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ABSTRACT: 
3D city models are used in many fields. Photorealistic building textures find applications such as façade reconstruction, thermal 
building inspections and heat leakage detection using thermal infrared (TIR) images, quantitative evaluation or study of the materials 
lying on the object’s surface using multispectral images. Often texturing cannot be done using the same data which was used for 3D 
reconstruction or textures have to be updated. In such cases co-registration between 3D building models and images has to be carried 
out. In this paper we present a method for model-to-image matching and texture extraction with best texture selection procedure. We 
present results for two data sets, first for TIR image sequences taken from a helicopter and second for VIS images taken from an 
Unmanned Aerial Vehicle (UAV).  
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1. INTRODUCTION 

1.1 Motivation 

3D city models are used in many fields such as urban planning, 
simulations, calculation of solar energy potential, change 
detection, tourism, navigation, building inventory and 
inspection. 3D city models contain different elements of the city 
landscape and building structure depending in its level of detail 
(LoD). The LoD mentioned in this paper following the 
definitions in OGC (2012). Concerning the buildings in low 
level of detail they are represented as block model (LoD1). 
Increasing the level of detail also different roof structures 
(LoD2), façade structures, openings (windows and doors) 
(LoD3) and even interiors are modeled (LoD4). Independent on 
the level of detail the 3D building models are often enriched 
with photorealistic or non-photorealistic textures to improve 
their appearance and visual interpretation. While non-
photorealistic textures can be used for computer games, 
navigation, tourism etc., photorealistic textures find also further 
applications such as façade reconstruction (Ripperda, 2008), 
thermal building inspections (Iwaszczuk et al., 2011) and heat 
leakage detection using thermal infrared (TIR) images (Hoegner 
& Stilla, 2009), quantitative evaluation or study of the materials 
lying on the object’s surface using multispectral images 
(Pelagotti et al., 2009).  
 
3D building models for different applications e.g. monitoring of 
engineering objects (Lovas et al., 2008; Arias et al., 2010, 
Werner and Morris, 2010), heritage mapping (Lubowiecka et 
al., 2009) can be derived from land-based laser scanning 
systems. Land-based laser scanning systems not only include 
terrestrial laser scanning (TLS) systems but also mobile 
mapping systems (MMS). The number of available systems is 
large (Lemmens, 2012; Punete et al., 2012) and are still 

increasing. One of the possible applications is the creation of 
high accurate and high detailed 3D models of buildings and 
other man-made-objects (Landes et al., 2012: Martinez et al., 
2012). A number of scanner systems do not offer the possibility 
to acquire image data (e.g. Leica C5, DYNASCAN), so direct 
texturing of the derived 3D models is not possible.  
 
On the other side the number of photogrammetric applications 
using low-cost camera systems is increasing rapidly over the 
past years, too. These low-cost camera systems includes not 
only single shot camera systems but also video devices which 
can be used as hand hold systems or mounted on low-cost mini 
Unmanned Arial Vehicles (UAV). These platforms offer the 
opportunity to acquire image data which also can be used to 
create 3D models using image matching techniques (Bartelsen 
et al., 2012; Kersten and Lindstaedt, 2012). The quality and 
level of detail of 3D models created only with imagery of low-
cost platforms are generally not as good as these derived from 
laser scanning systems (Bartelsen et al., 2012) but these 
systems can offer texture from the object of interest. Also, the 
images and video sequences can be used to extract missing 
textures or update the model database with the current 
appearance of a priori created models such as of façades and 
roofs of buildings. Since the point cloud used for creation of the 
3D building models and the images used for texturing are taken 
from a different point in time and/or different camera pose a 
registration between the data is necessary. Using multiple 
images, e.g. image sequences each face of the 3D building 
model can appear many times in the images. Therefore also a 
best texture selection procedure is needed.  
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1.2 Related Work 

Texturing existing 3D building models using an airborne 
camera system touches mostly such topics as matching, 
visibility checking and best texture selection.  
 
