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ABSTRACT: 
 
The study highlights a novel method to segment single trees in 3D from dense airborne full waveform LIDAR data using the 
normalized cut segmentation. The key idea is to subdivide the tree area in a voxel space and to setup a bipartite graph which is 
formed by the voxels and similarity measures between the voxels. The normalized cut segmentation divides the graph hierarchically 
into segments which have a minimum similarity among each other and whose members (=voxels) have a maximum similarity. The 
solution is found by solving a corresponding generalized eigenvalue problem and an appropriate binarization of the solution vector. 
We applied the method to small-footprint full waveform data that have been acquired in the Bavarian Forest National Park with a 
mean point density of 25 points per m2 in leaf-off situation. The segmentation procedure is evaluated in different steps. First, a linear 
discriminant analysis shows that the mean intensity of the voxels derived from the full waveform data contributes significantly to the 
segmentation of deciduous and coniferous tree segments. Second, a sample-based sensitivity analysis examines the best value of the 
most important control parameter that stops the division process of the graph. Third, we show examples how the segmentation can 
cope with even difficult situations. We also discuss examples showing the limits of the current implementation. Finally, we present 
the detection rate of the new method in controlled tests using reference data. If we compare the new method to a standard watershed-
based segmentation approach the overall improvement for all tree layers is 9%. However, the biggest improvement can be achieved 
in the intermediate layer with 14% and in the lower layer with 16% showing clearly the advantage of the new approach to a 3D 
segmentation of single trees. 
 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

Laser scanning has been applied for forest inventory in area 
based methods (e.g. Naesset et al. 2004) and in single tree 
detection methods to estimate forest parameters like stem 
volume and tree species distribution. For instance, the study of 
Persson et al. (2002) reports on a detection rate of 71% for a 
typical Scandinavian forest type. Heurich (2006) demonstrates 
that the segmentation method of Persson et al. (2002) leads to a 
detection rate of 45% in the Bavarian Forest National Park. 
Timber volume is usually estimated from the tree height and 
crown diameter. The afore mentioned study of Persson et al. 
(2002) reports that 91% of the timber volume could be 
determined with 22% RMSE. Heurich (2006) estimates 85% of 
the timber volume with 31% RMSE.    
 
Most of the methods for single tree detection have in common 
to find the trees from local maxima in the canopy height model 
(CHM). The stem position usually corresponds with a peak in 
the CHM, and the crown diameter is basically found from the 
segment polygon which is delineated from the CHM surface. 
The methods from Hyyppä et al. (2001), Solberg et al. (2006) 
and Brandtberg (2007) stand for this fundamental approach that 
has the drawback to solely use the CHM. Furthermore, the 

mandatory smoothing of the CHM smears out local maxima of 
neighbouring trees. Since smaller trees below the canopy do not 
appear in the CHM the detection rate of trees with small 
diameter at breast height (DBH) is considerably low.        
Maltamo et al. (2004) developed a procedure to predict small 
occluded trees in lower forest levels by theoretical distribution 
functions. Timber volume and stem density can be estimated 
with 16% RMSE and 49% RMSE, respectively. The 
distribution functions must be calibrated with field data. 
Recently, Wang et al. (2007) presented a new method for 3D 
reconstruction of trees and tackled the problem with a 
hierarchical morphological approach. The 3D segments of trees 
are found by combining hierarchically the individual 2D tree 
crown regions detected in each layer of a voxel space.  
 
In general, the single tree approach has some clear advantages. 
If successfully applied, it provides not only tree species 
information and estimates timber volume but also allows the 
evaluation of the habitat and the biodiversity of forests. 
However, Maltamo et al. (2007) point out that single tree 
detection methods need to be more accurate than standard forest 
inventory methods assuming that reduced cost must not be the 
only driving force to replace standard methods. The study 
shows that timber volume can only be estimated with about 
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30% RMSE accuracy if derived as a function of the tree height 
and the crown diameter. Clearly, the parameter DBH is not a 
deterministic parameter but also dependent from many other 
parameters which are not of allometric nature. Thus, in view of 
the apparent advantages of single tree methods the detection 
rate of single trees and the accuracy of tree species 
classification must be improved. New technologies like small 
footprint full waveform systems will be one new driving force 
to push the methods to a new level since they detect 
significantly more reflections in the tree crown and provide the 
intensity and the pulse width as reflecting parameters. 
Moreover, new reconstruction methods for single trees must 
truly work in 3D and must be flexible to use various types of 
information modern LIDAR technologies provide.   
 
The objective of this paper is (i) to present a new method that 
segments single trees in 3D with the normalized cut 
segmentation and adaptively incorporates reflecting parameters 
of trees, (ii) to demonstrate with a discriminant analysis how 
the mean intensity and mean pulse width derived from the full 
waveform data contribute to the segmentation result, (iii) to 
show in various examples how the segmentation works, and (iv) 
to explain experimental results about the improved detection 
rate of small trees in the lower layer. 
 
