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ABSTRACT 
 
The paper demonstrates the advantage of full waveform LIDAR data for segmentation and classification of single 
trees. First, a new 3D segmentation technique is highlighted that detects single trees with an improved accuracy. The 
novel method uses the normalized cut segmentation and is combined with a special stem detection method. A 
subsequent classification identifies tree species using salient features that utilize the additional information the 
waveform decomposition extracts from the reflected laser signal. Experiments were conducted in the Bavarian 
Forest National Park with conventional first/last pulse and full waveform LIDAR data. The first/last pulse data result 
from a flight with the Falcon II system from TopoSys in leaf-on situation at a point density of 10 points/m2. Full 
waveform data were captured with the Riegl LMS-Q560 system at a point density of 25 points/m2 (leaf-off and leaf-
on) and at a point density of 10 points/m2 (leaf-on). The study results prove that the new 3D segmentation approach 
is capable of detecting small trees in the lower forest layer. This was practically impossible so far if tree 
segmentation techniques based on the canopy height model (CHM) were applied to LIDAR data. Compared to the 
standard watershed segmentation the combination of the stem detection method and the normalized cut 
segmentation performs better by 12%. In the lower forest layers the improvement is even more than 16%. Moreover, 
the experiments show clearly that the usage of full waveform data is superior to first/last pulse data. The 
unsupervised classification of deciduous and coniferous trees is in the best case 93%. If a supervised classification is 
applied the accuracy is slightly increased with 95%. Classification with first/last pulse data ends up with only 80% 
overall accuracy. Interestingly, it turns out that the point density has practical no impact on the segmentation and 
classification results. 
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INTRODUCTION 
 

Commercial laser scanning technology has been pushed to a new level by fast electronic devices that render 
possible to record the entire laser pulse echo as a function of time. The recorded signal – a result of the interaction of 
the laser beam with one or several objects – is usually referred to as the waveform. Since 2004, new so-called full 
waveform small footprint LIDAR systems are available on the market such as the Riegl LMS-Q560 (same 
instrument as the Harrier 56 from Toposys) or the ALTM 3100 from Optech, which has the option for full waveform 
recording (see details Mallet et al., 2008). Since LIDAR penetrates vegetation the expectations are rather high that 
this technology will push new methods for the analysis of forest structures.  

At least two possible ways are promising. The first one deals either with the single raw waveforms or overall 
waveforms accumulated from single waveforms in a working space (e.g. single tree). Since the waveforms are a 
function of tree parameters (e.g. age, tree species, height, crown diameter) measured waveforms could be compared 
with the theoretical model. Moreover, the tree parameters could even be adapted to real measurements by optimizing 
techniques. For instance, Koetz (2006) inverts a radiative model proposed by Sun et al. (2000) to adjust optical and 
structural parameters of the vegetation. Recently, Morsdorf et al. (2008) reports on a multi-spectral full waveform 
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simulator which uses the tree model PROSPECT and models the single laser beam with a ray tracing approach. A 
second strategy for waveform analysis in forest areas is to extract the inherent information of the waveforms by the 
separation of the signal into single reflections. This waveform decomposition provides the positions, the pulse 
energy and the pulse width of each reflection. Practically, this way leads to a denser point cloud in the forest area 
since basically each reflection – even of small tree structures below the dominant trees like young regeneration – can 
be detected (Jutzi and Stilla, 2006; Reitberger et al., 2008a). Note that conventional first/last pulse have a dead zone 
of about 3 m in which no reflection can be recorded. Moreover, the laser points get the attributes pulse energy and 
pulse width which are a function of object characteristics like the reflectivity and the cross section (Wagner et al., 
2006). Thus, the challenge is to improve existing approaches or to develop new methods for forest structure analysis 
by using the dense laser point cloud and taking advantage of the additional attributes of the laser points.  

