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Abstract

The analysis of urban areas by means of very tagblution SAR remote sensing always has to dehl effects
caused by the side-looking imaging geometry. Régehe separation of scatterers that collapsezhim layover
affected resolution cell has been thoroughly ingeseéd for multi-baseline INSAR configurations. \l¢hinost of
the time repeat pass data acquired by satellite §ysfems has been in the focus of research, thpisrmieals
with airborne single pass multi-baseline data i rfhillimeter wave domain. Based on simulated dagappli-
cability of compressive sensing is investigated atidpted to a single pass system with four reogiefannels

1 I ntroduction Research Institute for High-Frequency Physics and
Radar Techniques of the FGAN, now Fraunhofer FHR
The analysis of urban areas by very high resolutiof5]. Although it can be operated in different modes
interferometric SAR remote sensing has been an infor the reflections in this paper only tf5 GHz
portant research topic for some years now [1],[8}.  (Ka band) configuration with a bandwidth&30 MHz
pecially the side-looking imaging geometry inhereent is considered. The resulting pixel spacing of tatad
conventional SAR sensors leads to challenging tsffecis 5 cmin azimuth and.9 cmin range direction.
like shadowing and layover. While radar shadow card he interferometer consists of one emitting hord an
be tackled by making use of multi-aspect configurafour receiving channels with a maximum baseline of
tions [3], multi-baseline data has to be used deoto  27.5 cm which corresponds to a height ambiguity of
separate information from different scatterers con2bout55 min standard interferometric processing. An
tained in one layover affected resolution cell [4]. illustration of this single pass multi-baseline AtS
system can be seen in Fig. 1.
Since MEMPHIS is still an experimental systemsit i
commonly mounted on a C-160 Transall and flown at
low altitudes of abouB00 to 1000 mabove ground
level. In combination with a mean viewing angle of
about60°, this leads to a typical swath sizeGff0 m
in range direction and up ®000 min azimuth direc-
tion.

22 Layover

_ . _ While the single pass nature generally eases anterf
Figure 1 MEMPHIS multi-baseline INSAR configu-  gmetric analysis — e.g. no atmosphere effects and n
ration with four receiving channels (R1-R4) temporal decorrelation have to be considered — the
low flying height and therefore shallow off-nadirgie
lead to large shadow areas and a compression of in-
2 Single Pass M ulti-baseline formation into small layover patches. In order ioeg
INSAR System a coarse approximation, the ground area affected by
layover can be calculated by

21 MEMPHIS System Description | pyorer = COLE) . 1
MEMPHIS is an acronym foMillimeterwave Ex-
perimentalM ultifrequencyPolarimetricHigh Resolu-

tion I nterferometricSystem and was developed by the

With the above-mentioned off-nadir angle 60° and
a typical building heighbh = 15 m the complete back-
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scattering information of the building facade mixescorresponding to the searched height profile, miisl
with about8.7 mof ground in front of the building (cf. the additive noise term.

Fig. 1) — equivalent to about 40 pixels in the slanTheN x Lelements of the steering matrix are given by
range image. Therefore, methods for layover separa-

tion are needed. 2m_ Ba,
a, =ex _JTG‘ 7 (5)
Rw Sln(Hnl)

23 Multi-basdine [ nterferometry where B, = Bcos(g, —a) is the perpendicular

baseline, « the baseline tilt and
o, =arccos((Hn -h)/ Rn) the range and height de-
pendent off-nadir angle.

The unknown reflectivity is then estimated using a

It is well-known that the expected height resolutad
multi-baseline INSAR systems is given by

AR

Pn = 2AB sin(6) @ convex minimurl,; norm reconstruction [10]:
corresponding to a Cramer-Rao bound for the height min|[X|, s.t.]Ax-g|,<¢. (6)
estimates of

_ £is a noise dependent threshold that can be ctdcula
_ A ERSIH(H) based on singular value decomposition (see section
g, = 3)
2rm/N B/2SNRw,, 3.4).

The non-zero elements in the sparse solution vector

where is the wavelengttR the slant range distance, correspond to heights that contributed to the aleser
/B the maximum baseline spa, the standard devia- layover signal.

tion of the baseline distributionN the number of

channels and sig} the elevation to height conversion

factor [6]. L . .

For the MEMPHIS configuration witNl = 4, this re- 3-2  Distributed Compressive Sensing

sults in a theoretical height resolution gf~21 m

and a theoretically achievable minimum standard deRecently, another method based on the sparsity as-
viation of s, ~ 1.7 mfor anSNR = 10 dB sumption and the accordithg norm minimization was

In [7] it has been shown that single pass systems aadapted to multi-baseline SAR interferometry: Distr
able to retrieve the heights & = N — 1 scatterers, buted Compressive Sensing (DCS) [11]. The idea be-
which means that the interferometric MEMPHIS con-hind DCS is the exploitation of the joint sparsity
figuration should be able to separate the inforomati the reflectivity vectors of neighboring pixels. $hs a

of up to 3 height contributions within one resaduti Valid assumption, as long as these pixels show-back
cell. Since, however, the available height resotuts scattering information of the same structure, which

quite low, methods capable of super-resolution aré&eans either only small or preferably adaptive imeig
needed. borhoods have to be considered.