The paper is divided into five sections. Section 2 highlights the 
normalized cut segmentation of the single trees. Section 3 
shows the results which have been obtained from full waveform 
data acquired in May 2006 by the Riegl LMS-Q560 scanner in 
the Bavarian Forest National Park. Finally, the results are 
discussed with conclusions in section 4 and 5. 
 
 

2. METHODOLOGY 

2.1 Preprocessing of LIDAR data 

Let us assume that full waveform LIDAR data have been 
captured in a region of interest (ROI). A single waveform is 
decomposed by fitting a series of Gaussian pulses to the 
waveform which contains NR reflections (Figure 1a).  
 

 

 
Figure 1a. 3D points, intensity and 
pulse width derived from a waveform 

 
Figure 1b. Subdivision 
of ROI into a voxel 
structure 
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for each reflection i with the coordinates  as the 3D 
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return pulse. These parameters are calibrated with respect to the 
pulse width and intensity of the emitted signal and the travelling 
distance (Jutzi and Stilla 2005, Reitberger et al. 2006). Note 
that Ii is the integral of the Gaussian function which 
corresponds to the pulse energy of the reflection. 
 
The ROI is subdivided into a voxel structure with a voxel 
spacing of vp and =  voxels (Figure 1b). 
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2.2 Segmentation 

The 3D segmentation of trees is based on the normalized cut 
segmentation which has been introduced by Shi and Malik 
(2000) in image analysis. The voxel space is represented as a 
graph G = {V,E} with V as the voxels representing the nodes  
and E as the edges formed between every pair of nodes. The 
similarity between two nodes {i,j} V is described by the 
weights w

∈
ij which are computed from features associated with 

the voxels. Basically, the similarity between voxels decreases 
with increasing distance between two voxels and drops down to 
zero beyond a certain threshold in order to keep the graph G at 
a reasonable size for computational reasons. The goal of the 
normalized cut segmentation is to divide the graph G into 
disjoint voxel segments A and B by maximizing the similarity 
of the segment members and minimizing the similarity between 
the segments A and B. 
 

 
 
Figure 2. Voxels containing tree reflections and the division 
into two tree segments A and B. 
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with as the total sum of weights between 

the segments A and B and representing 

the sum of the weights of all edges ending in the segment A. 
The minimization of NCut(A,B) is solved by the corresponding 
generalized eigenvalue problem 
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The n x n weighting matrix W is representing the weights wij 
between all nodes n of the graph G and is usually positive 
definite. The n x n degree matrix D is directly derived from W 
and holds the degree of a node i at the diagonal element 

. The minimum solution y∑= j ijwiiD ),( 1 for (2) corresponds 

to the second smallest eigenvalue λ1. Since y1 may only have 
two distinct indicator values (+1,-1) we need to discretize it by 
introducing a threshold thresNcut into the histogram of the real-
valued vector y1  (Messner, 2007). This essentially subdivides 
the graph G into two disjoint segments A and B. Finally, the 
subdivision of the graph G into several segments is found in the 
following hierarchical procedure. 
 
Step 1: Create the graph G by computing W and D for all nodes. 
Step 2: Find the solution of the eigenvalue problem (2). 
Step 3: Binarize the solution vector y1 with thresNcut = 0 and cut 
the graph G into two new graphs G1 and G2 if the number of 
voxels for each graph is larger than a certain number of voxels. 
Step 4: Apply steps 1 to 3 to the graphs G1 and G2. Stop if the 
value for Ncut reaches or exceeds the threshold Ncutthres. 
 
2.3 Setup of similarity function 

In order to set up the weighting matrix W we introduce the 
function  
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that computes the similarities wij between two voxels i and j.  
The key idea of function (3) is to multiplicatively combine 
several impact factors on the similarity in dependence on the 
distance between the voxels. The component F(i,j) describes the 
quadratic Euclidian distance between two feature vectors fi and 
fj derived from the data points (=reflections) in the voxels. The 
components X(i,j) and Z(i,j) weight the quadratic Euclidian 
distances between the voxels, where   is the horizontal and 

 the vertical distance. The horizontal and vertical distances 
are weighted separately to take into consideration the prior 
knowledge of a typical 3D tree shape. Finally, the fraction G(i,j) 
uses the stem positions , if available, and weights voxels 

in dependence on their maximum distances to . 

This renders possible to introduce tree locations derived from 

other methods, e.g. a 2D watershed-based segmentation or a 3D 
stem detection procedure. The parameters σ

XY
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Z
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T
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f, σxy, σz and σG 
control the sensitivity of the impact factors F(i,j), X(i,j), Z(i,j) 
and G(i,j)  (4) in the numerator.  
 
