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ABSTRACT:

Repeated observation of several characteristically textured surface elements allows the reconstruction of the camera trajectory and a
sparse point cloud which is often referred to as “map”. The extended Kalman filter (EKF) is a popular method to address this problem,
especially if real-time constraints have to be met. Inertial measurements as well as a parameterization of the state vector that conforms
better to the linearity assumptions made by the EKF may be employed to reduce the impact of linearization errors. Therefore, we adopt
an inertial-aided monocular SLAM approach where landmarks are parameterized in inverse depth w.r.t. the coordinate system in which
they were observed for the first time. In this work we present a method to estimate the cross-covariances between landmarks which are
introduced in the EKF state vector for the first time and the old filter state that can be applied in the special case at hand where each
landmark is parameterized w.r.t. an individual coordinate system.

1 INTRODUCTION

1.1 Motivation

Navigation in unknown environments is often hindered by the
absence of external positioning information. In the context of
pedestrian navigation for instance, the GPS signal may be tem-
porarily lost or severely disturbed due to multipath effects in ur-
ban canyons. The need to cope with such situations has moti-
vated the research in systems which are capable of building and
maintaining a map of the environment while at the same time lo-
calizing themselves w.r.t. that map. This problem is commonly
referred to as simultaneous localization and mapping (SLAM).
For the particular application of pedestrian navigation, a promis-
ing approach is to combine a low-cost inertial measurement unit
(IMU) and a camera to an inertial aided monocular SLAM sys-
tem and perform sensor data fusion in an extended Kalman filter
(EKF), cf. (Veth and Raquet, 2006). Here, characteristically tex-
tured surface elements serve as landmarks which can be observed
by the camera to build up a map while the IMU’s acceleration
and angular rate measurements are integrated in order to obtain a
short-time accurate prediction of the camera’s pose and thereby
help to reduce linearization error.

1.2 Related Work

An important aspect of such monocular SLAM systems is the
representation of landmarks in the filter state vector. Montiel et
al. have proposed an inverse depth parameterization of landmarks
that conforms well to the linearity assumptions made by the EKF
and offers the possibility of instantly introducing new landmarks
in the filter state with only one observation (Montiel et al., 2006).
In the original inverse depth parameterization six additional pa-
rameters are included in the filter state for each freshly introduced
landmark. To alleviate the computational burden imposed by this
over-parameterization, Civera et al. introduce a method to trans-
form landmarks to Cartesian coordinates once their associated
covariance has sufficiently collapsed (Civera et al., 2007). Al-
ternatively, Pietzsch proposes to initialize bundles of landmarks
and to estimate only the inverse distance to the origin of the co-
ordinate system of the camera that observed the landmarks for
the first time for each landmark individually and the position and

orientation of the camera coordinate system for the whole bun-
dle (Pietzsch, 2008).

The importance of the cross-covariance terms in SLAM is stres-
sed in a seminal work by Dissanayake et al. (Dissanayake et
al., 2001). Julier and Uhlmann present a detailed investigation
of the consistency of EKF-SLAM implementations (Julier and
Uhlmann, 2001). Therein it is shown that errors in the estimated
cross-covariance terms due to linearization errors lead to incon-
sistent estimates. A comparison of several landmark parameter-
izations for monocular SLAM regarding their effects on filter
consistency is provided by Solà (Solà, 2010). This work also
gives a detailed description of landmark initialization in monoc-
ular SLAM.

1.3 Contribution

Our approach is to parameterize each landmark in inverse depth
polar coordinates w.r.t. the coordinate system of the camera at
the time of its first observation. Therefore, the camera’s orien-
tation and position as well as the parameters that describe the
landmark’s position in the camera coordinate frame have to be
stored for each landmark. However, we regard the camera’s posi-
tion and orientation as fix model parameters and thus only include
the three parameters which describe the landmark’s uncertain po-
sition in the filter state, thereby avoiding overparameterizing the
landmark’s position. Since the camera’s position and orientation
are regarded as fix model parameters, the corresponding uncer-
tainty estimate has to be conveyed to the landmark’s uncertainty
estimate. In addition, the cross-covariances between the new
landmark and the landmarks already present in the filter state
have to be computed. This is aggravated by the fact, that the
landmark coordinates in the filter state are given with respect to
distinct coordinate frames, which precludes the adaption of stan-
dard error propagation methods in this case. The main contribu-
tion of our work is a method to convey the uncertainty estimate
from the camera to the landmark parameters and to determine the
cross-covariances between the new landmark and the parameters
already present in the filter state.
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2 EKF-SLAM FORMULATION

This section describes the EKF-SLAM approach employed in this
work with an emphasis on the parameterization of landmarks.

