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 A Concept for Guiding the Learning of Conditional Random 
Fields for the Classification of Urban Areas in SAR Images 
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1.   

In dieser Arbeit wird ein Konzept zur Klassifikation urbaner Strukturen in SAR 
Intensitätsbildern vorgestellt. Die Methode basiert dabei auf der Verwendung von 
Conditional Random Fields (CRF), deren Netzwerkstruktur und Parametrisierung 
automatisch durch das Optimieren einer Zielfunktion gelernt werden soll. Allerdings handelt 
es sich um ein schlecht gestelltes Problem, was deutliche Herausforderungen an die 
Algorithmen stellt. Wir zeigen einen effektiven Weg, um dennoch eine Optimierung erreichen 
zu können und welchen Vorteil regelbasierte Verfahren, die durch den Nutzer definieret 
werden, in diesem Zusammenhang haben.  
 

1 Introduction 

Regarding the classification of high-resolution SAR imagery, the consideration of the spatial 
context is practically indispensable. This can be done by (1) calculating texture attributes, (2) 
possibly using these and/or other attributes as inputs to an image segmentation procedure and (3) 
considering contextual attributes that relate neighbouring image regions. Probabilistic Graphical 
Models (PGMs) are powerful probabilistic frameworks that allow the modelling of complex 
contextual relations between neighbouring image regions (or pixels) regarding their attributes 
and their possible classes. As a specific PGM type, Conditional Random Fields (CRFs) focus 
directly on estimating the posterior probability distribution of the possible classifications of the 
scene given the observed images attributes (KOLLER & FRIEDMAN, 2009). The automatic learning 
of the CRF network’s structure and its parameters based on sample data is known to produce 
models of better performance and potentially reveal unsuspected dependencies between the 
observed and unobserved variables (GANAPATHI, 2008). Nevertheless, the automatic learning of 
CRFs models very easily becomes computationally intractable, due to the necessity of running 
inference over the current CRF network at each step of the optimization procedure and, if 
discriminative training is carried out, for each data sample. This problem is worsened by the fact 
that very often remote sensing image regions may contain a large number of attributes with large 
cardinality. In this paper, we show a framework for the automatic learning of the CRF network's 
structure and parameters in a tractable way. This framework was customized aiming its 
application on remote sensing image classification and having two guidelines in mind: (1) reduce 
as much as possible computational costs and (2) allow the inclusion of image interpretation 
knowledge in the learning process. We give a brief explanation on the theoretical background of 
our framework and exemplify how it would be applied for the classification of Urban Structure 
Types based on high-resolution (In)SAR imagery. 
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2 Some theory behind the proposed framework 

2.1 Probabilistic Graphical Models and CRFs 

Probabilistic Graphical Models (PGMs) enable the representation of complex joint distributions 
with considerably fewer parameters. Such representation is given in the form of a network whose 
nodes are random variables and the links between them represent the probabilistic dependencies 
and conditional independencies among the variables of the network. A fully connected sub-
network is called a factor. A potential is associated to every possible assignment of the variables 
values in a factor. It should be noted that in most cases the variables are modelled as being 
discrete. Most effective inference algorithms only work for discrete variables. A PGM is fully 
defined when its network structure and potentials are defined. The problem of defining the 
structure and the parameters of a PGM is the problem of defining how the joint distribution 
factorizes and which the potentials from each factor are. Each factor of a CRFs model must 
contain at least one unobserved variable. In the context of remote sensing image classification, 
the observed variables are the image attributes and the unobserved variables are the classes of 
interest.  

2.2 Log-linear Models 

Log-linear models are a compact representation of undirected PGMs and CRFs which are 
defined in terms of a set of feature functions ( )k kf X . The variables kX in every feature k are 
exactly the ones in one of the factors of the network. Given a set of feature functions  kF f , 
the parameters of the log-linear model are weights  :k kf F   . The overall distribution is 
then defined as:  
 
(1) 

 
where xk is the assignment to Xk within x, and ( )Z  is the partition function that ensures that the 
distribution is normalized. The term ( )k kf X  can be any function that defines a numerical value 
for each assignment xk. A commonly used function is the indicator function, which returns value 
1 in case of certain xk assignment and 0 otherwise. The weight k  becomes than the potential for 
this assignment. Commonly, one such indicator function is created for each possible assignment 
from each factor. 

