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ABSTRACT:

This paper presents a method for identification of errors in 3D building models which are results of inaccurate creation process. Error
detection is carried out within the camera pose estimation. As observations, parameters of the building corners and of the line segments
detected in the image are used and conditions for the coplanarity of corresponding edges are defined. For the estimation, the uncertainty
of the 3D building models and image features are taken into account.

1. INTRODUCTION

A great demand for 3D building models contributed to develop-
ment of various automatic and semi-automatic methods, as well
as commercial software for 3D building model creation. How-
ever, an error free creation is often not possible. Particularly,
while creating the model from aerial images, the roof overhang is
not modeled.

Such errors can cause problems in many of applications of the
3D building models. In this paper, we concentrate on the tex-
turing application. Texturing is commonly used in urban scenes
to increase the visual attractiveness of the 3D building models
(Weinhaus and Devarajan, 1997, Groneman, 2004, Hegarty and
Carswell, 2009). Façade and roof textures not only support the
visual interpretation of the mapped scenes, but also can be source
of information about the building envelope, for example about the
position of windows.

In the last years also not only the appearance of the building enve-
lope was of interest, but also it’s image in thermal infrared (TIR)
domain (Hoegner et al., 2007, Chandler, 2011, Borrmann et al.,
2012). Exploring the TIR images of the building envelope can
contribute to thermal inspections of buildings and to assessment
of the energy efficiency of the buildings. Challenging are large
area inspection where a manual geo-location and analysis may be
very time consuming and expensive. As a solution an automatic
alignment of the TIR images ia texture mapping using terrestrial
image sequences (Hoegner et al., 2007) and in combination with
airborne oblique imagery (Iwaszczuk et al., 2011) was proposed.

Using airborne oblique imagery, all building faces - roofs and
façades can be captured. Knowing the exterior orientation of the
images, textures can be extracted by the projecting the model into
the image. This allows to select image regions representing each
face. The exterior orientation can be easily determined from the
navigation device mounted on the flying platform together with
the camera. However, often the navigation data and the 3D build-
ing model are not accurate enough for a precise texture mapping.
Such errors in the exterior orientation and 3D building models
lead to extraction of an incorrect image section as the texture.
This can cause displacements in the localization of objects de-
tected in further processing (e.g. heat leakages). The inaccuracy
of the exterior orientation parameters can be reduced by the a
model-to-image matching (Iwaszczuk et al., 2012).
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The errors in the model more difficult to deal with and do not
allow for a precise coregistration and correct texture extraction,
particularly for the façades in case of unmodeled roof overhang.
Therefore, the errors in the 3D building model have to be iden-
tified and corrected to ensure the best possible geometry and the
best possible thermal textures.

Several methods for verification of 3D building models can be
found in the literature. Approaches for the verification using
point clouds (Hebel and Stilla, 2011) or aerial images (Huertas
and Nevatla, 1998, Nyaruhuma et al., 2012) were proposed.

In (Huertas and Nevatla, 1998) a multiple step method is used to
register the model with the new image, validate the model, find
structural changes and update the model accordingly. For the ver-
ification only one image is used. In an another work (Nyaruhuma
et al., 2012) mutual information between the model edges and
the image is used to identify changes of the investigated scene.
First the mutual information is calculated for the whole image
and then the amount of the information is veryfied for each edge
using statistical tests.

2. PAPER OVERVIEW

Presented work is a continuation of our previous work presented
in (Iwaszczuk et al., 2013). In contrast to this previous contribu-
tion, we take the uncertainty of the 3D building model and of the
extracted image features into account in this paper. Moreover, we
implement a robust estimation and use it to detect errors in the
3D building model.

In contrast to other works we don’t concentrate on the change
detection between two different points in time, but aim to find
outliers in the building geometry. What is more, we don’t treat
every pixel separately, but see an model edge as an object defined
by a set of parameters verified in the estimation process.