2.1 Coordinate systems

The following coordinate systems are of particular interest for the
derivation of the cross-covariances in sec. 2.5.2. An overview is
also given in fig. 1.

The body or IMU-coordinate system {b} that is aligned to the
IMU’s axes and therefore describes position and orientation
of the whole sensor system. Its position and orientation are
included in the filter state.

The camera coordinate system {c}. The camera’s position and
orientation are not part of the filter state. They can be cal-
culated from the IMU’s position and orientation by means
of the camera-IMU transformation that only depends on the
mechanical setup and is assumed to be fix and known in this
work.

The navigation frame {n}. This is the reference frame whose
x- and y- axis point north- and eastwards while its z-axis
points in the direction of local gravity. We assume that the
distance to the local reference frame is small compared to
the curvature of the earth and therefore the direction of grav-
ity can be considered constant during operation of the sys-
tem. In this case the position of the navigation frame can be
chosen arbitrarily.

Figure 1: Overview of the coordinate systems used in this work

2.2 State parameterization

The goal is to determine the position and orientation of the body
frame w.r.t. the navigation frame and a sparse map of point land-
marks. Hence, the EKF state vector comprises parameters which
describe the IMU’s motion and biases as well as the coordinates
of observed landmarks:

st =

npT
b

nvT
b bT

a qn
b

T bT
g︸ ︷︷ ︸

s′

YT
1 . . . YT

N︸ ︷︷ ︸
m


T

(1)

Where npb and nvb are the IMU’s position and velocity w.r.t. the
navigation frame, the unit quaternion qn

b represents the orienta-
tion and ba, bg are the sensor biases, which systematically disturb
acceleration and angular rate measurements. For convenience,
the landmark coordinates Yi are subsumed in the map vector m.
Similarly, the part of the state vector that describes the motion of
the IMU is denoted by s′. In the following, estimated values are
denoted with by a hat (·̂) and a tilde (·̃) is used to indicate the
error, i.e. the deviation between a true value (·) and its estimate:
(·̃) = (·)− (·̂).

2.2.1 Error state formulation. Since the EKF relies on a trun-
cation of the Taylor series expansion of the measurement equa-
tion as well as the time update step after the first derivative, it can
be regarded as an estimator for the state error s̃. This is the ba-
sis for the error state formulation of the EKF which is commonly
used for GPS-INS integration, cf. (Farrell and Barth, 1999, pp.
199-222). Therefore, the covariance matrix associated with the
filter state describes the distribution of s̃ under the assumption
that the errors follow a normal distribution. It is given by

P =

[
P̃s′,s̃′ P̃s′,m̃
Pm̃,s̃′ Pm̃,m̃

]
. (2)

The error of the estimated orientation can be written in terms of
the incremental orientation that aligns the estimated coordinate
system with the unknown true coordinate system:

qn
b = q(Ψ)∗ q̂n

b , q(Ψ) ≈
[
1 Ψ

2
T
]T

(3)

Where ∗ denotes quaternion multiplication.

2.2.2 Landmark parameterization. The coordinate vector of
the i-th landmark in the filter state Yi describes the position of the
landmark in inverse depth polar coordinates w.r.t. the coordinate
frame {ck} of the camera at the time when the landmark was ob-
served for the first time as illustrated in fig. 2.

Figure 2: Landmark parameterization in inverse depth polar coor-
dinates. X is the Cartesian coordinate vector associated with the
inverse depth parameterization Y = [α β ρ ], with elevation an-
gle α , azimuth β and inverse depth ρ = 1/d, all w.r.t. the anchor
system {ck}.