 New approaches to forest inventory utilizing LIDAR data have been investigated in the past. Beside area based 
methods, techniques for single tree extraction from conventional first/last pulse LIDAR data have been pursued for 
mapping forests at the tree level and for identifying important parameters, such as tree height, crown size, crown 
base height, and tree species. So far, most of the techniques for single tree detection are focused on the CHM that is 
somehow interpolated from the highest laser points. Since the interpolation process smoothes the surface drastically 
neighboring trees cannot be separated and, hence, groups of trees are often segmented instead of single trees. 
However, most important, small dominated trees and young generation below the dominating trees are completely 
missed since they are not visible in the CHM. The methods presented by Hyyppä et al. (2001), Solberg et al. (2006) 
or Brandtberg (2007) are mentioned representatively. Tree species classification techniques using solely LIDAR 
data are mainly dedicated to the use of the laser point cloud and – very rarely – the intensity. Holmgren et al. (2004) 
showed that the coniferous tree species Norway spruce and Scots pine can be classified with an overall accuracy of 
95% using highly dense first/last pulse LIDAR data and the non-calibrated intensity. The study of Heurich (2006) 
demonstrates that the classification of Norway spruce and European beech is possible with an overall accuracy of  
97% in leaf-off situation using segments captured from leaf-on data. Very interestingly, although the study uses 
first/last pulse LIDAR data with a rather high point density of 10 points/m2 it clearly points out that young 
regeneration could not be detected. Thus, since almost all the studies refer to conventional first/last pulse LIDAR 
data it is highly interesting in how far new or improved methods for single tree segmentation and tree species 
classification can benefit from full waveform LIDAR data. 

In this paper we demonstrate how the new full waveform technique outperforms the conventional first/last pulse 
technique in single tree segmentation and tree species classification. The objective of this paper is (i) to shortly 
highlight a new segmentation method based on normalized cut that extracts single trees clearly better than the 
watershed segmentation, (ii) to demonstrate the improved detection rate of single trees, (iii) to prove the benefit of 
full waveform data both in leaf-on and leaf-off situation at different point densities, and (iv) to present classification 
results of deciduous and coniferous trees. 
 
 

METHODS 
 
Waveform decomposition 

A single waveform measured in a region of interest (ROI) is decomposed by fitting a series of Gaussian pulses to 
the waveform which contains NR reflections (Figure 1). Each reflection i of the waveform is represented by the 
vector ),...,1)(,,,,( Riiiii

T
i NiIWzyx ==X  with ),,( iii zyx  as the 3D coordinates, Wi  as the pulse width and Ii as the 

pulse energy of the reflection. It is particularly remarkable that basically each reflection can be detected by the 
waveform decomposition contrary to conventional LIDAR Systems having a dead zone of about 3 m. These systems 
are effectively blind within this zone after a reflection. The parameter Ii is usually referred to as the so-called 
intensity. A calibration of the values Wi and Ii is mandatory and is achieved by using the pulse width and the 
intensity of the emitted Gaussian pulse. Additionally, the intensity Ii is corrected with respect to the run length of the 
laser beam and a nominal distance (Reitberger et al., 2008a; Wagner et al., 2006). 
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Figure 1. 3D points and attributes derived from a single waveform 
 
Normalized cut segmentation 

The key idea of the new 3D segmentation technique is to rigorously apply a normalized cut segmentation (Shi 
and Malik, 2000) in a voxel space. All the CHM based segmentation methods suffer from the drawback that the 
CHM is interpolated by some kind of interpolation process and, hence, neighbouring trees are often not separated 
and form a tree group instead of single trees. Moreover, smaller trees in the intermediate and lower tree height level 
cannot be recognized since they are invisible in the CHM (Figure 2a).  
 

  
Fig. 2a. Conventional tree segmention based on a DSM Fig. 2b. 3D segmentation of single trees 
 

Instead, the novel 3D segmentation starts from a voxel representation of the forest area using the positions 
),,( iii zyx  of the reflections and optionally the pulse width Wi and the intensity Ii of the waveform decomposition 

(Figure 2b) (Reitberger et al., 2008b). Additionally, stem positions provided either by a special stem detection 
method or by a watershed segmentation of the CHM can be used. 
 