Model-to-image matching problem for airborne imagery is 
frequently addressed in literature. Many methods for solving 
the problem have been proposed. Früh et al. (2004) 
implemented line matching based on slope and proximity by 
testing different random camera positions. However, as Ding & 
Zakhor (2008) mentioned, this method requires high 
computational effort. Hsu et al. (2000) search for the best 
camera position by minimizing the disagreement between 
projected features and features detected in the image. Other 
authors propose methods for coarse orientation which use 
vanishing points (Ding & Zakhor 2008, Förstner 2010). These 
methods lead to faster results, but they assume so called 
“Manhattan scenes”, where many horizontal and vertical lines 
can be detected in the image. In some works (Vosselman 1992, 
Eugster & Nebiker 2009) relational matching is applied, which 
does not only consider the agreement between an image feature 
and a model feature, but also takes the relations between 
features into account. Methods can also be differentiated based 
on which image features they use for matching. Some authors 
propose points (Ding & Zakhor 2008, Avbelj et al. 2010), but 
most works consider lines as more natural for building 
structures and use them for co-registration (Debevec 1996, Früh 
et al. 2004, Schenk 2004, Eugster & Nebiker 2009). In some 
papers hybrid methods employing points and lines at the same 
time are presented (Zhang et al. 2005, Tian et al. 2008). 
 
For visibility checking the depth-buffer method adopted from 
computer graphics is well-established. The depth-buffer is a 
matrix storing for every pixel the distance from projection 
centre to the model surface. This method was often proposed in 
some variations. Karras et al. (2007) tries to generalize the 
problem of orthorectification and texture mapping. He proposes 
a method for visibility checking based on depth image. Every 
triangulated 3D mesh is projected onto projection plane and for 
every triangle occupied pixels get identity number (ID) of the 
triangle. For pixels with more IDs the closest one is chosen. 
Frueh et al. (2004) used a modified depth-buffer storing 
additionally the product of a triangle’s normal vector with the 
camera viewing direction at each pixel. Using information 
about vector product not occluded edges can be detected. 
Abdelhafiz & Niemeier (2009) integrate digital images and 
laser scanning point clouds. They introduce a Multi Layer 
3GImage algorithm which classifies the visibility on two stages: 
point stage and surface stage. The visible layer and back layers 
are applied. Occluded vertexes are sent to a back layer, while 
visible vertexes appear on the visible layer. An image is used 
for texture mapping of a mesh, if all three vertexes of it are 
visible in this image. Abdelhafiz & Niemeier discuss also the 
problem of extrinsic (un-modelled) occlusions caused by such 
objects as traffic signs, trees and street-lamps. They propose a 
Photo Occlusion Finder algorithm which checks textures from 
many images for one mesh. When the textures of one mesh are 
not similar an occlusion occurred. 
 
Objects taken by image sequences with a high frame rate from a 
flying platform appear in multiple frames. In this case textures 
with optimal quality have to be taken for texturing. Lorenz & 
Doellner (2006) introduced a local effective resolution and 
discuss it on example of images from a High Resolution Stereo 
Camera (HRSC) due to its special projection of line scanners 

(perspective and parallel). Frueh et al. (2004) uses a focal plane 
array. He determines optimal textures taking into account 
occlusion, image resolution, surface normal orientation and 
coherence with neighbouring triangles. He proposes to accept 
textures with few occluded pixels instead textures with very 
low resolution taken from extremely oblique view. This quality 
calculation is focused on texturing with optical images and 
good user perception.   
 
1.3 Paper Overview 

In this paper we present technique for texture extraction using 
video sequence taken from a low-cost UAV and mapping on 3D 
building models which were extracted a priori using a TLS 
system. In contrast to other authors we pursue to get the best fit 
between the 3D building model and images so that extracted 
textures can be used for façade object detection. We also 
attempt to reach the best quality textures. In Section 2 we 
present our method for model-to image matching to improve the 
data co-registration. Section 3 we outline texture extraction and 
best texture selection. In Section 4 we describe our experiments, 
in Section 5 present the results and finally in Section 6 discuss 
the results and future work. 
 

2. COREGISTRATION 

The main goal of this research is to create the best possible 
texture for each face of the 3D building model. In general there 
are two issues which should be considered by extracting the 
textures. On the one hand the texture should exactly picture the 
appearance of the face, it means the co-registration between the 
image used for the extraction and the 3D building model should 
be the best possible. This is important in case when the textures 
are used for object detection when the position of the object 
locally in the façade should be well known. On the other hand 
the resolution of the texture should be preferably high, so that 
the in the texture depicted elements can be recognised. 
Accordingly our method can be split in two main stages: (i) 
matching and (ii) texture extraction with best texture selection. 
 