2.3 Parameter Learning 

A few approaches have been proposed for learning the parameters of undirected PGMs (KOLLER 

& FRIEDMAN, 2009), the maximization of the log-likelihood function being the simplest variant 
of this task. The log-likelihood objective function has the form: 
 
(2) 
 
where M is the number of samples and m is a single sample from the training data set. This 
function is a convex one, which means it has no local optima but a global one. However, it has 
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no closed-form solution and because of that its global optimum has to be found through an 
iterative optimization process (like gradient descent, for example) which uses the gradient 
between the empirical counts of the features (calculated directly from the sample data set) and 
their marginal probability given a parameter set  to guide the optimization. Formally we want 
that for each feature k, 
 
(3) 
 
In order to calculate the second term of this expression (i.e. the marginal probability of a certain 
feature), inference should be performed over the current model. Because usually several 
iterations are needed until convergence is reached, inference is run many times, what makes this 
process computationally very costly. 

2.4 Structure Learning 

The problem of finding the best structure of the CRF network is equivalent to the problem of 
finding the best set of features F given the set of observed and unobserved variables. Including 
the L1-regularization term to equation (2) and maximizing it has the effect of forcing many 
features to have weight zero when convergence is achieved. At the end of the optimization 
process, the features that have weights different than zero represent the factors of the CRF 
network, i.e. the edges and nodes of the CRF structure. This L1-regularized log-likelihood 
objective function has the form: 
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where the first two terms are exactly the ones at equation (2). The third term is the L1-
regularization term, which is nothing more than the sum of the model’s parameters multiplied by 
the hyper-parameter  . This objective function is also a convex one, so when the convergence 
point is achieved, we are guaranteed that the CRF network and its parameters are the best ones2.  
As equation (2), this objective has no closed-form solution and its maximum is also achieved by 
reducing the gradient of each feature to zero. Formally, we want that for each feature ( )kf X  
 
(5) 
 
The effect of biasing many of the parameters to zero happens to integrate the network learning 
and the parameter optimization problems into a single objective function. Features with weight 
zero represent discarded edges in the network, whereas features with non-zero weights represent 
variables (i.e. nodes) that are connected with each other in the network. Hence, we are solving 

                                                 
2 Although this solution is the optimal one, it may not be unique. Several redundant 
parameterizations might be at the convergence point. 
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both the parameter and the structure learning problems by optimizing a single objective function 
at a computational cost that is not much higher than learning the parameters alone.  

2.5 Discriminative training 

Equations (4) and (5) are used for learning a CRF model in a generative way. We may learn a 
CRF model in a generative way as long as each of the possible features involves at least one of 
the unobserved variables. Another way to train such a model is in the discriminative way. In this 
setting, our training set consists of pairs      
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  specifying assignments to Y 

(unobserved variables) and X (observed variables). Here we want to optimize the likelihood of 
each y[m] given the corresponding x[m]. This is also a convex function (actually a sum of convex 
log-likelihood functions, i.e. one for each data sample) with a convex region of global optima, 
i.e. redundant optimal parameterizations. The gradient in the discriminative training case has the 
form: 
 
(6)   
 
Whereas in the generative training each gradient step required only a single execution of 
inference, training a model in the discriminative way is more cumbersome because we have to 
execute inference for every data sample conditioned on x[m]. On the other hand, the inference is 
executed on a simpler model, since conditioning on evidence in a Markov network can only 
reduce the computational costs. Inserting the L1-regularization term in the computation of the 
gradient of each feature leads to the form: 
 
 (7) 
   
Discriminative training is considered to be better for image classification tasks, whereas on the 
other hand models can be trained with fewer samples in the generative way (KOLLER & 

FRIEDMAN, 2009).  

