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Abstract—Localization of pedestrians becomes a difficult task
in situations where no measurements with respect to an es-
tablished reference system, as it is provided by satellites when
using GPS, are available. One possible approach to tackle this
problem is to attach a suitable sensor to pedestrians and then to
run a simultaneous localization and mapping (SLAM) algorithm
in order to localize the sensor. A combination of an inertial
measurement unit (IMU) with a monocular camera is a promising
choice of sensors for an indoor pedestrian localization system
since these sensors provide complementary measurements.

This paper discusses two approaches to integrate visual and
inertial information which differ mainly in the choice of reference
coordinate system. A detailed description of both approaches is
given and they are compared with respect to their performance
on simulated and real measurement data.

I. INTRODUCTION

The capability to localize oneself in a previously unknown

environment is a prerequisite to navigate and to perform

tasks within that environment. Therefore, especially blind

people or first responders in disaster recovery situations would

benefit from a pedestrian localization system that operates in a

variety of scenarios. Satellite positioning systems like GPS are

widespread, but they depend on the availability of the radio

signal sent by the satellites. This precludes their usage inside

buildings or in urban canyons, where the signals are often

either occluded or severely disturbed due to multipath effects.

Alternative positioning systems, like Honeywell’s GLANSER

system [1], which were developed to fill this gap, often rely

on some sort of infrastructure that has to be installed at the

site of operation.

Positioning systems that do not make use of external

infrastructure essentially perform dead reckoning, i.e., the

position can only be estimated relative to a previous position

estimate. Hence, the error in the calculated solution inevitably

grows over time. Inertial measurement units (IMUs) measure

acceleration and angular velocity of a moving body. Thus,

integration of these measurements over time yields an estimate

of the body’s displacement during the integration interval.

However, IMUs that offer the accuracy necessary to calculate

feasible estimates of a pedestrian’s position are both costly and

bulky and therefore not applicable to the task of localizing

a pedestrian. By contrast, low-cost IMUs built with micro-

electro-mechanical systems (MEMS) technologies satisfy the

requirements concerning costs and size, but are subject to

Fig. 1. Sensor system comprising an IMU and a camera attached to the torso
of a person.

measurement errors that lead to rapidly growing errors in the

position estimate.

One possibility to overcome these problems is to use a

combination of a compact low-cost IMU with a sensor that

observes landmarks in the environment in order to reduce

drift. Since the positions of these landmarks are not known

in advance, they have to be estimated simultaneously with the

pose of the sensor. This problem is commonly referred to as

the simultaneous localization and mapping (SLAM) problem.

This work is concerned with the integration of a camera with

a low-cost IMU into a SLAM system that can be comfortably

attached to a pedestrian as shown in Fig. 1. For this purpose,

the extended Kalman filter (EKF) is used to estimate the

positions of unknown landmarks and the pose of the sensor

system simultaneously.

II. RELATED WORK

A. Visual SLAM

Because of its importance for practical applications, not

only in robotics, the SLAM problem has received a lot of

attention during recent years. When monocular or stereo

cameras are used as the primary sensor the procedure is usually

as follows: Image coordinates that correspond to the projection



of landmarks in the image plane are tracked over multiple

camera images and subsequently used to estimate the sensor’s

trajectory as well as the map.

It is interesting to note that the same problem is ad-

dressed in different scientific communities each time for a

slightly different purpose. Namely, while the focus in the

robotics community is on localization of autonomous robots,

cf. [2], the computer vision community often aims at efficient

determination of the camera’s pose for augmented reality

applications [3]. Only recently the batch optimization approach

to SLAM which was long known to the photogrammetric com-

munity under the term “bundle adjustment” was rediscovered

and modified for real-time operation [4].

B. Inertial aiding: World-centric formulation

However, filtering using either an EKF or an unscented

Kalman Filter (UKF) is still a widely adopted method for in-

tegrating visual and inertial measurements in a SLAM system.