2.1 Model-to-image matching 

In this research we assume a video sequence or multiple images 
with a very large overlap and a roughly known camera pose, 
however with an accuracy which is not sufficient for texture 
extraction. Such camera pose can be derived from GPS/INS 
devise mounted on the UAV or other flying platform used for 
acquisition. The information about the approximate camera 
pose is used for the initial projection of the 3D building model 
into the images. According to the inaccurate camera pose 
derived from the navigation data a mismatch between the 
projected 3D model and the image structures is expected. To 
compensate this mismatch a model-to-image matching is 
needed. For this purpose we use building edges and line 
segments extracted in the images. On the one hand linear 
structures are more suitable than points to represent building, on 
the other hand they are more difficult to represent, especially in 
3D using e.g. parameterization with two angles and two 
coordinates (Schenk, 2004, Iwaszczuk et al., 2012) or Plücker 
coordinates. Such representation leads to more complicated 
projection matrix than projection matrix for points. In 3D 
building models edges are clearly defined by the end points 
(building corners) while the line segments extracted in the 
images often represent only a part of the real building edge.  
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Therefore we propose point representation for building edges in 
3D and line representation for projected edges and detected line 
segments in 2D. We project 3D building corners into the image 
and calculate 2D line parameters l’ using 
 
 ''' yxl      (1) 

 
where x’,y’ are projected end points. Then we build a buffer 
around the projected line segment where the size of the buffer is 
calculated by error propagation of camera uncertainty during 
edge projection. We test line segments detected in the image if 
they are arranged within the buffer and if the angle difference 
between both line segments is smaller than a threshold. If this 
both conditions are fulfilled inspected two line segments are 
assigned as preliminary correspondences. These preliminary 
correspondences result in many outliers, even up to 80-90% 
(Iwaszczuk et al., 2012). Therefore we reduce these 
correspondences using outlier detector. We propose two 
methods to achieve our goal: RANSAC and accumulator 
approach. 
 

2.1.1 RANSAC: To eliminate incorrect preliminary 
correspondences, we propose the RANdom SAmple Consensus 
– RANSAC (Fischler & Bolles 1981). From the set of all 
hypothetical correspondences we randomly select three 
correspondences from different parts of the model and calculate 
exterior orientation parameters without redundancy. We then 
check how many of the remaining correspondences fit the 
randomly estimated exterior orientation parameters. This 
procedure is repeated k-times, and k is calculated as 

 

 ))1(1log(

)99.01log(
3


k

, (2) 
 

where ε(0,1) is the outliers rate and the probability that 
RANSAC makes at least one error free selection is 99%. We 
estimate ε as: 

 
    ModK K ,  (3) 

 

where K is the number of hypothetical correspondences selected 
by the assignment algorithm and KMod is the number of model 
lines which have at least one assigned image line. The 
RANSAC algorithm results in new exterior orientation 
parameters and a set of correct correspondences.  

 
2.1.2 Accumulator: Assuming the uncertainty in range of 
few meters in the camera position and few degrees in the 
camera orientation the mismatch between the projected linear 
model structures and the structure in the image can be 
simplified to a 2D transformation. The error of the camera 
position and orientation results mostly in a 2D translation of the 
projected model. Thus rotation, scale and other transformation 
parameters can be neglected in this step.  
 
To find the correct match between the projected 3D model and 
the image we try a set of possible translation of the projected 
model and fill the accumulator searching the most likely 
position of the model in the image. The same process is 
repeated with rotating the projected 3D model using small range 
of angles. This step results in a 3 dimensional accumulator 
filled with the number of correspondences assigned to every 

cell of the accumulator, which means for every position and 2D 
rotation of the projected 3D model. Then we search for the 
maximal number of correspondences in the accumulator space 
and use the assigned line-to-line correspondence to calculate the 
camera pose. 
 
2.2 Optimal camera pose estimation 

After the elimination of outliers we use the remaining 
correspondences to calculate optimal camera pose for each 
frame. As observations we use line segments detected in the 
image assigned to pairs of 3D points representing building 
corners (two 3D building corners represent a building edges in 
3D). Therefore, we can write the coplanarity equation for both: 
3D building corners X, Y and line segment yxl   in the 

image, where x, y are the end points of the line segment. 
Accordingly every correspondence results in two conditions  
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with 3 equations for parameters p and observations b each, 
where only two of 3 equations are linearly independent. 
Therefore, we introduce condition for observations  
 
 01ˆ

1  l)b(c  ,   (4) 

 
so that we can introduce statistical model and singular 
covariance matrices (Förstner, 2004). The vector b consists of 
line parameters of detected line segments; l and p are the 
exterior orientation parameters which define the projection 
matrix P. Optimal parameters p are estimated using Gauß-
Helmert model.   
 

