous studies, LiDAR data were used to efficiently and accurately derive 
parameters such as leaf area index (LAI) (Morsdorf et al., 2006), forest land cover characteristics 
(Antonarakis et al., 2008) and 3D vegetation structure (Lindberg et al., 2012) at the plot level.  
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There have also been many contributions dealing with extracting individual trees from the 
LiDAR data. The segmentations of the point clouds were then used for tree species classification 
(Reitberger et al., 2008; Heurich, 2008), detection of standing dead trees (Yao et al., 2012a) as 
well as estimation of tree parameters such as stem volume and DBH (Yao et al., 2012b) or 
biomass (Kankare et al., 2013). In this work, we focus on detecting 3D segments of fallen trees 
directly from LiDAR point clouds.  
 
Due to the importance of obtaining good estimates of dead wood distributions in forests on the 
one hand and the high cost of laborious field surveys on the other, the potential in applying 
remote sensing methods to this task has been noticed by the research community. One of the first 
studies on this subject is from Blanchard et al. (2011). This approach relies on rasterizing the 
point cloud with respect to various point statistics as well as generating a vector thematic layer 
for object based image analysis to detect downed stems. The authors observe that their method 
has some difficulty in more complex scenarios like proximity of the stems to ground vegetation 
as well as large clusters of logs. Also, the entire processing pipeline relies on multiple user-
defined parameters, making it more cumbersome to apply for an entirely new plot. Mücke et al. 
(2013) also perform the classification on a vectorized layer derived from the binarized point 
cloud filtered based on distance to the DTM. Additionally, to remove ground vegetation and 
shrubs, a pulse echo width filter is applied. The authors show that it is possible to reliably detect 
stems which distinguish themselves well upon the DTM. However, they note that applying the 
pulse echo width filter together with the vectorized object shape features is not always enough to 
separate stems from densely intertwined ground vegetation and piles of twigs. This study does 
not address the more complex scenario of multiple overlapping stems. In a recent study 
(Lindberg et al., 2013), the authors perform line template matching directly in the point cloud, 
followed by height homogeneity analysis on rasterized versions of the found lines. An attempt to 
model the local neighborhood of stem candidates is made using a height statistic on points lying 
within a fixed radius. Upon validation on a complex test site, they find that although detecting 
the lines directly in 3D is advantageous, the method sometimes fails in the presence of large 
clusters of overlapping stems, and can also report false positives in dense vegetation, ditches or 
road fragments. Also, a multitude of user-defined thresholds restricts its application for other 
areas. 
 
To mitigate the aforementioned deficiencies, we propose a new method for detecting stem 
segments directly in the point cloud, without any information loss resulting from a rasterization 
step. We argue that the 3D information can be leveraged using robust shape descriptors 
originating in the computer vision and robotics communities: Shape Contexts and Point Feature 
Histograms. We believe that explicitly modeling the shape of the stem segments and their 
immediate neighborhood can improve detection capabilities in complex scenarios like piles of 
overlapping logs and dense ground vegetation or regeneration. We show how to automatically 
learn the shape characteristics of stem points and segments, and use these learned characteristics 
to produce a high-quality classifier. The proposed method is designed to be an intermediate step 
in a comprehensive procedure for detecting entire fallen trees, since its focus is the detection of 
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parts of stems only. In this work, we do not address the problem of selecting an optimal set of 
non-overlapping segments or the merging of segments. 
 
This paper is structured as follows. In Section 2, we describe the details of our approach. In 
Section 3, a description of the study area within the Bavarian Forest National Park is given. 
Section 4 presents the quantitative classification results. We conclude with pointing out some 
interesting research directions resulting from this study in Section 5. 

2 Proposed method 

We develop an automated approach to fallen tree stem detection by combining single point 
features with stem segment-level features in a mixed probabilistic-discrete classification 
framework. The processing pipeline consists of several steps, outlined in Fig.1. Our method 
accepts a set of 3D point coordinates (unstructured point cloud) as input and produces a set of 
possibly overlapping 3D line segments (corresponding to parts of fallen tree stems) as output. 
 