This probably stems from the fact that filtering, especially with

the error-state formulation of the EKF, is the standard tool

for GPS-INS integration in the navigation community. The

inertial mechanization equations, i.e., the strapdown algorithm,

used for error-state filtering are usually formulated w.r.t. a

coordinate system that is aligned with the local direction

of gravity, cf. [5]. This frame is called navigation frame in

this work. Veth and Raquet present an inertial-aided visual

SLAM system that utilizes the error state formulation w.r.t.

the navigation frame by extending the state vector of an EKF

with the Cartesian coordinates of observed landmarks [6]. A

stereo camera system or a terrain model are used to obtain an

initial estimate of the distance of new landmarks to the camera

image they were first observed in.

This formulation of the SLAM problem, where the sensor’s

pose and the map are parameterized w.r.t. the navigation frame

is called world-centric in this work.

C. Inertial aiding: Sensor-centric formulation

A major drawback of the EKF is its susceptibility to

linearization errors. Huang presents an extensive study on

the effect of linearization errors in SLAM for the simplified

case of a robot moving in the 2D-plane [7]. It is shown

that linearization errors have the effect that theoretically non-

observable directions of the SLAM state space that corre-

spond to the sensor’s pose become observable and lead to

inconsistent state estimates. It is also shown that the correct

observability properties can be maintained during filtering

if the sensor-centric parameterization that was introduced

by Castellanos et al. in [8] is chosen. Here, the origin of

the reference coordinate system always coincides with the

sensor coordinate system. This has the effect that linearization

errors are significantly reduced because the derivatives w.r.t.

the sensor pose are calculated close to the true linearization

points. However, after each measurement update a composition

step has to be performed in order to reset the origin to

the updated sensor pose. Since the composition step affects

the whole covariance matrix it may significantly increase the

computational cost for large maps.

In [9] a similar sensor-centric landmark parameterization

is presented that enables a linear measurement update for

landmark observations by predicting the position of landmarks

in the camera frame using inertial measurements and the

unscented transformation.

In the following, the term sensor-centric will also be used

to refer to parameterizations as they are used in [10] and [11].

Both formulate the inertial mechanization equations w.r.t. the

sensor pose at the start of operation. For this purpose the

coordinates of the gravity vector w.r.t. the first sensor pose are

also estimated in order to be able to perform the strapdown

computation.

D. Contribution

This work compares two variants of the strapdown algo-

rithm, which is used to process IMU measurements during

the time prediction step in error state formulations of the EKF,

regarding their capability to produce consistent state estimates

when employed in a visual SLAM framework in combination

with an EKF. Namely, a sensor-centric formulation that allows

to process landmark observations in a coordinate system that

coincides with the sensor coordinate system at the beginning

of the estimation process is compared to a world-centric

approach where the reference frame is determined by the

direction of gravity. The sensor-centric approach is similar to

explicitly estimating the direction of gravity in the reference

coordinate system as it also allows to start estimation with

zero uncertainty in the estimate of the sensor’s pose.

Furthermore, the effect of performing a composition step as

originally proposed in [8] on the consistency of the filter and

the overall scale estimate is investigated. Experiments with

real and simulated data are presented to compare the different

approaches.

III. EKF-SLAM FORMULATION

The subsequent sections present the inertial aided

EKF-SLAM approach used in this work in more detail with an

emphasis on the inertial mechanization equations (strapdown

computation).

A. Coordinate systems

The following coordinate systems are of particular interest

for the formulation of the inertial mechanization equations in

secs. III-E-III-F.

• The body or IMU-coordinate system {b} is aligned to the

IMU’s axes and therefore describes the pose of the whole

sensor system. Its position and orientation are included

in the filter state.

• The camera coordinate system {c} is not part of the filter

state. Its pose can be calculated from the IMU’s pose

by means of the camera-IMU transformation that only

depends on the mechanical setup and is assumed to be

fix and known in this work.



• The navigation coordinate system {n} is the fixed world

frame whose x- and y- axis point north- and eastwards

while its z-axis points in the direction of local gravity. It is

assumed that the distance between the body coordinate

system and the navigation frame is small compared to

the radius of the earth and therefore the direction of

gravity can be considered constant during operation of

the system. In this case the position of the navigation

frame can be chosen arbitrarily.