In Section 3. we explain the methodology used for the pose esti-
mation of the thermal camera based on the corresponding model
edges and line segments detected in the image. In Section 4. we
describe the detection of errors in the 3D building model by im-
plementing an outlier detector within the estimation.In Section 6.
we presents achieved results and discuss their quality, as well as
the limitations of our approach.
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3. LINE-BASED CAMERA POSE ESTIMATION

In the presented approach, line segments are selected to be used
for matching. The corresponding image line segments are as-
signed to the model edges using an accumulator approach. The
model edges are projected into the image using the initial exte-
rior orientation taken from the navigation device and moved and
rotated in the image creating a 3D accumulator space. For each
position of the projected model in the image, the number of fitting
lines segments in the image is counted. Correspondences which
voted for the accumulator cell with most line correspondences are
used for the optimal pose estimation.

The mathematical model is formulated using homogeneous rep-
resentation of the image and model features. The condition for
coplanarity of building corners defining an edge and a line seg-
ment in the image is utilized for this purpose (Fig. 1). In ad-
dition to the functional model, the stochastic model is also de-
fined in order to take the uncertainty of the 3D model and image
features into account. The covariance matrices of the homoge-
neous entities are often singular. To be able to cope with such co-
variance matrices, additional constrains for the observations are
needed. Optimal exterior orientation parameters are estimated
using Gauss-Helmert model.

Figure 1: Principle of assignment of image line segments to 3D
model edges

3.1 Finding correspondences

In the presented approach, line segments are selected to be used
for matching. The corresponding image line segments are as-
signed to the model edges using an accumulator approach. The
model edges are projected into the image using the initial exte-
rior orientation taken from the navigation device and moved and
rotated in the image creating a 3D accumulator space. For each
position of the projected model in the image, the number of fitting
lines segments in the image is counted. Correspondences which
voted for the accumulator cell with most line correspondences are
used for the optimal pose estimation.

3.2 Optimal camera pose estimation

Estimation of the exterior orientation parameters in the projec-
tive space is formulated using the complanarity of lj , X1i and
X2i, where X1i and X2i are the endpoints of a building edge
corresponding to line segment lj detected in the image. Copla-
narity of lj , X1i and X2i is expressed as incidence of the pro-
jected points x ′1i and x ′2i with the line lj . The projected points

x ′1i : x′1i = PX1i and x ′2i : x′2i = PX2i, where P is the pro-
jection matrix. Then, the incidence conditions lTj x′1i = 0 and
lTj x′2i = 0 write

lTjPX1i = 0, (1)

lTjPX2i = 0. (2)

These two equations are directly adapted in the Gauss-Helmert
model as conditions

g1(β̂, ŷ) = lTjPX1i, (3)

g2(β̂, ŷ) = lTjPX2i (4)

for the observations and parameters.

Also in the projective space the uncertainty of the image features
and 3D building model can be introduced. The covariance ma-
trix for a 3D point X represented in homogeneous coordinates X
can be directly derived from the cavariance matrix ΣXX for the
Euclidean representationX of this point as

ΣXX =

[
ΣXX 0

0T 1

]
. (5)

However, due to redundancy in the homogeneous representation,
the cavarinace matrix ΣXX is singular (Förstner, 2004) which
leads to restrictions in the optimization. To solve this problem,
all entities has to be spherically normalized (Kanatani, 1996), so
that lsj = Ns(lj)1, Xs

1i = Ns(X1i) and Ys
1i = Ns(Y1i). (In the

rest of this Section, the index s is omitted assuming the homoge-
neous coordinates to be spherically normalized.) This normaliza-
tion has to hold also during the estimation. Therefore, also the
constrains

c1(ŷ) = ‖lj‖ − 1 (6)

c2(ŷ) = ‖X1i‖ − 1 (7)

c3(ŷ) = ‖X2i‖ − 1 (8)

for the observations are needed.

To find optimal solution for the unknown parameters
β̂ = [X̂0, Ŷ0, Ẑ0, ω̂, φ̂, κ̂], the optimization method for homoge-
neous entities presented in (Meidow et al., 2009a) and (Meidow
et al., 2009b) is adapted for this functional model. For this pur-
pose, the Lagrange function

L =
1

2
v̂TΣ−1

yy v̂ + λT
1g1(β̂, y + v̂) + λT

2g2(β̂, y + v̂)

+ νT
1c1(y + v̂) + νT

2c2(y + v̂) + νT
3c3(y + v̂) (9)

is minimized, where λ and ν are the Lagrangian vectors. In con-
trast to (Meidow et al., 2009a) and (Meidow et al., 2009b), here
the restriction for the estimated parameters h1(β̂) = 0 is not
needed, because the estimated parameters are defined directly
as exterior orientation parameters X0, Y0, Z0, ω, φ, κ. The
observation vector for each pair of corresponding lines writes
yij = [lj , X1i, X2i]