3. BEST TEXTURE SELECTION AND TEXTURE 
EXTRACTION 

Best texture selection is needed when one face appears in 
multiple images. For this purpose a quality measure should be 
developed. This issue was already discussed in Iwaszczuk & 
Stilla (2010). We continue the same idea and define quality 
measure as function of occlusion, angles between normal of the 
investigated face and direction to the projection centre and its 
distance to the projection centre.  
 
Best texture selections procedure is schematically presented in 
Fig. 1. Starting from the first frame we project each FACEj into 
FRAMEi and check if this frame was projected within FRAMEi. 
If this condition is fulfilled we calculate occlusion and if FACEj 
is visible in FRAMEi, we compute the quality qij for FACEj in 
FRAMEi. If qij>qcurrent,j new texture tcurrent,j we replace by tij. At 
the same time we create the resolution map mij and use to 
replace mcurrrent,j. This procedure is repeated for all n frames and 
k faces. 
 
Effectively this algorithm does not have to output the ready 
texture but only the reference for each face to the frame or 
frames where this face has the best quality. Therefore this 
procedure can be done prior to the texture extraction or ever 
prior to the data acquisition if the planed flying trajectory is 
known. 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-1/W1, ISPRS Hannover Workshop 2013, 21 – 24 May 2013, Hannover, Germany

153



 

4. EXPERIMENTS 

Presented method is tested using two datasets. The first dataset 
was taken in the city centre of Munich, Germany using a TIR 
camera mounted on a helicopter. The second dataset comes 
from Curtin University Campus in Perth, Australia and was 
acquired using a low cost sport camera mounted on a mini 
UAV.   
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Figure 1. Texture mapping procedure with best texture selection 
 
4.1 TIR images taken from a helicopter 

The thermal images were taken in dense urban area with the 
high resolution IR camera AIM 640 QLW FLIR with the frame 
rate 25 images per second, which was mounted on a platform 
carried by helicopter. The flight height was approximately 
400 m above ground level. The camera was forward looking 
with oblique view of approximately 45°. The helicopter flew 4 
times over the test area, i.e. main campus of Technische 
Universitaet Muenchen (TUM), Munich, Germany, recording a 
sequence of IR images. The helicopter was equipped with the 
GPS/INS Applanix POS AV 510. 3D building models were 
created manually using commercial software and were 
translated to CityGML format (OGC, 2012).  
 
4.2 VIS images taken from a UAV 

The camera used for the second data set is the ION Air Pro 
1080p HD Action Sports Video Camera which can capture RGB 
video sequences. The resolution of the camera is 1920x1080 
pixels which is a 16:9 format; it can capture 30 frames per 
second. The lens installed in the camera is a 170 degree wide 
angle lens. This relative light camera (130 grams) was mounted 
on an inexpensive Parrot AR.Drone 2 UAV system with a 
weight of less than 380g (without hull to safe weight). The 

UAV system with camera is shown in fig. 2. The Parrot 
AR.Drone 2 UAV is a rotor UAV and therefore offers the 
possibility also to fly around the object of interest. The UAV 
can be controlled with a table system using inboard a 3 axis 
gyroscope, a 3 axis accelerometer and a 3 axis magnetometer. 
However, even that this instruments are mounted into the UAV, 
it was not possible to use the navigation data.  
 

 
 

Figure 2. AR.Drone 2 UAV system with ION Air Pro camera. 
 
Instead, the algorithm of Hollick et al. (2013) was used. This 
algorithm was introduced with the aim to be able to process 
large video sequence data sets in order to create 3D point 
clouds and models including the determination of the parameter 
of the interior and exterior orientation. The algorithm works in 
three steps. First the number of images is reduced, second the 
parameters of the exterior and interior orientations are 
determined together with a 3D point cloud, and third a textured 
TIN is created. The last step, the creation of a textured model 
(TIN) was not applied for our tests. As mentioned, in the first 
step number of images is reduced. This step includes the 
filtering of the 6 minute video sequence to remove unusable 
frames, i.e. showing images without information (for instance 
grass during take-off and landing), and the extraction of a 
minimal number of frames form the video sequence while 
maintaining connectivity and overlap where possible. After the 
first steps, the 10800 initial number of images extracted from 
the video sequence could be reduced to 2209. The next is an 
adjustment using all remaining images. Outcome is a 3D point 
and the parameters of the exterior and interior as outcome. After 
the images are classified, matching images are determined. The 
matching images are used to extract first a sparse point cloud, 
and then a dense point cloud including the parameter of the 
interior and exterior orientation. However, the on-the-fly-
calibration of the wide angle camera challenges the further 
processing of the data. The camera should be calibrated next 
time prior to the flight. Further details about the approach are 
available in Hollick et al. (2013).  
 