 
 
 
 
 
 
Fig. 1: Outline of proposed method 

2.1 DTM generation and filtering 
Since objects of the target class (fallen trees) are located in close proximity to the ground, 
obtaining an accurate DTM is crucial to the overall success of the method. For this purpose, we 
adapt a DTM calculation method based on Active Shape Models (ASM) reported in (Elmqvist, 
2002). In this setting, the terrain model is cast as an elevation function defined over a discrete, 
evenly spaced grid. We can associate a surface energy with each such elevation function. The 
energy functional is then defined as: 

)()()()( int pext
p

ppimg zEzEzEzE ++= ∑   (1) 

The summing is done over the discrete grid points. In the above, zp is the model height of the 
terrain at point p. Eimg denotes the image energy and is usually defined as the sum of distances 
between the measured heights and the model at every grid point (w.r.t a chosen metric). Eint is 
the internal energy of the surface. It introduces elasticity/rigidity constraints into the model, 
thereby controlling the surface’s smoothness. Finally, Eext can be used to model additional, 
external constraints. We do not use external energy in this work. 

In this study, the pipeline for generating the DTM is as follows. We start by performing a 
Gaussian decomposition of the input LiDAR waveforms (Reitberger et al., 2008) and retain 
single and last pulse points only. We then partition the area defined by the 2D bounding box of 
the input points into square cells of width 10 cm. The cell centers correspond to the unknowns 
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{zp} in eq. (1). For every cell ck, we define the measured height as the minimum height of all 
points p belonging to ck: pCpk hH

k∈
= min . Finally, we minimize the functional (1) to obtain the 

DTM. Once the DTM has been calculated, we proceed to retain only points lying within an 
interval of 15 to 100 cm over the ground. 

2.2 Fallen tree point classification 
After the DTM filtering from step 1, usually points from several different object classes are still 
contained in the input data. Depending on the characteristics of the forest stand, this can be 
shrubs, ground vegetation, regenerations, standing/fallen tree stems and others. The goal of this 
step is to perform a soft binary classification of the filtered points into the classes ‘fallen tree 
segment’ and ‘others’. The classification is soft in the sense that only a pseudo-probability value 
is obtained for each point, estimating its likelihood of belonging to the fallen tree stem class:  

)|''()( kkkstem xstemyPpp =≡    (2) 

In eq. (2), the value pstem can be understood as the conditional probability of point pk being a 
fallen stem point given the vector xk containing the values of its features (independent variables). 

There are several classification methods which provide a pseudo-probability estimate, e.g. 
probabilistic SVMs (Chang & Lin, 2011), random forests (Breiman, 2001) and algorithms 
employing Stochastic Gradient Boosting (Friedman, 2002). We use an R implementation of Real 
AdaBoost based on classification trees, made available through the ada package (Culp et al., 
2007). A sample stem probability map is depicted in Fig. 2. 

 

 
Fig. 2. Fallen tree stem probability map. Color bar encodes probabilities. Low probability points are most 
likely associated with ground vegetation and forest regeneration. 
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As features for classification, we use Point Feature Histograms (PFH) (Rusu et al., 2008). This is 
a local shape descriptor introduced in the robotics community for the purpose of distinguishing 
between different types of surface classes based on their shape (flat, cylindrical, spherical etc.). It 
attempts to capture the geometric properties of a surface patch centered on the target point by 
modeling the relationships between surface normals on that patch. Specifically, the PFH 
calculation algorithm first estimates normal vectors for each point within a predefined radius 
around the target point. The estimation is carried out based on the analysis of the eigenvectors 
and eigenvalues of the covariance matrix formed by points within the neighborhood. Then, for 
every pair of normals a Darboux frame is defined and the angular differences between the 
normals are recorded. Finally, a multi-dimensional histogram is calculated on the stored 
differences, normalized by the total number of point pairs. 