2.6 The Learning Procedure  

As mentioned, inserting the L1-regularization term in the parameter learning optimization 
process allow us to also learn the CRF network structure using the same objective function and at 
a not much higher computational cost. In theory, all the possible features can be submitted at 
once to this optimization process and at convergence the features that have weight zero (the vast 
majority of them) are discarded and the features that have weight non-zero induce probabilistic 
dependencies between the variables they involve, representing in this way the CRF network. 
However, inserting all possible features at once in the optimization process would give rise to a 
highly dense network, what makes parameter inference imprecise and prohibitively costly. 
Because of that, we must resort to a feature introduction scheme, where the most pertinent 
features are introduced first in order to achieve convergence faster. As the objective function is a 
convex one, any feature introduction scheme leads to the global optimum, but inserting 
unimportant features first increases the computational costs (even if they are eventually 
discarded) and decreases the accuracy of the calculated gradients (LEE et al., 2007). A few 
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feature evaluation measures have been proposed (DELLA PIETRA et al., 1997; PERKINS et al., 
2003) and can be used for deciding which feature to introduce next in the optimization process. 
These measures evaluate quantitatively each individual features, what increases computational 
costs. 
The learning proceeds in the following way: (1) among all possible features, a few of them are 
allowed to have weight non-zero (the so-called active features), (2) we optimize the weights of 
these features reducing their gradients to zero (equation 7); many of the features continue to have 
weight zero, due to the sparseness effect of the L1-regularization term; following, (3) each 
feature with weight zero (the so-called inactive features) is evaluated by some quantitative 
measure; (4) the best feature is inserted in the active features group and steps 2 to 4 are repeated 
until convergence is achieved. Each time the procedure finishes step 2, the convergence criteria 
are checked. The criteria are that the gradients of all active features should equal zero and the 
gradients of all inactive features should be in module smaller than 1/2 (LEE et al. 2007).   

3 Guiding the introduction of features 

As mentioned, the global optimum is not a point representing a unique solution, but a region with 
possibly many equivalent optimal solutions. We want to achieve this region as fast as possible 
and, more specifically, we want to pick a model that represents our expert knowledge regarding 
the interpretation of high-resolution SAR imagery. We now show the building blocks of our 
framework for guiding the CRF learning towards this goal. This framework is a flexible expert 
system (COWELL et al. 1999) for the gradual introduction of log-linear features in the 
optimization of the L1-regularized log-(conditional)-likelihood objective function. The expert 
system is a rule-based one composed of if... then... rules and has as inference engine the 
quantitative measure proposed by DELLA PIETRA et al. (1997) for ranking the gain of inserting 
each of the available log-linear features in the optimization process.  

3.1 Context Range Definition 

As the first step, we must define the distance range of the possible contextual relations between 
image segments. This can be defined in Euclidean distance or as k-nearest-neighbours (k-NN). 
The range is then divided into distance categories and the segments in each category are labelled 
accordingly. In case of the k-NN approach, we divide the maximum k into n categories and label 
the segments accordingly. Figure 1 shows an example of such a categorization for the two above 
mentioned cases. The centroids of the segments are considered for the distance computations.      

3.2 Categorization and semantic association of log-linear features 

Once we defined the context’s distance range, we automatically define all the possible log-linear 
features that can be created with this universe of image segments (given that the observed image 
attributes are also defined). All these available log-linear features can be categorized regarding, 
for instance, their number of observed variables, number of unobserved variables, number of 
observed and unobserved variables in it, number of observed variables in the distance (or k-NN) 
category, number of unobserved variables in the distance (or k-NN) category, number of 
variables lengthness, number of variables squareness, number of variables of texture, number of 
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variables of intensity etc. These categories are not mutually exclusive and they can be sub-
divided into many other categories. The types and number of categories are defined by the user. 
After the creation of all possible features and their categorization, the semantic association of the 
feature categories takes place. This can be represented as a semantic net where the arrows 
indicate the association of log-linear feature categories. Figure 2 (a) shows an example of such a 
semantic net when the features are grouped into nine categories.   
 