Using the camera coordinate frame {ck} as an anchor for the
landmark therefore avoids over-parameterization in the filter state
and should thus increase computational efficiency and stability
during Kalman filter updates. In order to determine the position
of a landmark in the reference coordinate system, the transforma-
tion from the anchor coordinate system to the reference frame is
needed:

nX = Cn
ck
· 1

ρ

 cos(α)sin(β )
sin(α)

cos(α)cos(β )


︸ ︷︷ ︸

Y(Y)

+npck
(4)

In the above equation, the direction cosine matrix Cn
ck

describes
the orientation of of the anchor system and npck is its position. Y
is a unit vector that points in the direction of the projection ray.
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For every landmark Cn
ck

and npck are therefore stored in a separate
data structure because they are not part of the filter state although
they vary for different landmarks.

2.3 Time update

2.3.1 Integration of inertial measurements. During the time
update, the estimated state is propagated by integrating the iner-
tial measurements. To integrate angular rate measurements ω ,
a quaternion that describes the incremental rotation in the body
frame is formed from the angular rate measurements and subse-
quently used to update the orientation estimate:

ω̂ = ω− b̂g
q̂n

b,t+τ
= q̂n

b,t ∗q(ω̂)
(5)

Where τ is the time interval between two consecutive inertial
measurements. Acceleration measurements have to be trans-
formed to the reference coordinate system before the gravita-
tional acceleration can be subtracted. Then, the resulting estimate
of acceleration is used to integrate velocity and position:

nâb,t = C(q̂n
b,t) · (

bãb,t − b̂a,t)+
ng

np̂b,t+τ = np̂b,t+
nv̂b,t · τ+ 1

2
nâb,t · τ2

nv̂b,t+τ = nv̂b,t+
nâb,t · τ

(6)

2.3.2 Covariance propagation. The physical model de-
scribed by equations 5-6 corresponds to the first order differential
equation that describes the propagation of the estimation error s̃′
for the time dependent part of the state vector:

·
s̃′ = F ′ · s̃′+G′ ·n (7)

Here, F ′ is determined by the physical model and n summarizes
the white noise terms. From F ′ the discrete time transition matrix
Φ′ is computed and used thereafter to calculate the propagated
error state covariance matrix Pt+τ as stated below:

Φ
′ = exp(F ′ · τ)≈ I15×15 +F ′ · τ (8)

P′t+τ = Φ
′ · P̃s′t ,s̃′t ·Φ

′T +Φ
′ ·G′ ·Q ·G′T ·Φ′T · τ (9)

Pt+τ =

[
P′t+τ Φ′ · P̃s′t ,m̃t

Pm̃t ,s̃′t ·Φ
′T Pm̃t ,m̃t

]
(10)

In the expression above, Q is the power spectral density matrix
which characterizes the noise vector n.

2.4 Measurement update

New images are continuously triggered by the IMU as it moves
along its trajectory. Therein the image coordinates of point fea-
tures are extracted and tracked. The coordinates of all features
extracted in one image are stacked together to form the measure-
ment vector that is subsequently used to update the state vector.

2.4.1 Landmark observation model. The observation model
describes the relationship between the observed image coordi-
nates and the state vector entries. For this purpose, the estimate
of each observed landmark in inverse depth polar coordinates
w.r.t. its anchor system is first transformed to Cartesian coordi-
nates w.r.t. the navigation frame as shown in eq. 4. Subsequently,

the coordinates are transformed to the current camera coordinate
system and projected on the image plane:

z = h(s)+v

= π(Cc
n · (

1
ρ
·Cn

ck
·Y(α, β )+ npck − npc))+v

= π(Cc
n · (Cn

ck
·Y(α, β )+ρ · (npck − npb))+ρ · cpb)︸ ︷︷ ︸

cX
+v (11)

Where z are the measured image coordinates, v is the zero mean
measurement noise, and π(·) is the projection function. Eq. 11
describes the projection of one landmark. The Jacobian of h(s)
w.r.t. the entries of the state vector for landmark no. i is:

Hi = Jπ

[
Jp 03×6 JΨ 03×3 03×3·(i−1) JY 03×3·(N−i)

]
.