Some particularly appealing properties of the PFH are its invariance to 3D translation and 
rotation, as well as, to a certain degree, robustness to varying point density and noise. This can 
be attributed to the fact that the PFH captures more information about a point’s neighborhood 
than a single curvature or surface normal estimate.  

We employ the Point Cloud Library implementation of PFH (Rusu & Cousins, 2011) with 5 
value intervals per angular difference. Since there are 3 angular differences per normal vector 
pair, the total dimensionality of the feature vector is 53=125. 

2.3 Segment hypothesis generation 
In this step, the goal is to select probable fallen tree segment hypotheses which will be classified 
in the next stage. We restrict our attention to points whose stem likelihood from the previous step 
is above pthr=0.5. We then exhaustively examine all pairs of such points whose Euclidean 
distance lies below a predefined threshold L=3m. Each such point pair determines a line in 3 
dimensions (Fig. 3). A segment of length L of the line centered at the centroid of the base point 
pair is further considered. A cylindrical volume with a fixed radius r=0.3m around the line 

segment is examined and all points inside the 
cylinder are considered the support of the segment 
hypothesis. Only hypotheses whose support size is 
above a threshold value sthr=20 points are retained 
for further processing. The rationale behind this 
method of generating hypotheses is that for 'good' 
stem segments, there should usually be a line 
connecting two points that lie near the segment's 
main axis. 

Fig. 3. Example stem segments in point cloud 

2.4 Segment classification 
The final stage of our method is designed to combine point-level information obtained from step 
2.2 with segment-level shape information in order to classify the underlying segments into the 
classes ‘good’ and ‘bad’. The ‘good’ class corresponds to segments which are indeed part of a 
fallen stem, whereas the ‘bad’ class represents invalid segments, such as fragments of ground 
vegetation, shrubs etc. We would like the features for classification to capture certain intuitions 
about ‘good’ segments: 1) they consist mostly of high-probability stem points and 2) they are 
sets of points elongated along one direction, surrounded by empty space above and below.  
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To satisfy Requirement 1, we construct a low-dimensional histogram of the fallen tree stem 
probabilities pstem (eq. 2) of points comprising a segment’s support (=FTPH – fallen tree 
probability histogram). Specifically, we divide the allowed probability range [0; 1] into Ndiv=5 
equally spaced bins. The histogram is normalized by the number of points j belonging to the 
segment S (eq. 3). 

divNi
i

FTPHFTPH SfSF ≤≤= 1)}({)( , 
|:|

|)()1(:|
Sjj

ijpiSjjf stemi
FTPH ∈

∆≤≤−∆∧∈
≡ ,

divN
1

≡∆     (3) 

Our strategy for implementing Requirement 2 builds upon another highly expressive shape 
descriptor, known in the computer vision community as the 3D Shape Context (SC) (Frome et 
al., 2004). The original SC is a point-level descriptor which attempts, not unlike the PFH, to 
capture the properties of the target point’s neighborhood. The outline of this method is as 
follows: a sphere centered on the target point p is defined, having its north pole oriented 
according to the estimated surface normal at p. The sphere is divided into bins equally spaced in 
the azimuth and elevation dimensions as well as logarithmically spaced in the radial dimension. 
Each point pk within the sphere contributes only to the bin which it is enclosed by. The 
contribution of pk is inversely proportional to the cube root of the bin’s volume and to the 
estimated point density around pk. The set of accumulated values in each bin forms a feature 
vector whose dimension is equal to the product of the number of azimuth, elevation and radial 
subdivisions of the sphere. 

We adapt the 3D SC to describe the shape of a stem segment (=SSC – segment shape context). 
We make use of the oriented frame of reference which is naturally determined by a line segment 
in 3D. Instead of the original spherical neighborhood, we use a cylinder whose main axis is the 
segment itself. Similar to (Frome et al., 2004), we define 3 dimensions for bin boundaries: the 
evenly spaced angular and axial and the logarithmic radial dimension. The number of angular, 
axial and radial subdivisions is 6, 10 and 3, respectively, for a total of 180 features. Note that if 
we consider the cylinder’s axis as the X axis of a Cartesian coordinate system, the SSC is 
invariant under rotation about any axis parallel to either Y or Z, but not X. This means that two 
symmetrical areas on the stem surface can in general produce different descriptors and thus SSC 
does not intrinsically handle symmetry. This emphasizes the importance of providing training 
data covering the entire range of expected object appearances. 