• The strapdown coordinate system {s} is the frame the

inertial mechanization equations are formulated in. Also,

the pose of the body frame is given in coordinates w.r.t.

the strapdown frame. In the world-centric formulation

this frame coincides with the navigation frame. When a

sensor-centric formulation is chosen, the mechanization

equations are formulated either w.r.t. the body frame at

the beginning of the measurement process or w.r.t. the

body frame at the time when the last composition step

was performed.

Here, the term “pose” of a coordinate system refers to

its position and orientation w.r.t. a given reference system.

Lowercase letters are used to refer to coordinate systems in

coordinate transformations. E.g., npb refers to the position of

the body frame {b} in coordinates of the navigation frame {n}.

Similarly, Cn
b denotes the direction cosine matrix (DCM) that

transforms coordinate vectors in the body frame to coordinate

vectors in the navigation frame. As a pair, npb and Cn
b describe

the pose of the body frame w.r.t. the navigation frame. C(q)
denotes the rotation matrix that is associated with a unit

quaternion q.

B. SLAM state parameterization

Since the goal is to determine the pose of the body frame

and a sparse map of point landmarks, the EKF state vector

comprises parameters which describe the IMU’s motion and

biases as well as the coordinates of observed landmarks:

st =
[

s′T mT
]T

(1)

Here, s′ contains the state variables that describe the motion

of the body frame w.r.t. the reference frame that was chosen

for the formulation of the inertial mechanization equations. It

is described in more detail in sec. III-E and III-F. The map

vector m subsumes the coordinates of all landmarks that are

included in the filter’s state:

m =
[

YT
1 . . . YT

N

]T
(2)

In the following, estimated values are denoted by a hat (̂·)
and a tilde (̃·) is used to indicate the error, i.e., the deviation

between a true value (·) and its estimate: (̃·) = (·)− (̂·).

C. Error state formulation

Since the EKF relies on a truncation of the Taylor series

expansion of the measurement equation as well as the time

update step after the first derivative, it can be regarded as

an estimator for the state error s̃. This is the basis for the

error state formulation of the EKF which is commonly used

for GPS-INS integration, cf. [5, pp. 199-222]. Therefore, the

covariance matrix associated with the filter state describes the

distribution of s̃ under the assumption that the errors follow a

normal distribution. It is given by

P =

[

Ps̃′,s̃′ Ps̃′,m̃

Pm̃,s̃′ Pm̃,m̃

]

. (3)

The error of the estimated orientation can be written in

terms of the incremental orientation that aligns the estimated

coordinate system with the unknown true coordinate system:

qc
d = q(Ψc

d) ∗ q̂c
d , q(Ψ) ≈

[

1 Ψ
2

T
]T

(4)

Where ∗ denotes quaternion multiplication and {c}, {d} are

arbitrary coordinate frames.

D. IMU measurement model

The IMU measures acceleration and angular velocity w.r.t.

an inertial frame in its own reference frame {b}. A reference

frame that is fixed to the earth’s surface cannot be an inertial

frame because gravitational and Coriolis forces, which result

from the earth’s mass and rotation, affect any body that rests

in such a coordinate frame. While the effect of gravity cannot

be neglected, it is assumed that the Coriolis effect cannot

be distinguished from noise with the low-cost inertial sensor

used in this work. Similarly, it is assumed that the effect of

the earth’s rotation cannot be observed in the angular rate

measurements.

In addition, inertial measurements are usually subject to

systematic errors (biases), which have to be compensated

before integrating inertial measurements.

Thus, the IMU’s measurements are modeled by the follow-

ing equations:

b
ma = ba+ ba + na (5)
b
mω = bω + bg + ng (6)

In the above equations, ba and bg are the biases, which

affect the acceleration and angular rate measurements respec-

tively. Furthermore, na and ng are white Gaussian noise terms

pertaining to acceleration and angular rate measurements b
ma

and b
mω. It is assumed, that the biases change in time according

to a random walk process driven by white Gaussian noise

terms nba and nbg .

E. Inertial mechanization: World-centric formulation

The inertial mechanization equations serve two purposes:

They describe how the sensor system moves according to

the inertial measurements and how the covariance matrix that

describes the IMU’s pose (s′) uncertainty is propagated in

time.