The P observed\ x 1stack pixels then are combined
in a measurement matrix

3 L ayover Separation Using

. : G=[g 9 - 9], (7)
Compressive Sensing
_ _ while also theé® unknownL x 1 reflectivity vectors are
3.1 Sandard Compressive Sensing concatenated to a reflectivity matrix:
A very promising super-resolution method for the X= [x1 X, ... xp] . (8)

separation of several height contributions within a

layover resolution cell is compressive sensing (CSYhe optimization problem then becomes

[8]. Its applicability for SAR tomography problems

was first proven using repeat pass TerraSAR-X minH)A(“ s.t.”A)?—G” <¢g, 9)
data [9]. 2t F

The method is based on the system imaging model
where

, Is the mixed norm summarizing the

g=Ax+n, 4 L, norms of all matrix rows antﬂ- is the Frobe-

F

whereg is the measurement vector containing N sinus norm.

gle look complex observationd, is theN x L steering 'tl)'h?nks tct)hthe ]i”lnlxge_d.tnormtthat (fél:sure.s J?mtl slgarsn
matrix containing the mapping &fdiscretized height etween the refiectivity vectors ot Ihe pixels, )

values,x is the discrete and sparse reflectivity vector
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tion will benefit from the mutual support between_,

these sparse vectors. . .
It has to be noted, however, thatin (9) only equals = o
the steering matrix from (4) and (6) if all pixedse ~ ‘
located in the same range bin. Otherwise, the ghser °
tions have to be rephased first [11]. '
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. . . Figure2 Singular values of the multi-baseline sys-
3.3 M UIt_HOOkmg and Compressive tem. Left: single pixel case, right: 5 pixel mutiking
Sensing case.

While in DCS the different pixels are taken to b d

ferent samples of the same observation, one ctsdd a N &

think about considering them as independent observa 3 :‘/n_ Z |,3nz , (13)
tions of the same backscattering process, a viatigh € M=N-nH

not uncommon in SAR interferometry [12]. The main
advantage of this idea is the increase of redunolant . T
servations for th&, norm minimization part. onto noise spacﬁn =u.9 (n =N-n+l.. N)'

In this approach, the basic formulae of sectiona3el As can be seen in Fig. 2 (left), none of the owlyrf

used with the difference that the measurement vect&ingular values clearly corresponds to noise space.

is extended by piling the independent pixel stacks: Since, h_owever, at least one mnoise s_mgular vasue |
needed in order to determine the noise level always

with the afore mentioned projections of observation

g, the smallest is chosen for the standard CS metked d
scribed in section 3.1.
O = g? (10) For the methods relying on pixel neighborhoods
: shown in sections 3.2 and 38, of section 3.3 is
Op decomposed, leading ®P singular values, of which

always four contain signal information (coming from
Of course, the steering matrix has to be concagenat the four linearly independent lines Af,.), while the

accordingly: rest clearly corresponds to noise space (see
Fig. 2 right). The advantage of a clear discrimitiigh
A, of signal and noise space leading to a more robust
A, noise level determination is obvious.
Aw =l | (11)
A, .
4 Experimental Results
with A; = A, = ... = Ap for all pixels of the same ] )
range bin (cf. section 3.2). For a first theoretical assessment of the potewtial

compressive sensing based methods for layover sepa-
ration in airborne single pass INSAR data, expanime
34 Noise-adaptive Thresholding 23tsed on simulated resolution cells have beenechrri
The simulations are based on the assumption of two
scatterers within one pixel, one at ground level
(h; =0 m), one at roof levell, =15 m). The results
of CS, DCS and the multilooking approach to CS
(MCS) are plotted for different SNR in Fig. 3, with
utilization of 11 neighboring pixels of the same range
A=USVT, (12) pin,_which are assumed to contain similar backecatt
ing information. It can clearly be observed thaissic
CS is not reasonably applicable to multi-baselime |
SAR data with only few receiving channels. Both

are unitary matrices c_ontaining the left _and_ rigint: DCS and MCS provide significantly better reconstruc
gular vectors, respectively, while the main diagaia tion accuracy, especially for low SNR. The lack of

S contains the non-negative singular values in deéufficient observations, however, can obviously be

scending .or_der. .These smgulgr values usgally @&n thealed by considering adequate pixel neighborhoods.
used to distinguish between signal and noise spface..l.he dependence on the sample size is shown imFig.

N 1S the numl;er Of, smlg::;r vz':l)lues lcolrresg(z)ndlng QN in all, the multilooking theory leads to slightbet-
noise space, the noise lewatan be calculated by ter results than distributed compressive sensing.

According to [13], the noise adaptive thresheldan
be chosen by projecting the observations ontoithe s
gular values corresponding to noise space.

First of all, singular value decomposition (SVD)sha
to be applied to the steering mathix

where U=[u, u, ...uy] and V=[v, v, ... v ]
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Figure3 Mean Root Mean Square Error (RMSE) of [4]

the reconstructed scatterer heights for growing SNR

Note that only results with correctly estimatedrsiig
model order K = 2) have been considered.
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Figure4 Mean RMSE of the reconstructed scatterer
heights for growing size of pixel neighborhood. Aga
only results with correctly estimated sparsity node 9]
order K = 2) have been considered.

5  Conclusion [10]

In this paper it has been shown that compressing-se

ing based methods can be used for airborne mult[11]
baseline INSAR data with only few receiving chasnel

if the measurements of more than a single resalutio
cell are used in the estimation process. Futueareh

will have to apply the findings of this paper talréest

data. It is worth to be noted that the loss ofispags- [12]
olution, which is introduced by considering morarth

one resolution cell for the estimation processnas

too critical for ultra high resolution airborne SARta

still providing information in the decimeter rangeen

after the combination of several neighboring pixels  [13]
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