We employ a standard binary Support Vector Machine based on FTPH and SSC features to 
perform crisp classification of the segments generated in step 2.3. 

3 Experiment 

3.1 Area of study 
The developed approach was tested on two nearby sample plots located in the Bavarian Forest 
National Park (49° 3′ 19″ N, 13° 12′ 9″ E), which is located in South-Eastern Germany along the 
border to the Czech Republic. From 1988 to 2010, a total of 5800 ha of the Norway spruce 
stands died off because of a bark beetle (Ips typographus) infestation (Lausch et al., 2013). The 
dead trees were not removed from the area and form the basis for the study. The airborne full 
waveform data were acquired using a Riegl LMS-Q560 scanner in April 2011 in a leaf-off 
condition with a nominal point density of 30 points/m2. The vertical sampling distance was 15 
cm, the pulse width at half maximum reached 4 ns and the laser wavelength was 1550 nm. The 
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flying altitude of 400 m resulted in a footprint size of 20 cm. The collected full waveforms were 
decomposed according to a mixture-of-Gaussians model (Reitberger et al., 2008) to obtain a 3D 
point cloud. The characteristics of the sample plots are summarized in Table 1. The ALS point 
cloud associated with Plot B is depicted in Fig. 4. 
Table 1: Characteristics of sample plots 

 Time Size [ha] Trees/ha Deciduous 
[%] 

Fallen tree 
[stems/ha] 

Overstory 
cover [%] 

Plot A 2011 1.2 230 28 200 20 

Plot B 2011 0.86 210 45 150 65 

 
Due to the unavailability of field work data or other parameter estimation sources, the plot 
parameters were estimated from the ALS data using visual inspection methods. 

3.2 Experimental setup 
Regarding the point-based classification (Section 2.2), we used Plot B as a basis for generating 
training/test data. For this purpose, we manually labeled the points from this plot as ‘fallen tree 
stem points’ and ‘others’ after performing DTM filtering (as described in Section 2.1). The 
resulting points, numbering 33741, were divided into the train and test sets, with a proportion of 
40% to 60% respectively.  

 

 
Fig. 4. ALS point cloud of Plot B colored by height over ground. Black arrows show fallen tree stems. 
 

Both the training and test sets were quite class-balanced, with the percentage of fallen stem 
points being 51.2% and 51.1% respectively. The classifier (AdaBoosted classification trees, see 
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Section 2.2) trained and tested on Plot B was also used in an unaltered state for processing Plot 
A. The radius for normals estimation and PFH calculation was 50 cm and 80 cm, respectively. 

Both Plot A and Plot B were considered in the segment-based classification (Section 2.4). For 
each plot, the steps described in Sections 2.1 to 2.3 were executed, yielding a set of segment 
candidates. Due to the large number of highly overlapping candidates (several hundred 
thousand), a subset of representative candidates was chosen for each plot. In total, the number of 
segment candidates selected for labeling was 1105 and 558 for Plot A and Plot B, respectively. 
These segments were then manually classified as either ‘good’ or ‘bad’ (see Section 2.4). The 
percentage of ‘good’ segments was 53.0% and 52.5% for Plot A and Plot B, respectively. In 
contrast to the point-based classification scheme, the labeled segments were not partitioned into 
training and test sets. Instead, a 5-fold cross-validation strategy was used. A grid search was 
performed on the SVM parameters γ (kernel parameter) and C (cost of constraint violation) in 
order to find the best performing classifier. 