In the world-centric formulation these equations are written

w.r.t. the navigation frame, which hence becomes the strap-

down frame in this case. The IMU’s motion can thus be

described with the following state variables:



s′ =
[

npT
b

nvT
b bT

a qn
b
T bT

g

]T
(7)

Inertial measurements are integrated to update position and

velocity estimates according to the following equations:

nâ = C(q̂n
b ) · (bma− b̂a)+

ng
np̂b,t+τ = np̂b+

nv̂b · τ+ 1
2
nâ · τ2

nv̂b,t+τ = nv̂b+
nâ · τ

(8)

Where τ is the time interval between consecutive inertial

measurements. Note, that the gravity vector ng does not

need special treatment since the equations are given w.r.t. the

navigation frame where the direction of gravity is known.

To integrate angular rate measurements, a quaternion that

describes the incremental rotation in the body frame is formed

from the angular rate measurements and subsequently used to

update the orientation estimate:

ω̂ = b
mω − b̂g

q̂n
b,t+τ = q̂n

b ∗ q(ω̂) (9)

In the error space formulation the Rodrigues vector takes

the place of the quaternion in (7):

s̃′ =
[

np̃T
b

nṽT
b b̃T

a Ψn
b
T b̃T

g

]T
(10)

The uncertainty of the error state is propagated according

to a first order differential equation that corresponds to the

physical model in (8) and (9):

·

s̃′ = F · s̃′ +G · n (11)

Here, vector n summarizes the noise terms. The entries of

the matrices F and G are determined by the coefficients of

the time derivatives of the error state:

·
np̃b=

nṽb (12)
·

nṽb=
⌊

−C(q̂n
b ) · (bma− b̂a)

⌋

×
·Ψn

b+

C(q̂n
b ) · na − C(q̂n

b ) · b̃a (13)
·

b̃a=nba (14)
·

Ψn
b=C(q̂n

b ) · b̃g (15)
·

b̃g=nbg (16)

Where ⌊v⌋× is the skew-symmetric cross product matrix

with entries from v.

It is important to realize, that these derivatives depend on

estimated values. In case of the velocity and the orientation

error this leads to coefficients in F that depend on the

estimated state. As noted in [12] this is an important source

of linearization related errors in inertial aided SLAM systems.

Given the time derivatives of the error state, the covariance

is propagated as follows for each inertial measurement:

Φ = exp(F · τ) ≈ I15×15 + F · τ (17)

P ′
t+τ = Φ · Ps̃′,s̃′ · ΦT

t +Φ ·G ·Q ·GT · ΦTτ (18)

Pt+τ =

[

P ′
t+τ Φ · Ps̃′,m

Pm̃,s̃′ · ΦT Pm̃,m̃

]

(19)

In the expression above, Q is the power spectral density

matrix which characterizes the noise vector n.

F. Inertial mechanization: Sensor-centric formulation

The idea of using a sensor-centric formulation is to reduce

the dependency on estimated values in the covariance propaga-

tion process by formulating the mechanization equations with

respect to a strapdown frame that is known with high certainty,

e.g., a recent sensor coordinate system [12]. Since the direction

of gravity is not known in this frame, the transformation

between the strapdown frame and the navigation frame is

included in the state vector:

s′ =
[

spT
b

svT
b bT

a qs
b
T bT

g
npT

s qn
s
T
]T

(20)

Here, nps and qn
s are the position and orientation quaternion

of the strapdown frame w.r.t. the navigation frame. With the

corrected acceleration

sâ = C(q̂s
b) · (bma− b̂a)+C(q̂s

n) · ng (21)

inertial measurements can be integrated in the {s}-frame as

shown in (8)-(9) for the navigation frame.

The time derivatives for the error state in this case are:

·
sp̃b=

sṽb (22)
·

sṽb=
⌊

−C(q̂s
b) · (bmab − b̂a)

⌋

×
·Ψs

b + C(q̂s
b) · na−

C(q̂s
b) · b̃a + C(q̂n

s )
T · ⌊ng⌋× ·Ψn

s (23)
·

b̃a=nba (24)
·

Ψs
b=C(q̂s

b) · b̃g (25)
·

b̃g=nbg (26)
·

np̃s=03×3 (27)
·

Ψn
s=03×3 (28)

With these derivatives a covariance propagation step is

performed as described by (17)-(19).