(12)

With the derivatives JΨ, Jp, and JY of cX w.r.t. the orientation qn
b,

the position npb, and the landmark Y. Similarly to the measure-
ment vector, the Jacobian H for the whole set of measurements
is obtained by stacking the measurement Jacobians for individual
landmarks.

Given the measurement model derived in this section and the pre-
diction from sec. 2.3, an EKF update step can be performed as
described in (Bar-Shalom et al., 2001, pp. 200-217).

2.5 Introduction of new landmarks

Landmarks are deleted from the filter state if they could not be
observed in a predefined number of consecutive images. When-
ever the number of landmarks in the state drops below a prede-
termined threshold, new landmarks have to be introduced. Since
the standard formulation of the Kalman filter does not allow for a
variable state size, the new filter state entries have to be estimated
based on previous observations. The inverse depth polar coordi-
nates for each new feature can be calculated based on the image
coordinates of its last observation and the camera calibration by
means of trigonometric functions:

Ynew = f (px, py,k,ρinit) (13)

Where px, py are the measured image coordinates, k contains the
intrinsic camera calibration parameters, ρinit is an arbitrarily cho-
sen inverse depth measurement and f (·) is the back projection
function, which projects to a point on the projection ray through
the observed image coordinates. In the following, J f denotes the
Jacobian of f w.r.t. px, py ,and ρinit .

A new landmark is introduced in the Kalman filter state by aug-
menting the state vector with the initial estimate of the landmark’s
position Ynew:

snew =
[
s′T mT YT

new

]T
(14)

In addition the covariance matrix has to be augmented with the
new cross-covariance terms and the covariance of the new land-
mark:
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Pnew =

 P̃s′,s̃′ P̃s′,m̃ P̃s′,Ỹnew

Pm̃,s̃′ Pm̃,m̃ Pm̃,Ỹnew

PỸnew,s̃′ PỸnew,m̃ PỸnew,Ỹnew

 (15)

2.5.1 Conventional approach. A commonly used method to
calculate the initial landmark estimate and the associated covar-
iance entries is to define an inverse observation function

Ynew = g(s′,z,ρ) (16)

that depends on one or more measurements z, the sensor system’s
position and orientation in s′ as well as on predefined parameters
like ρ . Let Js′ , Jz, and Jρ be the derivatives of g(·) w.r.t. s′, z, and
ρ . The sought-after covariance entries can then be approximated
as follows (Solà, 2010):

PỸnew,s̃′ = Js′ P̃s′,s̃′ (17)
PỸnew,m̃ = Js′ P̃s′,m̃′ (18)

PỸnew,Ỹnew
= Js′ P̃s′,s̃′J

T
s′ + JzRJT

z + Jρ σ
2
ρ JT

ρ (19)

Where σ2
ρ is the variance of the initial inverse depth estimate and

R is the measurement noise covariance matrix.

2.5.2 Proposed method. The scheme presented in the previ-
ous section is not directly applicable to landmark parameteriza-
tions as described in sec. 2.2.2. In this case function f (·) from
eq. 13 takes the role of g(·) in the above equations. The problem
is, that f (·) does not depend on the system’s position and orien-
tation. Thus, the Jacobian Js′ and with it the cross-covariances
PỸnew,s̃′ , PỸnew,m̃ become zero. As a result, the uncertainty of the
position and orientation estimate of the sensor system will be ne-
glected when eq. 17- 19 are applied.

k
ˆ{c }

{n}

k{c }

X

X̂
X

Figure 3: Position of a feature expressed in the true camera co-
ordinate system ck and the estimated camera coordinate system
ĉk.

Fig. 3 depicts the situation when a landmark’s position estimate
in Cartesian coordinates w.r.t. the reference frame {n} is com-
puted based on an erroneous estimate {ĉk} of the camera’s posi-
tion and orientation. The blue arrows indicate the landmark po-
sition estimates in the true camera coordinate system {ck} and in

the estimated camera coordinate system {ĉk} that are consistent
with the observed feature locations. Note, that the vectors X̂, X
expressed in camera coordinates are identical in case of a perfect
measurement. The red arrow marks the correct landmark estimate
in the erroneously estimated camera coordinate system {ck}. The
key idea behind our approach is to express the landmark position
error X̃ = X− X̂ (the dashed arrow) in the estimated camera co-
ordinate frame in terms of the unknown transformation between
the true and the estimated camera coordinate systems and to use
this transformation to propagate the error from the camera coor-
dinate system estimate to the landmark position estimate and to
calculate the cross-covariance entries.