 
Fig. 1: Different types of context formulations. At picture (a) the colours of the segments represent how 
distant they are (in meters) from the central segment. At picture (b) the colours of the segment represent 
nearest-neighbours (NN) categories, e.g. 5-NN, 6 to 10-NN, 11 to 20-NN. 

 
 

 
Fig. 2: Semantic net representing the association of log-linear feature categories (a) and graphical 
representation of the categories whose features should be evaluated next in case we insert a feature from 
category C1 at a certain stage of the optimization/feature introduction process (b). 

 
Once we have a net representing the semantic association of features, we can use it to decide 
which ones should be evaluated at each point of the optimization process. Relying on this 
semantic model avoids us to evaluate each of the features each time the current model is 
optimized and we have to insert a new feature into the active group. At the first optimization 
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iteration we can evaluate all possible features and detect to which category the winning feature 
belongs to. Then, at the next iteration we will only evaluate features from these categories. So 
that the process does not get stuck on certain categories, we can at some point evaluate all 
features again. If the assertions and actions, i.e. if the semantic net and the rules are good, we 
will achieve an optimum solution soon, otherwise it will take longer. However, we will never 
need a longer time as we would by inserting features blithely relying on the convex property of 
the objective function.  

3.3 Inference for computing the gradients 

At the end of each optimization step we must check the converge criteria in order to know if an 
optimal solution has been found, what requires the computation of the gradients from the active 
and the inactive features. According to LEE et al. (2006), the best way to do that when using the 
Loopy Belief Propagation (MURPHY et al. 1999) inference algorithm to calculate the gradients 
(what almost always is inevitable) is to create a cluster graph which contains all the variables that 
the model may have. In this way, it is possible to extract clique trees out of the calibrated cluster 
graph and use them to infer the marginal distributions of the inactive features. The marginal 
distributions of the active features can be computed directly out of the calibrated cluster graph. 
Figure 3 shows what would be the simplest set of active log-linear features (factors of the graph) 
when starting the optimization process. This network structure gets altered according to what 
features get inserted and maintained in the active group. However, its basic structure must persist 
so that the gradients of all possible features can be calculated.     
 

 

Fig. 3: Initial CRF network structure. This is the initial set of active log-linear features. Constructing a 
cluster-graph out of this network enables the computation of the gradient from each possible log-linear 
feature that can be considered with this set of variables. 

4 Learning CRFs models for the classification of Urban Structure 
Types 

Classifying Urban Structure Types (UST) (HEIDEN et al., 2012) requires considering long-range 
contextual relations between the observed attributes and the possible classes of the image 
segments. Hence, the context’s distance range (section 3.1) should be defined accordingly. The 
mean or maximum area of the city’s urban blocks may be considered for defining the range. 
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Also, log-linear feature categories and its semantic net might be edited so that features 
containing the observed variables area, squareness and lengthness at different range categories 
be privileged in the search for the optimum solution. USTs are complex and their complexity is 
inevitably reflected on the complexity of the features and the network. Furthermore, SAR image 
regions have to be classified based on its neighbouring regions classes besides its observed 
attributes. These conditions threat tractability. Good remedies are (1) the radical reduction of the 
observed variables cardinalities and (2) to avoid as much as possible over-segmentation of the 
SAR scene.  

5 Summary and future work 

In this paper we summarized how the network structure and the parameters of a CRF model can 
be learned in a tractable way by optimizing the L1-regularized log-likelihood objective function. 
We showed how the training can be carried out in a generative or discriminative way. Besides, 
the main elements of a rule-based system for guiding the insertion of log-linear features in the 
optimization process were shown. This system enables the insertion of expert knowledge in the 
CRF learning procedure and is expected to accelerate the convergence to a global optimal 
solution. In the next works we will test these hypotheses by applying this methodology for 
classifying UST using high-resolution space-borne InSAR data. 
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