T, where l = [a, b, c]T is the homogeneous
representation for the image line segment and X1i, X2i is the ho-
mogeneous representation of the corners of the corresponding 3D
building edge. The covariance matrix Σll is assumed to be known
as result of the line fitting or as result of error propagation know-
ing the covariance matrices of the end points of the detected line
segment. This done using

Σlj lj = S(x2j)Σx1j x1j ST(x2j)+S(x1j)Σx2j x2j ST(x1j), (10)
1The covariance matrix Σll calculated as shown in eq. 10 is not sin-

gular but l is also spherically normalized in order to avoid ambiguity of
the homogeneous representation.
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where S is the skew-symmetric matrix

S(x) =

 0 −w v
w 0 −u
−v u 0

 , x =

uv
w

 . (11)

The solution for the unknown parameters fulfilling eq. 9 is cal-
culated in a iterative manner, similar as described in (Meidow et
al., 2009b). For all conditions the Jacobians are calculated at the
approximate values of β as

A =

 ∂g1(β,y)

∂β
∂g2(β,y)

∂β

 (12)

B =

 ∂g1(β,y)

∂y 0

0
∂g2(β,y)

∂y

 (13)

C =


∂c1(y)

∂y 0 0

0
∂c1(y)

∂y 0

0 0
∂c1(y)

∂y

 (14)

and used for normal equation

AT
(
BΣllB

T
)−1

A∆̂β = AT
(
BΣllB

T
)
a (15)

where

a = BCT
(
CCT

)−1 (
C
(

y− y(τ)
)
− cτ

)
−B

(
y− y(τ)

)
−gτ .

(16)
The index τ denotes the current iteration. Then the residuals are
computed as

v(τ) = −ΣllB
Tλ−CT

(
CCT

)−1 (
C
(

y− y(τ)
)
− cτ

)
.

(17)
with Lagrangians

λ =
(
BΣllB

T
)−1 (

A∆̂β − a
)

. (18)

3.3 Conditioning the coordinates

Switching from the Euclidean to the homogeneous representa-
tion for point x in 2D or X in 3D is usually effected by adding
1 as an additional coordinate (homogeneous part). Hence, for a
2D point in Euclidean space x = [u, v]T, the equivalent homo-
geneous representation is x = [u, v, 1]T, and for a 3D point in
Euclidean space X = [U ,V ,W ]T, the equivalent homogeneous
representation is X = [U ,V ,W , 1]T. In many photogrammetric
applications, particularly in aerial photogrammetry, the points are
given in geodetic coordinate systems (e.g., Gauss-Krüger, UTM),
where the values for U and V is in order 106. Computations with
such inconsistent number can lead to numerical instability of the
computations. To solve this problem, the homogeneous entities
should be conditioned. Similar to the conditioning proposed by
(Heuel, 2002), also here, the entities are conditioned before opti-
mizing, by checking the condition

maxhO = maxi

( ‖xhi‖
‖xOi‖

)
≥ fmin = 0.1, (19)

where xhi is the homogeneous and xOi the Euclidean part of
a homogeneous entity xi. If maxhO < fmin the conditioning

factor is calculated as

f = maxh0 · fmin (20)

In case of very large Euclidean part xO compared to the homo-
geneous part xh, f calculated as shown in eq. 20 can be smaller
than the machine accuracy εh. Hence, if f < εh then f should
be calculated as

f =
fmin

maxi(‖xOi‖)
(21)

((Heuel, 2002)). Next, each entity is conditioned using matrices

W x(f) =

[
f I2 0

0T 1

]
(22)

for the 2D points,

W l(f) =

[
I2 0

0T f

]
(23)

for the 2D lines and

W X(f) =

[
f I3 0

0T 1

]
, (24)

so that the conditioned coordinates xc, lc and Xc are calculated as

xc = W x(fim)x, (25)

lc = W l(fim)l (26)

and
Xc = W X(fmod)X, (27)

where fim is the conditioning factor for the 2D image entities
and fmod is the conditioning factor for the 3D entities. Condi-
tioning entities changes also the transformation matrix. Here the
transformation matrix is the projection matrix P which can be
reconditioned using