4 Results and Discussion 

In the following, we define the overall classification accuracy as the ratio of the number of 
correctly classified objects to the total number of objects to classify. The producer’s accuracy for 
a class c, also known as completeness in a binary classification setting, is the ratio of the number 
of true positives (relative to c) to the total number of objects actually belonging to c. The 
consumer’s accuracy for a class c, also known as correctness in a binary classification setting, is 
the ratio of the number of true positives (relative to c) to the number of objects classified as c. 

4.1 Point classification 
Table 2 summarizes the crisp classification performance of points from Plot B as described in 
Section 3.2. It should be noted that our algorithm does not perform a discrete classification, but 
instead it uses the class membership pseudo-probabilities pstem obtained from the classifier 
(Section 2.2) in several processing steps. These results are provided for the sake of assessing the 
suitability of the chosen feature set (PFH) as a basis for providing sound estimates of pstem. It is 
assumed that a high classification accuracy will result in reliable probability estimates. 

The overall accuracy and Cohen’s kappa coefficient are high for both the training (0.99/0.98) and 
test (0.88/0.76) sets, indicating that the PFH features indeed capture enough of the characteristics 
of the points’ neighborhoods to produce a good decision boundary. Note that there is a gap of 
0.11 between the performance of the classifier on the training and test set. This may be attributed 
to several factors. First, the point labeling was done by a human expert and is thus inherently 
subjective. Furthermore, there was much variability in the appearance of the fallen stems in the 
LiDAR data (proximity to ground vegetation, overlapping with other stems etc.). Also, the high 
dimensionality of the PFH descriptor means that the feature space is quite sparse, increasing the 
risk of overfitting. Finally, due to the prohibitive computational cost of training the AdaBoosted 
classification trees on a large dataset, we did not explore the classifier’s tuning parameter space 
as thoroughly as in case of the much smaller segment dataset, therefore there might be a 
parameter combination yielding marginally better generalization capabilities. 

As illustrated by Table 2, the classifier is not heavily biased towards any of the two classes. The 
producer’s and consumer’s accuracies are nearly identical in the training set, whereas their 
maximum deviation in the test set is 2.3 percentage points. 
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Table 2: Overall accuracy, kappa coefficient and confusion matrix for stem point classification  

 Training set Test set 

 Non-stem 
(actual) 

Stem 
(actual) 

Consumer’s 
accuracy 

Non-stem 
(actual) 

Stem 
(actual) 

Consumer’s 
accuracy 

Non-stem 
(predicted) 6529 77 98.8% 8570 1147 88.2% 

Stem    
(predicted) 54 6837 99.2% 1326 9201 87.4% 

Producer’s 
accuracy 99.1% 98.9%  86.6% 88.9%  

 

Overall 
accuracy 99.0% 87.7% 

Kappa 0.98 0.76 

 

While higher classification rates at this intermediate step are certainly desired, the way we use 
the output from the point classifier in further processing steps allows for a certain margin of 
error. Specifically, recall that these pseudo-probability values are used for the generation of 
probable segment hypotheses as well as for the classification of ‘good’ and ‘bad’ segments in the 
form of a coarse histogram (FTPH, Section 2.4). 

As for the former, in order to consider a real segment as a good hypothesis, we require that a 
single pair of points along the segment’s main axis obtain high probability values. Regarding the 
latter, the coarse histogram FFTPH (Section 2.4) inherently adds smoothing to the inference 
process. Therefore it would seem intuitively viable that a strong majority of high-probability 
points, say 80-90%, should suffice to provide a solid basis for subsequent steps. 