The normalized cut segmentation applied in the voxel structure of a ROI is based on a graph G. The two disjoint 
segments A and B of the graph are found by maximizing the similarity of the segment members and minimizing the 
similarity between the segments A and B  (Figure 3a) solving the cost function  
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sum of the weights of all edges ending in the segment A. The weights wij specify the similarity between the voxels 
and are a function of the LIDAR point distribution and features calculated from Wi and Ii. A minimum solution for 
(1) is found by means of a corresponding generalized eigenvalue problem (Reitberger et al., 2008b).  It turned out 
that the spatial distribution of the LIDAR points mainly influences the weighting function. The features derived 
from the LIDAR points attributes from Wi and Ii only support in second instance the segmentation result. 
Furthermore, we found that pre-knowledge about the position of the single tree significantly backs the segmentation. 
Thus, the local maxima of a CHM as a result of a watershed segmentation or  stem positions – provided by a special 
stem detection technique (Reitberger et al., 2007) – improve the weighting function and, hence, the segmentation 
result. Note that the approach is not dependent from full waveform LIDAR data. It can also successfully be applied 
to conventional LIDAR data just providing 3D point coordinates. The figure 3b shows complex situations where the 
normalized cut segmentation works excellent and a conventional watershed segmentation fails.  
 

  
Fig. 3a. Subdivision of ROI into a voxel structure 

and division of voxels into two tree segments 
Fig. 3b. Examples of normalized cut segmentation with the 

reference trees as black vertical lines 
 
 
Classification 

We introduce for the tree species classification four groups of salient features },,,{ nWIgt SSSSS = which are 

calculated from the Nt LIDAR points ),,,,( iiiii
T
i IWzyx=X ),...,1( tNi =  in the segments. Table 1 summarizes the 

definition of the individual features (see details Reitberger et al., 2008a). 
 

Table 1. Definition of saliencies (“Sal.”) used in classification 
 

Sal. Definition Sal. Definition 
gS  Mean horizontal distances of layer points to 

tree trunk  
WS  Mean pulse width of single and first reflections 

in the entire tree segment 
IS  Mean intensity in entire tree nS  Relation of the number of single reflections to 

the number of multiple reflections  
 

Both an unsupervised and a supervised classification are performed in order to identify coniferous and deciduous 
tree species. The Expectation-Maximization algorithm (Heijden et al., 2004) turned out as suitable for an 
unsupervised clustering into the main tree species. The supervised classification was a maximum likelihood 
classification using an appropriate number of reference trees as a training subset (see details Reitberger et al., 
2008c). 
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DATASET 
 

Experiments were conducted in the Bavarian Forest National Park (49o 3’ 19” N, 13o 12’ 9” E), which is located 
in South-Eastern Germany along the border to the Czech Republic. There are four major test sites of size between 
591 ha and 954 ha containing sub alpine spruce forest, mixed mountain forest and alluvial spruce forest as the three 
major forest types.  

18 sample plots with an area size between 1000 m2 and 3600 m2 were selected in two test sites E and C. 
Reference data for all trees with DBH larger than 10 cm have been collected for 688 Norway spruces (Picea abies), 
812 European beeches (Fagus sylvatica), 70 fir trees (Abies alba), 71 Sycamore maples (Acer pseudoplatanus), 21 
Norway maples (Acer platanoides) and 2 lime trees (Tilia Europaea). Tree parameters like the DBH, total tree 
height, stem position and tree species were measured and determined by GPS, tacheometry and the ’Vertex III’ 
system. Furthermore, the trees are subdivided into 3 layers with respect to the top height htop of the plot, where htop is 
defined as the average height of the 100 highest trees per ha (Heurich, 2006). The lower layer contains all trees 
below 50% of htop, the intermediate layer refers to all trees between 50% and 80% of htop, and finally, the upper layer 
contains the rest of the trees.  