In the ensuing derivation, the orientation error model described
in sec. 2.2.1 will be used. The transformation between the true
coordinate system {ck} and the estimated coordinate system {ĉk}
can be written in terms of a rotation matrix Cĉk

ck and the position
ĉk pck . The rotation matrix Cĉk

ck depends on the Rodrigues vector
that is defined in eq. 3:

Cĉk
ck
=C(Ψĉk

ck
)≈ (I−

⌊
Ψ

ĉk
ck

⌋
×
) (20)

Ψ
ĉk
ck
= Ĉck

n ·Ψ (21)

Where Ĉck
n =Cĉk

n =Cck
n̂ is the rotation matrix calculated from the

estimated orientation of the sensor system and the IMU-camera
calibration and Ψ

ĉk
ck is the orientation error expressed in the esti-

mated camera coordinate system. With this an expression for the
landmark error in Cartesian coordinates can be derived where the
index k, which is used to mark the anchor coordinate system for
a landmark, is omitted for brevity:

ĉX̃ = ĉX− ĉX̂
=Cĉ

c · cX+ ĉpc− ĉX̂
=Cĉ

c · cX+Cĉ
n · (npb− npb̂)+

cpb−Cĉ
c · cpb− ĉX̂

=Cĉ
c · (cX− cpb)− ĉX̂+ cpb +Cĉ

n · (npb− npb̂)

≈Cĉ
c · (ĉX̂− cpb)− ĉX̂+ cpb +Cĉ

n · (npb− npb̂) (22)

In eq. 22 the approximation cX ≈ ĉX̂ is used, thereby assuming
that the main error is caused by the erroneous estimate of the co-
ordinate system, cf. fig. 3. Using the small angle approximation
from eq. 20, ĉX̃ can be written as a linear function of the errors
of the estimated state:

ĉX̃ = (I +
⌊

Ψ
ĉk
ck

⌋
×
) · (ĉX̂− cpb)− ĉX̂+ cpb +Cĉ

n · (npb− npb̂)

=
⌊

cpb− ĉX̂
⌋
×
·Cĉ

n ·Ψ+Cĉ
n · np̃b (23)

This is the sought relationship between the errors of the current
orientation and position estimates for the sensor system and the
error of the newly introduced landmark in Cartesian coordinates
w.r.t. the current camera coordinate system. It only depends on
entities, which are either estimated or known a-priori, like the the
position of the camera in the body coordinate system. The partial
derivatives of the landmark coordinates w.r.t. the IMU’s position
and orientation follow directly from eq. 23:
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∂ ck X
∂Ψ

=
⌊

cpb− ĉX̂
⌋
×
·Cĉ

n (24)

∂ ck X
∂ npb

= Ĉĉ
n (25)

Given the partial derivatives 24-25, a new landmark can be intro-
duced to the filter state by following the subsequent steps:

1. Calculate the inverse depth polar coordinates Y and the Carte-
sian coordinates ck X for the new landmark given the obser-
vation and an arbitrarily chosen inverse depth estimate ρ .

2. Calculate the partial derivative ∂Y/∂ ck X, which describes
how the inverse depth polar coordinates vary with ck X.

3. Determine Js′ :

Js′ =
∂Y

∂ ck X
·
[

∂ ck X
∂ npb

03×6
∂ ck X
∂Ψ

03×3

]
(26)

4. Use eqs. 17-19 to calculate the missing covariance matrix
entries and augment the filter state according to eqs. 14 and 15.

3 RESULTS AND DISCUSSION

3.1 Experimental setup

The cross covariance estimation algorithm derived in sec. 2.5.2
was compared against a naive landmark introduction method that
simply discards the cross-correlations in a number of simulation
runs. For the simulation a reference trajectory was defined by
two C2 splines. One spline determines the viewing direction
while the other spline describes the position of the IMU. The sec-
ond derivative of this spline provides acceleration measurements
whereas angular rate measurements are derived from the differ-
ential rotation between two sampling points. In addition, image
measurements were generated by projecting landmark positions
onto the image plane.