Note, that the inertial integration equations together with

the covariance updates define the time update step of the EKF

for both mechanizations.

G. Measurement update

Salient image regions are continuously extracted and tracked

in the image stream. The coordinates of all features extracted

in one image are stacked together to form the measurement

vector that is subsequently used to update the state. The



observation model for a landmark Yi consists of a coordi-

nate transformation and subsequent projection onto the image

plane:

z = h(s) + v

= π(Cc
s · (Yi − spc)) + v (29)

Here, z are the observed image coordinates, v is the zero

mean white Gaussian measurement noise, and π(·) is the

projection function. The Jacobian of the observation model

w.r.t. the state variables is:

Hi = Jπ
[

Jp 03×6 JΨ . . . 03×3·(i−1) JY 03×3·(N−i)

]

.

(30)

Where Jp, JΨ and JY are the derivatives of the coordi-

nate transformation w.r.t. the position of the body frame, its

orientation, and the position of the landmark, respectively.

Furthermore, Jπ is the Jacobian of the projection function.

Similarly to the measurement vector, the Jacobian H for

the EKF update step is obtained by stacking the Jacobians

Hi for individual landmarks. Finally, an EKF update step is

performed to estimate the error s̃, cf. [13]. The error estimate is

then used to correct the state where quaternions are corrected

as described by (4).

The observation model does not depend on the chosen

mechanization. However, when a mechanization w.r.t. an ar-

bitrary frame is used, the additional state variables have to be

updated as well.

H. Composition step

The composition step, which is introduced in [8], is used

in this work in order to reset the strapdown frame, which is

also the reference frame for the SLAM algorithm, at regular

intervals. It is basically a coordinate transformation that is

applied to the whole state vector and the covariance matrix

with the effect that the entries in the covariance matrix that

correspond to the sensor’s pose w.r.t. the strapdown frame are

zeroed out while the uncertainty that is associated with the

remaining state entries is adjusted accordingly. The coordinate

transformation that resets the strapdown frame can be written

as follows:

T b
s =

[

Cs
b
T −Cs

b
T · spb

0 1

]

(31)

This transformation is applied to all state variables except

for the biases, which do not depend on a chosen reference

frame, and the pose of the strapdown frame w.r.t. the naviga-

tion frame. The latter is adjusted by the composition

Tn
s2

= Tn
s · T s

b . (32)

Here, {s2} is the new strapdown frame after the compo-

sition step, which coincides with the body frame. Let Jc be

the Jacobian of the function that results from applying the

above coordinate transformations to the whole state. The new

covariance matrix for the whole state is then obtained by first

order error propagation:

Pc = Jc · P · JT
c (33)

In the experiments presented in the next section a compo-

sition step is only performed whenever more than four new

features are included in the filter state simultaneously. This

strategy was chosen to speed up calculations.

IV. EXPERIMENTAL RESULTS

A. Simulation results

For the simulation experiments, a L-shaped trajectory was

generated that resembles a walk along a hallway with a sharp

turn into a narrow sideway at the end. Acceleration and angular

rate measurements were derived from the generated trajectory.

These were artificially corrupted with white Gaussian noise

whose standard deviation was determined from the noise

statistics that were measured by the sensor system used for the

real data experiment presented in the next section. Landmark

observations were generated by projecting the coordinates of

known points on the image plane using a central projection

model and adding white Gaussian noise with one pixel stan-

dard deviation. Again, the chosen camera parameters resemble

the values of the system used in the real data experiment.

In order to investigate in how far inertial measurements

facilitate the estimation of scale, the ratio of average distances

between estimated landmark positions to the average distances

between ground truth landmark positions is calculated during

the simulation runs:

γ =

∑

N

i=1

∑

N

j=i
‖Ŷi−Ŷj‖

∑

N

i=1

∑

N

j=i
‖Yi−Yj‖

(34)

Results for one simulation run are shown in Figs. 2-

4. When a world-centric mechanization is used, the filter

becomes inconsistent after a short period of time. Since the

initial uncertainty of the sensor’s pose describes the expected

registration error at the beginning of the measurement process,

this precludes the correction of these initial errors when the

estimates of the IMU’s acceleration biases improve. Conse-

quently, the initial pitch angle error is not corrected, and an

substantial error in the height estimate occurs. The world-

centric approach also yields the worst scale estimates for the

main part of the scene compared to the two alternatives.

