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Abstract  

The analysis of urban areas by means of very high resolution SAR remote sensing always has to deal with effects 
caused by the side-looking imaging geometry. Recently, the separation of scatterers that collapsed in one layover 
affected resolution cell has been thoroughly investigated for multi-baseline InSAR configurations. While most of 
the time repeat pass data acquired by satellite SAR systems has been in the focus of research, this paper deals 
with airborne single pass multi-baseline data in the millimeter wave domain. Based on simulated data, the appli-
cability of compressive sensing is investigated and adapted to a single pass system with four receiving channels 
 

1 Introduction 

The analysis of urban areas by very high resolution 
interferometric SAR remote sensing has been an im-
portant research topic for some years now [1], [2]. Es-
pecially the side-looking imaging geometry inherent to 
conventional SAR sensors leads to challenging effects 
like shadowing and layover. While radar shadow can 
be tackled by making use of multi-aspect configura-
tions [3], multi-baseline data has to be used in order to 
separate information from different scatterers con-
tained in one layover affected resolution cell [4].   

Figure 1  MEMPHIS multi-baseline InSAR configu-
ration with four receiving channels (R1-R4)  

2 Single Pass Multi-baseline  
InSAR System 

2.1 MEMPHIS System Description 

MEMPHIS is an acronym for Millimeterwave Ex-
perimental Multifrequency Polarimetric High Resolu-
tion Interferometric System and was developed by the 

Research Institute for High-Frequency Physics and 
Radar Techniques of the FGAN, now Fraunhofer FHR 
[5]. Although it can be operated in different modes, 
for the reflections in this paper only the 35 GHz 
(Ka band) configuration with a bandwidth of 800 MHz 
is considered. The resulting pixel spacing of the data 
is 5 cm in azimuth and 19 cm in range direction. 
The interferometer consists of one emitting horn and 
four receiving channels with a maximum baseline of 
27.5 cm, which corresponds to a height ambiguity of 
about 55 m in standard interferometric processing. An 
illustration of this single pass multi-baseline InSAR 
system can be seen in Fig. 1. 
Since MEMPHIS is still an experimental system, it is 
commonly mounted on a C-160 Transall and flown at 
low altitudes of about 300 to 1000 m above ground 
level. In combination with a mean viewing angle of 
about 60°, this leads to a typical swath size of 600 m 
in range direction and up to 3000 m in azimuth direc-
tion. 

2.2 Layover 

While the single pass nature generally eases interfer-
ometric analysis – e.g. no atmosphere effects and no 
temporal decorrelation have to be considered – the 
low flying height and therefore shallow off-nadir angle 
lead to large shadow areas and a compression of in-
formation into small layover patches. In order to give 
a coarse approximation, the ground area affected by 
layover can be calculated by 
 

cot( )Layoverl hθ= ⋅ .                           (1) 
 

With the above-mentioned off-nadir angle θ = 60° and 
a typical building height h = 15 m, the complete back-
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scattering information of the building façade mixes 
with about 8.7 m of ground in front of the building (cf. 
Fig. 1) – equivalent to about 40 pixels in the slant 
range image. Therefore, methods for layover separa-
tion are needed. 

2.3 Multi-baseline Interferometry 

It is well-known that the expected height resolution of 
multi-baseline InSAR systems is given by 
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corresponding to a Cramer-Rao bound for the height 
estimates of  
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where λ is the wavelength, R the slant range distance, 
∆B the maximum baseline span, σB the standard devia-
tion of the baseline distribution, N the number of 
channels and sin(θ) the elevation to height conversion 
factor [6]. 
For the MEMPHIS configuration with N = 4, this re-
sults in a theoretical height resolution of ρh ≈ 21 m 
and a theoretically achievable minimum standard de-
viation of σh ≈ 1.7 m for an SNR = 10 dB. 
In [7] it has been shown that single pass systems are 
able to retrieve the heights of K = N – 1 scatterers, 
which means that the interferometric MEMPHIS con-
figuration should be able to separate the information 
of up to 3 height contributions within one resolution 
cell. Since, however, the available height resolution is 
quite low, methods capable of super-resolution are 
needed.     

3 Layover Separation Using 
Compressive Sensing 

3.1 Standard Compressive Sensing 

A very promising super-resolution method for the 
separation of several height contributions within a 
layover resolution cell is compressive sensing (CS) 
[8]. Its applicability for SAR tomography problems 
was first proven using repeat pass TerraSAR-X 
data [9].  
The method is based on the system imaging model 
 

= +g Ax n ,                            (4) 
  
where g is the measurement vector containing N sin-
gle look complex observations, A is the N x L steering 
matrix containing the mapping of L discretized height 
values, x is the discrete and sparse reflectivity vector 

corresponding to the searched height profile, and n is 
the additive noise term. 
The N x L elements of the steering matrix are given by 
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where ( ), cos⊥ = −nl nlB B θ α  is the perpendicular 
baseline, α the baseline tilt and 

( )( )arccos= −nl n l n
H h Rθ  the range and height de-

pendent off-nadir angle. 
The unknown reflectivity is then estimated using a 
convex minimum L1 norm reconstruction [10]: 
 

1 2
ˆ ˆmin  s.t. − ≤ εx Ax g .                 (6) 

 

ε is a noise dependent threshold that can be calculated 
based on singular value decomposition (see section 
3.4). 
The non-zero elements in the sparse solution vector x̂  
correspond to heights that contributed to the observed 
layover signal. 