Artificial white Gaussian noise was added to all measurements.
Its variance was chosen to resemble the characteristics of a good
tactical grade IMU with 0.47◦/

√
h angular random walk and

0.0375m/(s
√

h) velocity random walk parameters. The artificial
noise added to the image coordinates had a standard deviation
of 0.1 Pixel. Though the IMU measurement biases are modeled
as random walk processes, their values stayed fix for the dura-
tion of the simulation. However, the biases were also estimated
during the simulation runs, i.e. their initial covariance and their
process noise power spectral density were initialized with realis-
tic values. The state was initialized with the true values from the
reference trajectory after a standstill period of 3.2 seconds. De-
viating from the physical model described in sec. 2.3.2 a small
amount of pseudo-noise was added to the diagonal elements of
the covariance matrix for the landmark position estimates.

The simulation provides ground truth for the position and ori-
entation of the IMU but not for the estimated uncertainty (the
covariance matrix). Therefore, the normalized estimation error
squared (NEES) is used as a measure of filter consistency for the
comparison of the two methods, cf. (Bar-Shalom et al., 2001, p.
165):

NEES np̃b =
np̃T

b P−1
p̃,p̃

np̃b (27)

NEES Ψ̃ = Ψ̃
TP−1

Ψ̃,Ψ̃
Ψ̃ (28)

It is also interesting to investigate the covariance bounds for posi-
tion and orientation errors. Since no measurements are available
that relate the sensor system to the navigation frame, aside from
the implicitly measured gravity vector, the uncertainty of the po-
sition and yaw angle estimates should not fall below their initial
estimates.
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Figure 4: Hallway sequence. Results for one simulation run are
shown in Fig. 4(a). Blue: Reference trajectory and reference
landmark positions, Pink: Estimated landmark positions, Green:
Estimated trajectory. Fig. 4(b) shows the NEES averaged over
25 Monte-Carlo simulation runs. Orange: With cross-covariance
estimation for new landmarks. Green: without cross-covariance
estimation. Notice the log scale in the NEES-plots. Fig. 4(c)
compares the estimated covariance bounds for yaw angle and po-
sition estimates. Orange: With cross-covariance estimation for
new landmarks. Green: without cross-covariance estimation.
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3.2 Results

Fig. 4 presents the results for a simulated trajectory that imitates a
walk along a long hallway. During the simulation run, landmarks
go out of sight and are replaced by newly initialized landmarks.
A comparison of the NEES plots shows that estimating the cross-
covariances with the proposed method indeed yields more con-
sistent filter estimates. However, the initialization of new land-
marks after 8,12, and 16 seconds goes along with a considerable
drop in the uncertainty estimate and an increasing NEES. This
is probably because the linearization points used to calculate the
derivatives for cross-covariance estimation deviate increasingly
from the ground truth during the simulation run.

By contrast, fig. 5 shows the evaluation of a trajectory around a
cube. Here, the camera’s principal axis always points in the di-
rection of the cube so that all landmarks are visible during the
whole run, i.e. the cube is completely transparent. Thus, land-
marks are initialized only once at the beginning of the run when
the filter is initialized with the true parameters from the ground
truth. Apparently this results in considerable more consistent es-
timates. In particular, the uncertainty estimate never falls below
its initial value when the proposed cross-covariance estimation
method is applied.
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Figure 5: Cube sequence. See fig. 4 for details.

4 CONCLUSIONS

In this work we study the effects of inter-landmark cross-
covariance estimation for an EKF-based inertial aided monoc-
ular SLAM system. In particular, we describe how the cross-
covariances between new features and existing filter state entries
may be computed for the special case when the landmarks are
parameterized w.r.t. coordinate systems whose position and ori-
entation is also uncertain. This situation naturally arises when pa-
rameterizing features with inverse depth polar coordinates w.r.t.
the camera in which they were observed for the first time. Using
simulation runs, we show that neglecting the cross-covariances
for freshly inserted features results in a systematic underestima-
tion of the filter state uncertainty and that this effect may be mit-
igated with the proposed algorithm.
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