4.2 Segment classification 
Table 3 shows the overall accuracy rates of the best classifiers trained on different sets of 
features. The accuracy rates were obtained from the 5-fold cross validation procedure. First, we 
note that all feature combinations attain accuracies well above 80%. Interestingly, the classifier 
based on the low-dimensional FTPH features performs almost identically to the one based on the 
high-dimensional SSC features. This indicates that each of these feature families contributes 
relevant information to the classification process and indeed seems to capture our intuitions 
mentioned in Section 2.4.  
Table 3: Performance of segment classification for different combinations of features – overall accuracy 
from 5-fold cross validation 

 FTPH  SSC FTPH + SSC 

Plot A 0.86 0.85 0.91 

Plot B 0.86 0.84 0.92 

Moreover, the classifier trained simultaneously on FTPH and SSC outperforms both classifiers 
trained on a single feature family. 
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Table 4 describes the performance of the classifiers which were retrained on the entire datasets. 
While the results are only slightly higher for Plot A, the classifier for Plot B has benefited from a 
significant improvement. This could be explained by the fact that Plot A has a larger area, more 
fallen stems and regenerations, which results in a higher variability. The subjective labeling 
could also be of influence. 
Table 4: Performance of segment classification for best model retrained on entire data 

 Plot A Plot B 

 Bad 
(actual) 

Good 
(actual) 

Consumer’s 
accuracy 

Bad 
(actual) 

Good 
(actual) 

Consumer’s 
accuracy 

Bad 
(predicted) 485 46 91.3% 292 7 97.6% 

Good  
(predicted) 40 534 93.0% 4 255 98.4% 

Producer’s 
accuracy 92.3% 92.0%  98.6% 97.3%  

Finally, we turn to the issue of the classifiers’ generalization ability. We have cross-validated the 
classifiers on their complementary plots, i.e. tested the classifier trained using Plot A on Plot B 
and vice versa. The results can be seen in Table 5. The cross-plot performance drops 
substantially for both plots, with the lowest completeness rate of 76% (‘good’ segment detection) 
observed for using Classifier B on Plot A.  
Table 5: Generalization ability – (a) classifier trained on Plot A, tested on Plot B, (b) classifier trained on 
Plot B, tested on Plot A 

 (a) Plot A (train) / Plot B (test) (b) Plot B (train) / Plot A (test) 
 Bad 

(actual) 
Good 
(actual) 

Consumer’s 
accuracy 

Bad 
(actual) 

Good 
(actual) 

Consumer’s 
accuracy 

Bad 
(predicted) 289 63 82.1% 416 14 96.7% 

Good  
(predicted) 7 199 96.6% 109 566 83.3% 

Producer’s 
accuracy 97.6% 75.9%  79.2% 97.5%  

It is interesting to note that Classifiers A and B are biased in opposite directions. Classifier A 
clearly prefers labeling segments as ‘bad’, achieving a completeness of 98% in this class and 
assigning 25% of ‘good’ segments the ‘bad’ label. Conversely, Classifier B exhibits a similar (in 
terms of proportions) tendency to favor the ‘good’ class. Despite the seemingly high overall 
accuracies of 87-88%, the values of Cohen’s kappa coefficient are relatively low at 0.37 and 
0.38. Possible causes for this difference in performance include the influence of subjective 
labeling, different plot characteristics as well as limited transferability of the trained classifiers. 

5 Conclusion and Outlook 

We have demonstrated the suitability of two types of 3D shape descriptors, Point Feature 
Histograms and Shape Contexts, for the task of detecting segments of fallen tree stems. Although 
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we used full waveform data in our study, our algorithm does not rely on radiometric information 
and hence discrete return input data is also admissible. The results show that the aforementioned 
descriptors, when applied simultaneously, are able to provide somewhat complementary 
information to the classifier, thereby exhibiting a synergy effect and yielding overall accuracy 
rates beyond 90%. The proposed method can serve as an intermediate step for a system aiming at 
object-level detection (stems of entire fallen trees as opposed to merely segments). An interesting 
research direction concerns picking a set of non-overlapping segments and merging them under 
some optimality criterion to obtain object-level results. Another interesting question arises 
regarding the generalization capacity of classifiers based on the aforementioned features, 
inhibited by the inherent high-dimensionality of expressive shape descriptors. Currently, the 
results show some potential for generalizing across different forest stands. Perhaps certain 
dimensionality reduction schemes could be applied in order to improve this ability. Finally, we 
recognize the necessity to test our approach on data for which ground truth from a different 
source is available in order to assess its performance in a more objective manner. 
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