The plots for the sensor-centric mechanizations also include

the transformation from the {s}-frame to the {n}-frame. Since

the initial position nps is not correlated to the other state

variables, it is not adapted in the filtering process and hence

not included in Fig. 3. However, correlations arise when the

composition step is performed. Thus, nps is included in Fig. 4.

The results indicate that a sensor-centric mechanization

improves the consistency of the algorithm. Nevertheless, the

filter becomes inconsistent approximately after 23 s. This is

the time when the system enters the narrow sideway, and a lot

of new landmarks are introduced to the filter state. Because

new landmarks are initialized with a fix depth of 8 m and a
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Fig. 2. Simulation results for the world-centric mechanization. (a) Top
view of the simulated trajectory. Red: Reference trajectory, Green: Estimated
trajectory, Blue: Reference landmark positions Orange: Estimated landmark
positions. (b) Error plots. Blue: Error, Green: 3σ-bounds as estimated by the
filter. Red bars indicate the points in time when new landmarks are introduced.

large uncertainty in the direction of the projection ray, this

causes the peaks that can be observed in the plots of the scale

ratio γ. This probably also explains the observed inconsistency

after 23 s: the fix depth used for initialization deviates even

more from the true depth of observed landmarks in the narrow

sideway.

The composition step improves the consistency of the

filter w.r.t. the local strapdown frame. Note, that error and

uncertainty of the estimated sensor pose in the {s} frame

are reduced to zero after each composition step while the

uncertainty associated with the pose of the {s} frame w.r.t.

the {n} frame increases until the acceleration biases become

observable due to the turn after 23 s. However, overall the

estimates for the pose of the {s} frame w.r.t. the {n} frame

are still inconsistent at the end of the trajectory.

B. Indoor experiment

The three approaches were also tested on an indoor dataset

that was recorded in an office building using the system

shown in Fig. 1. The sensor system is composed of MEMS

accelerometers with 5-10 mg RMS noise characteristics and

gyroscopes that are subject to a 0.0056 ◦ / (sec ·√sec) angular

velocity random walk according to the manufacturers. In

addition, a camera records video images with a resolution of

1398x1080 pixels at 28 Hz. These images were scaled down

to half size.

Because ground truth is not available for these experiments,

the approaches have to be evaluated by comparing the recon-

structed trajectory to the building’s floor plan as shown in

(a)

5 10 15 20 25
0
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‖Ψ
s b
‖
[◦
]

5 10 15 20 25
0
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‖s
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b
‖
[m

]
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0.5

1
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γ
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0

5
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‖Ψ
n s
‖
[◦
]

t [s]

(b)

Fig. 3. Simulation results for the sensor-centric mechanization without
composition. See Fig. 2 for explanation.

Fig. 5. The initial orientation of the sensor system w.r.t. the

map was determined with an integrated compass.

Obviously, the sensor-centric approach using the composi-

tion step performs best on this dataset. This holds especially

for the scale factor that is severely underestimated when the

composition step is not applied. If a world-centric mecha-

nization is used, the system fails approximately after the first

quarter of the trajectory. Moreover, a substantial heading angle

error can be observed in this case.

V. CONCLUSION

Two approaches to formulate the inertial mechanization

equations are compared w.r.t. their applicability to inertial

aided visual SLAM using an EKF. It is shown that consistency

and robustness can be improved by formulating the mech-

anization equations w.r.t. the initial pose of the system and

performing composition steps at regular intervals.

However, the filter is still inconsistent in some situations,

especially when a lot of new landmarks are included to the

state with arbitrary initial depth estimates. It is a fundamental

flaw of the Kalman filter algorithm that it is not able to

relinearize when the depth estimate for newly introduced

landmarks improve. Furthermore, these linearization errors are

accumulated over time when poorly estimated state variables

are marginalized.
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Fig. 4. Simulation results for the sensor-centric mechanization with compo-
sition. See Fig. 2 for explanation.
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