5. RESULTS AND EVALUATION 

In each of 10 frames from first data set our correspondence 
selection algorithm was carried out. TP – true positive matches, 
P – all possible correct positive matches (ground truth), FP – 
false positive matches were verified visually. All possible 
correct negative matches N (ground truth) were calculated as 
N=number_of_all_extraced_lines-P. We calculated also true 
negative TN=N-FP and false negative FN=P-TP matches. 
These data were used for evaluation and comparison of outlier 
detection algorithms (Tab. 1). We calculated true positive rate 
TPR=TP/P, false positive rate FPR=FP/N and false discovery 
rate FDR=FP/(FP+TP) for each frame using accumulator or 
using RANSAC. Then we calculated the mean over all 
investigated frames for each rate. It can be observed that FPR is 
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very low in case of both outlier detectors but this is due to the 
large N. It should be mentioned that assignment was carried out 
in a part of the image. N depends on all lines segments detected 
in the frame. Therefore we also calculated FDR which is more 
representative in this case. In Tab. 1 can be seen that 
accumulator achieves better results: It is characterised by higher 
TPR and lower FPR and FDR.  
 

Fame N P 
ACCUMULATOR RANSAC 

TPR 
[%] 

FPR 
[%] 

FDR 
[%] 

TPR 
[%] 

FPR 
[%] 

FDR 
[%] 

#13200 724 34 76,47 0,55 13,33 52,94 0,69 21,74 

#13201 731 33 63,64 1,09 27,59 60,61 1,64 37,50 

#13202 738 34 76,47 0,54 13,33 64,71 0,68 18,52 

#13203 735 32 59,38 1,50 36,67 37,50 1,90 53,85 

#13204 745 32 53,13 1,74 43,33 59,38 1,07 29,63 

#13205 755 33 51,52 1,46 39,29 48,48 1,59 42,86 

#13206 773 34 88,24 0,26 6,25 52,94 0,91 28,00 

#13207 771 33 60,61 1,30 33,33 57,58 1,69 40,63 

#13208 762 35 28,57 1,31 50,00 60,00 1,18 30,00 

#13209 778 34 73,53 0,77 19,35 55,88 1,67 40,63 

MEAN [%] 63,15 1,05 28,25 55,00 1,30 34,33 

 
Table 1. Evaluation and comparison of outlier detectors. N- all 

possible correct negative matches, P – all possible positive 
matches, TPR- true positive rate, FPR – false positive rate, FDR 

– false discovery rate. 
 
Fig. 3 presents textured 3D building model using the data 
described in Section 4.1. According to missing control points 
the algorithm from Hollick et al. (2013) was not able to 
calculate the world coordinates of the scene and created only a 
point clouds and exterior orientation in a local and scaled 
coordinate system. The 3D model was brought together 
manually my 3D motion and scaling. Results for this scene are 
presented in Fig. 4. On the left 3D building model with the 
point cloud and all camera centres are depicted. On the right a 
fragment of manually textured model is presented. 

 
 

Figure 3. Test area “TUM”: Textured 3D building model. 
 

  
 

Figure 4. Test area “Curtin University”. Left: Calculated 
camera position (green), 3D mode (blue) and generated point 

cloud (true colors). Right: manually texture 3D model. 

6. DISCUSSION AND OUTLOOK 

In this paper we presented a method for texture mapping which 
focuses on the best fit between the 3D building model and 
images on the one hand and on the best texture selection on the 
other hand. It allows introducing uncertainties of the image 
lines and can be extended with uncertainties of the building 
model by treating the building corners as observations in the 
adjustment step. However our method can deal only with geo-
referenced data. Therefore, in the future a strategy for the data 
without navigation should be developed, so that also the second 
data set can be successfully textured. Further challenge, which 
can be observed in the second data set is exterior occlusion 
caused by vegetation or unmodeled buildings. Therefore, in the 
future not only self occlusion by the 3D building model should 
be considered but also the exterior occlusion should be detected 
and handled. For this purpose the point cloud created in 
structure from motion algorithm can be utilized. Moreover for 
the second data set a better calibration of the fish eye camera in 
necessary to achieve better accuracy of the point cloud and 
initial exterior orientation. 
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