P = W (fim)−1PcW (fmod). (28)

4. IDENTIFICATION OF ERRORS IN THE MODEL

The inaccuracies in the model should result in large residuals
in the adjustment. This can be used to identify these inaccura-
cies. For this purpose, an outlier detector using statistical test on
corrections to the observations is implemented within the adjust-
ment. This is done by using weight matrix

P̂ =
(
BΣllB

T
)−1

(29)

for computation of the weight coefficient matrix for the correc-
tions to observations

Qv̂v̂ =
(
QBTP̂

(
I−A(ATP̂A)−1ATP̂

)
B
)
Q (30)

Then the vector of standardized corrections for the observations
is calculated.

V =
|(y− y0)|

σ0

√
diag(Qv̂v̂)

(31)

Statistical tests are used to identify the outliers using the critical
value

εh = χ2
1−α,1, (32)

which allows rejecting a hypothesis with the significance level α.
If V i > εh then this observation is considered as an outleir.

Observations identified as outliers are excluded from the estima-
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tion and the link to the corresponding model edges is stored. Then
the procedure is repeated for every frame of the image sequence.
Model edges which are frequently identified as outlieres are la-
beled as possible errors in the 3D model.

5. RESULTS

The results are presented on an oblique thermal infrared (TIR)
image sequence taken from helicopter flying over a densely built
up urban area. The frame rate was 25 frames/sec. which gives
a high overlap between the frames. 100 following frames (with
frame IDs 13141-13240) and three buildings were selected for
the first tests. The 3D building model was created manually in
a commercial software by fitting predefined building primitives.
Hence, no roof overhang is modeled. The significance level was
set to α = 0.1 for the experiments.

Each observation is represented by 11 parameters, 3 related to
the image line, and 8 related to model corners. In the presented
method, each parameter is treated separately. It means that for
each observation, one or more parameters can be identified as an
outlier. It can be also distinguish between outliers in the image
feature and outliers in the 3D building model. However, the usage
of this fact is not sufficient for outlier detection in the 3D model,
because the inaccuracies in the line detection can also affect the
errors in the parameters of the model points. Tests showed that
both errors coexist. Outliers in the line parameters were detected
in less cases and in most cases they were coexisting with a errors
in the parameters of model points. The outliers in image line
parameters were detected for 151 edges in 100 frames but only
in 21 cases they did not coexist with outliers in the parameters of
model points.

Figure 2: Results on outlier detection in the frame no. 13209:
a) outliers detected based on analysis of parameters of model
points; b) outliers detected based on analysis of parameters of im-
age lines; c) outliers detected based on analysis of all parameters.
Color coding: dark cyan - detected image line segments with-
out correspondences, bright cyan - projected model edges without
correspondences, dark green - detected image line segments with
correspondences, bright green - projected model edges with cor-
respondences, dark orange - detected image line segments with
correspondences detected as outliers, bright green - projected
model edges with correspondences detected as outliers

Fig. 2 shows results on the outlier detection in an exemplary
frame. Here, all three possibilities are presented, taking the out-
liers in the image line parameters, model point parameters or both

at the same time. For the outliers removal and outlier free adjut-
ment the third option was used. The results of the adjustment
after outlier removal are presented in Fig. 3

Figure 3: Projected 3D building model in frame 13209 before
(red) and after (green) adjustment

Fig. 4 shows the results of outliers detection using all parameters
for each observation. The results are shown on one exemplary
building and across a sub-sequence of 6 following images.

Figure 4: Outlier detection for one building across a sub-
sequence of 6 images (13174-13179). Color coding: same as
Fig. 2

6. CONCLUSION

In this paper we presented a method for model-to-image match-
ing with optimal pose estimation and outlier detection withing
the estimation. The novelty of the presented methodology con-
sist of the usage of the linear features and their uncertainty in the
adjustment process which allows for more reliable outlier detec-
tion. Using the implemented method, buildings or building parts
being potentially badly modeled can be identified. However, this
identification is useful only for further manual post-processing.
In the future, more work should be done on more automatic con-
firmation of an error in the building and automatic improvement
of the geometry.
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