3.2 Distributed Compressive Sensing 

Recently, another method based on the sparsity as-
sumption and the according L1 norm minimization was 
adapted to multi-baseline SAR interferometry: Distri-
buted Compressive Sensing (DCS) [11]. The idea be-
hind DCS is the exploitation of the joint sparsity of 
the reflectivity vectors of neighboring pixels. This is a 
valid assumption, as long as these pixels show back-
scattering information of the same structure, which 
means either only small or preferably adaptive neigh-
borhoods have to be considered.  
The P observed N x 1 stack pixels then are combined 
in a measurement matrix  
 

[ ]1 2    = … PG g g g ,                         (7) 
 

while also the P unknown L x 1 reflectivity vectors are 
concatenated to a reflectivity matrix: 
 

[ ]1 2    = … PX x x x .                          (8) 
 

The optimization problem then becomes  
 

2,1

ˆ ˆmin  s.t. − ≤
F

εX AX G ,               (9) 

 

where 
2,1
i  is the mixed norm summarizing the 

L2 norms of all matrix rows and i
F

  is the Frobe-

nius norm. 
Thanks to the mixed norm that ensures joint sparsity 
between the reflectivity vectors of the pixels, the solu-
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tion will benefit from the mutual support between 
these sparse vectors. 
It has to be noted, however, that A in (9) only equals 
the steering matrix from (4) and (6) if all pixels are 
located in the same range bin. Otherwise, the observa-
tions have to be rephased first [11]. 

3.3 Multilooking and Compressive 
Sensing 

While in DCS the different pixels are taken to be dif-
ferent samples of the same observation, one could also 
think about considering them as independent observa-
tions of the same backscattering process, a view that is 
not uncommon in SAR interferometry [12]. The main 
advantage of this idea is the increase of redundant ob-
servations for the L2 norm minimization part. 
In this approach, the basic formulae of section 3.1 are 
used with the difference that the measurement vector 
is extended by piling the independent pixel stacks: 
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Of course, the steering matrix has to be concatenated 
accordingly: 
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with A1 = A2 = … = AP for all pixels of the same 
range bin (cf. section 3.2). 

3.4 Noise-adaptive Thresholding 

According to [13], the noise adaptive threshold ε can 
be chosen by projecting the observations onto the sin-
gular values corresponding to noise space. 
First of all, singular value decomposition (SVD) has 
to be applied to the steering matrix A: 
 

= TA USV ,                             (12) 
 

where [ ]1 2    = … NU u u u  and [ ]1 2    L=V v v v…  

are unitary matrices containing the left and right sin-
gular vectors, respectively, while the main diagonal of 
S contains the non-negative singular values in de-
scending order. These singular values usually can be 
used to distinguish between signal and noise space. If 
nε is the number of singular values corresponding to 
noise space, the noise level ε can be calculated by 

   

Figure 2  Singular values of the multi-baseline sys-
tem. Left: single pixel case, right: 5 pixel multilooking 

case. 
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with the afore mentioned projections of observations 
onto noise space ( )  1  = = − + …

T
n n n N n Nεβ u g .    

As can be seen in Fig. 2 (left), none of the only four 
singular values clearly corresponds to noise space. 
Since, however, at least one noise singular value is 
needed in order to determine the noise level always 
the smallest is chosen for the standard CS method de-
scribed in section 3.1. 
For the methods relying on pixel neighborhoods 
shown in sections 3.2 and 3.3, AML of section 3.3 is 
decomposed, leading to 4·P singular values, of which 
always four contain signal information (coming from 
the four linearly independent lines of AML), while the 
rest clearly corresponds to noise space (see 
Fig. 2 right). The advantage of a clear discriminability 
of signal and noise space leading to a more robust 
noise level determination is obvious.  

4 Experimental Results 

For a first theoretical assessment of the potential of 
compressive sensing based methods for layover sepa-
ration in airborne single pass InSAR data, experiments 
based on simulated resolution cells have been carried 
out. 
The simulations are based on the assumption of two 
scatterers within one pixel, one at ground level 
(h1 = 0 m), one at roof level (h2 = 15 m). The results 
of CS, DCS and the multilooking approach to CS 
(MCS) are plotted for different SNR in Fig. 3, with a 
utilization of 11 neighboring pixels of the same range 
bin, which are assumed to contain similar backscatter-
ing information. It can clearly be observed that classic 
CS is not reasonably applicable to multi-baseline In-
SAR data with only few receiving channels. Both 
DCS and MCS provide significantly better reconstruc-
tion accuracy, especially for low SNR. The lack of 
sufficient observations, however, can obviously be 
healed by considering adequate pixel neighborhoods. 
The dependence on the sample size is shown in Fig. 4. 
All in all, the multilooking theory leads to slightly bet-
ter results than distributed compressive sensing.  
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Figure 3  Mean Root Mean Square Error (RMSE) of 
the reconstructed scatterer heights for growing SNR. 

Note that only results with correctly estimated sparsity 
model order (K = 2) have been considered.  

 
 

 

Figure 4  Mean RMSE of the reconstructed scatterer 
heights for growing size of pixel neighborhood. Again 
only results with correctly estimated sparsity model 

order (K = 2) have been considered.  

5 Conclusion 

In this paper it has been shown that compressive sens-
ing based methods can be used for airborne multi-
baseline InSAR data with only few receiving channels 
if the measurements of more than a single resolution 
cell are used in the estimation process. Future research 
will have to apply the findings of this paper to real test 
data. It is worth to be noted that the loss of spatial res-
olution, which is introduced by considering more than 
one resolution cell for the estimation process, is not 
too critical for ultra high resolution airborne SAR data 
still providing information in the decimeter range even 
after the combination of several neighboring pixels. 
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