LIDAR data of several ALS campaigns are available for the test sites. First/last pulse data have been recorded by 
TopoSys with the Falcon II system. Full waveform data have been collected by Milan Flug GmbH with the Riegl 
LMS-Q560 system. Table 2 contains details about the point density, leaf-on and leaf-off conditions during the 
flights and the footprint size. The term point density is referring to the nominal value influenced by the pulse 
repetition frequency (PRF), flying height, flying speed and strip overlap. These unique data sets allow the 
comparison of conventional and full waveform systems, which have been flown in the same area. However, the data 
set IV is only available for the 12 reference plots in test site E. This has to be considered when comparing results of 
other data sets with this data set. Naturally, the reference data have been updated for the individual flying dates. 
Furthermore, reference trees are plotted in the figures 2a, 2b and 3b as black vertical lines.  
 

Table 2. Different ALS campaigns 
 

Time of flight Sept. ‘02 May ‘06 May ‘07 May ‘07 
Data set I II III IV 
Foliage Leaf-on Leaf-off Leaf-on Leaf-on 
Scanner TopoSys Falcon II Riegl LMS-Q560 Riegl LMS-Q560 Riegl LMS-Q560 
Pts/m2 10 25 25 10 
HAAT [m] 850 400 400 500 
Footprint [cm] 85 20 20 25 
Ref. plots all All all Area E 

 
 

EXPERIMENTS 
Segmentation 

The watershed segmentation (‘W’) and the new 3D segmentation technique (‘Ncut’), using both results from the 
watershed segmentation and from the stem detection, were applied to all the plots and data sets in a batch procedure 
without any manual interaction (Table 3). The tree positions from the segmentation are compared with reference 
trees if (i) the distance to the reference tree is smaller than 60% of the mean tree distance of the plot and (ii) the 
height difference between htree and the height of the reference tree is smaller than 15% of htop. If a reference tree is 
assigned to more than one tree position, the tree position with the minimum distance to the reference tree is selected. 
Reference trees that are linked to one tree position are so-called ‘detected trees’ and reference trees without any link 
to a tree position are treated as ‘non-detected’ trees. 

If we focus on data set II, we can highlight how the 3D segmentation is superior to the 2D watershed 
segmentation. The 2D segmentation performs in this case rather poor in the lower forest layer and detects almost no 
trees. In total, it ends up at an overall detection rate of 48 %. Instead, the detection rate of the novel 3D segmentation 
is by 16 % better in the lower and intermediate layer. Even in the upper layer the improvement is 10 %, whereas the 
overall detection rate increases by 12 %. Apparently, the waveform decomposition detects not only the reflections of 
the dominant trees but also of the dominated small trees. The 3D segmentation takes full advantage of this and 
yields clearly better segmentation results. 



 
ASPRS 2009 Annual Conference 

Baltimore, Maryland  March 9-13, 2009 

Now, let us compare the segmentation methods with respect to first/last pulse data (data set I) and to full 
waveform data (data set IV) at the same nominal point density. First, even the 2D watershed based segmentation 
performs by 5 % better with full waveform data. Obviously, the tree shapes are more precisely reconstructed since 
the waveform decomposition even yields weak reflections and reflections resulting from adjacent targets. However, 
most important, the combination of the full waveform data with the new 3D segmentation improves the detection 
rate by more than 20 % in the lower and intermediate layer. This is a remarkable progress and finds its interpretation 
in the high spatial point distribution the waveform decomposition provides and the new segmentation working fully 
in 3D rather than to apply the segmentation on the CHM. 
 

Table 3. Results of segmentation methods with data sets I, II, III and IV 
 

Detected trees per height layer [%] Data set Method 
lower intermediate upper total 

W 2 12 80 52 I (only area E) 
Leaf-on NCut 15 27 77 55 

W 5 21 77 48 II  
Leaf-off NCut 21 38 87 60 

W 5 20 79 48 III 
Leaf-on NCut 17 32 86 58 

W 5 20 82 55 III (only area E) 
Leaf-on NCut 24 35 88 66 

W 6 21 84 57 IV (only area E) 
Leaf-on NCut 26 33 87 65 

 
This unique data set also demonstrates the impact of the nominal point density on the segmentation methods. If 

we restrict data set III to the area E and compare it with data set IV we recognize that the detection rates are 
basically the same for both point densities. Obviously, although the number of penetrating laser beams is 
significantly reduced, the most relevant tree structures are still detected by reflections.  

Finally, we can also address the question whether the foliage condition affects the detection rate if we compare 
the full waveform data sets II (leaf-off) and data set III (leaf-on). As expected, the detection rate is in leaf-on 
situation by approximately 4 % worse in the lower and intermediate layer. But in the upper layer the results of the 
normalized cut segmentation are almost equal, leading to an overall loss of accuracy of 2 % in leaf-on situation. 
 
Classification 

We apply an unsupervised and a supervised classification between deciduous and coniferous trees to the 2D 
segments (Table 4) and 3D segments (Table 5). One fifth of the trees were randomly selected from the entire data set 
as a training data set for the supervised classification by keeping the proportion between the tree species. Also, both 
classification methods were applied 20 times in order to minimize the impact of the selection procedure and the 
initialization of the EM-algorithm of the unsupervised classification on the results. Thus, the numbers in table 4 and 
table 5 refer to averaged classification values, whereby the best result of each data set and classification method is 
highlighted. 

In general, if we focus on the best results of each saliency the supervised classification turns out as slightly better 
than the unsupervised classification. Furthermore, the classification results are almost the same for the 2D segments 
and 3D segments. Apparently, the applied saliencies and their combinations are highly characteristic both for the 
dominant trees in the upper layer and for the dominated trees in the lower and intermediate layer. Moreover, except 
for the tree shape related saliency gS   it is not relevant whether one or more trees of the same tree species are in one 
segment. 

Most interestingly, the intensity related saliency IS turns out as the best feature in the leaf-on case (data sets III 
and IV). As expected, this feature is worse in the leaf-off case. Instead, the saliency nS  dedicated to penetration 
behavior of the waveforms influences the classification results significantly in the leaf-off case (data set II). The 
saliency WS  dedicated to the pulse width of the reflections works in general better in the leaf-off case. Finally, the 
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saliency gS  representing the tree geometry has an almost constant impact on the classification in leaf-on and leaf-off 
situations. Even for data set I, which refers to first/last pulse data at a point density of 10 pts/m2, the overall 
classification accuracy is almost the same as with full waveform data. Thus, this saliency seems to be significant 
even for the lower point density. 

 
Table 4. Results of unsupervised („un.“) and supervised classification („su.“)  

 
Overall accuracy (%) for data sets I - IV and for the 2D segments 
I (only area E) II III III (only area E) IV (only area E) 

Leaf-on Leaf-off Leaf-on Leaf-on Leaf-on 

Saliency 

un. su. un. su. un. su. un. su. un. su. 
gS  84 85 79 83 85 85 82 85 82 83 
IS    82 81 92 93 96 95 95 96 
WS    81 82 52 53 54 55 56 61 
nS    86 94 65 65 64 65 54 64 

Ig SS +    89 90 92 94 94 97 93 97 
nWIg SSSS +++   92 96 83 95 82 97 83 97 

 
Table 5. Results of unsupervised („un.“) and supervised classification („su.“)  

 
Overall accuracy (%) for data sets I - IV and for the 3D segments 
I (only area E) II III III (only area E) IV (only area E) 

Leaf-on Leaf-off Leaf-on Leaf-on Leaf-on 

Saliency 

un. su. un. su. un. su. un. su. un. su. 
gS  80 78 75 78 80 82 83 82 81 81 
IS    81 81 93 94 97 96 95 97 
WS    75 79 52 51 54 56 60 64 
nS    89 93 62 63 61 65 57 57 

Ig SS +    81 86 90 94 93 97 91 97 
nWIg SSSS +++   91 94 81 95 84 97 82 97 

 
As far as the foliage condition is concerned, data sets II and III show equal classification accuracies, where the 

significance of the individual saliencies is different. Furthermore, the point density has almost no impact on the 
classification results, if we focus on data set III (only area E) and data set IV (only area E). This is fully consistent 
with our observation that also the segmentation is not dependent on the point density.  Thus, the lower point density 
of 10 pts/m2 does not appear as disadvantageous. Finally, the comparison of data set I (only area E) and data set IV 
(only area E), which both refer to leaf-on situation and a nominal point density of 10 pts/m2, indicates that the 
classification with first/last pulse data is significantly inferior by about 15% since only the coordinates of the 
reflections could be used and hence, the saliency Sg could only be calculated for the classification.  
 
 

DISCUSSION 
 

The experiences clearly prove that the new segmentation working in 3D can be viewed as a breakthrough for 
single tree segmentation. If this method is combined with full waveform LIDAR data the detection rate of single 
trees is improved by more than 20 % in the lower forest layers. Our experiments demonstrate that the usage of full 
waveform data is clearly superior to first/last pulse data in wooded areas since the waveform decomposition finds 
almost all reflections. Thus, small dominated trees and young generation can be detected and highly resolved.  In 
detail, we got a slightly higher detection rate in leaf-off situation because of the higher penetration in unfoliated 
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deciduous trees. Thus, the leaf-off situation seems to be the more appropriate flying time to segment trees in 3D, at 
least for mixed mountain forests that are scanned with a high point density. Interestingly, a nominal point density 
higher than 10 pts/m2 does not improve the detection rate considerably. However it remains to be seen whether a 
higher density is advantageous to estimate other parameters like for instance the timber volume. Finally, our results 
with the watershed segmentation compare reasonably well with the study of Heurich (2006), who obtained an 
overall detection rate of 45% in almost the same reference areas using also the data set I.  The study of Persson et al. 
(2002) reports on a detection rate of 71 % of all trees with a diameter at breast height larger than 5 cm for a 
Scandinavian forest dominated by spruce and pine. Solberg et al. (2006) show that an overall detection rate of 66 % 
and a commission rate (=false detections) of 26 % in a structurally heterogeneous spruce forest can be achieved if 
the CHM is smoothed 3 times with a Gaussian filter of size 30 cm. 

When viewing at the classification results the benefit of full waveform LIDAR data becomes more evident since 
the overall accuracy is significantly increased. In case of the supervised classification we attained an overall 
accuracy of 95 % for all reference data, the unsupervised classification is only slightly inferior. Moreover, the results 
are practically independent on the point density and the foliage condition. All in all, the improved detection rate of 
single trees leads to an increased number of correctly classified trees. For instance, a detection rate of 60 % and a 
classification accuracy of 94 % imply 56 % correctly detected and classified trees. Finally, our classification results 
of 80 % overall accuracy with first/last pulse data in leaf-on case compare excellent with the experiments of Heurich 
(2006). However, our results with the full waveform data in leaf-on situation are in any classification case better 
than the leaf-on results with first/last pulse data of this study. 
 
 

CONCLUSIONS 
 

We have shown in this study how a new 3D segmentation technique clearly outperforms conventional 
segmentation methods which solely work with the CHM. Furthermore, the combination with full waveform LIDAR 
data pushes the detection rate to a significantly improved success rate. Also, the classification accuracy of single 
coniferous and deciduous trees based on 3D segments is considerably enhanced using full waveform LIDAR data.  
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