Finally, we introduce the features for each 
voxel i which are calculated from the N reflections in a given 
space segment S of size 2m x 2m x 6m as 
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The features in (5) are representing the mean intensity and the 
mean pulse width for each voxel. The computation in (5) is 
equivalent to a low pass filtering of the raw reflections with a 
box filter. 
 
2.4 Postprocessing of segments 

The result of the normalized cut segmentation is cleaned in the 
following steps. Firstly, each segment whose number of voxels 
goes below the value of 30 is cancelled. Secondly, we subdivide 
each segment into layers of height 2.0 m and search for layers 
containing only empty voxels (=no reflections!) at an absolute 
segment height of more then 10 m. All the voxels above the 
empty layer are ignored. 
 
2.5 Control parameters 

The normalized cut segmentation is controlled by several 
control parameters whose values have been optimized in 
experiments.  Firstly, the size of the voxels vp was set equal to 
0.5 m. The most important parameter Ncutthres, which controls 
the subdivision (=cut) of a graph G, was set equal to 0.16. 
Moreover, a graph G in step 3 is not subdivided anymore if the 
number of voxels of the graph undershoots the limit of 40 
voxels. Finally, we used the empirical values σf = 0.5, σxy= 1.35 
m, σz = 11.0 m and σG = 3.5 m to control the influence of the 
impact factors F(i,j), X(i,j), Z(i,j) and G(i,j). The value for σz is 
larger than σxy assuming that the tree height is larger than the 
tree crown diameter.  
 
 

3. EXPERIMENTS 

3.1 Material  

Experiments were conducted in the Bavarian Forest National 
Park (49o 3’ 19” N, 13o 12’ 9” E). 18 sample plots with an area 
size between 1000 m2 and 3600 m2 were selected in the mixed 
mountain forests.  Reference data for all trees with DBH larger 
than 10 cm have been collected in May 2006 for 688 Norway 
spruces (Picea abies), 812 European beeches (Fagus sylvatica), 
70 fir trees (Abies alba), 71 Sycamore maples (Acer 
pseudoplatanus), 21 Norway maples (Acer platanoides) and 2 
lime trees (Tilia europaea). Tree parameters like the DBH, total 
tree height, stem position and tree species were measured and 
determined by GPS, tacheometry and the ’Vertex III’ system. 
Full waveform data have been collected by Milan Flug GmbH 
with the Riegl LMS-Q560 scanner in May 2006 after snowmelt 
but prior to foliation with an average point density of 25 
points/m2 at a flying height of 400 m. The procedures for the 
normalized cut segmentation were applied to all the plots in a 
batch procedure without any manual interaction. Note also that 
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reference trees are plotted in the figures 2, 4, 5, 7, 8 and 9 as 
black vertical lines. 
 
3.2 Linear discriminant analysis 

In order to test the statistical contribution of the features Imean 
and Wmean to the segmentation process a linear discriminant 
analysis was applied in advance to voxels in selected segments 
for which the tree species were exactly known. The segments 
were subdivided into pairs of segments representing the 
possible combinations of tree species. In total, the test data set 
comprised 372 pair combinations with 39% deciduous-
deciduous pairs, 21% deciduous-coniferous pairs and 40% 
coniferous-coniferous pairs. Thereafter, we calculated the 
features Imean and Wmean in the known segments for all voxels 
forming a characteristic group of features for each tree species. 
Finally, a multivariate normal density function was fitted to all 
the groups with a pooled estimate of the covariance yielding 
finally an average classification error for each tree species 
combination. The results depicted in figure 3 show that the 
mean pulse width Wmean classifies each tree species combination 
with an overall accuracy of 67%. The mean intensity Imean 
works in general better than the pulse width and reaches – as 
expected - the best result for the combination deciduous-
coniferous. Thus, the mean intensity collected in a tree segment 
contributes significantly to the segmentation process. 

 
 

Figure 5. Tree segments resulting from an NCut value of 0.16 
 

Note that the higher the value of Ncutthres is set the better is the 
detection rate of single trees. However, this leads normally also 
to a larger number of false positives. This is nicely depicted in 
figure 6 where the sensitivity of the segmentation process in 
terms of correctly found trees and false positives is shown. The 
value of 0.16 was found as the best compromise and – more 
important – was robust for all the reference areas. Tests with 
data sets from other ALS campaigns (different sensors and 
point densities) showed also that a value around 0.16 is optimal. 
The other control parameters of section 2.5 proved to be robust, 
too. However, slight modifications are worthwhile to get 
optimal results for the different data sets. An automatic 
estimation of the control parameters e.g. in dependence on the 
point density appears complex and was postponed for the time 
being. 

 

 

 
Figure 3. Result of discriminant analysis for voxels of correctly 
segmented trees 
 
3.3 Sensitivity analysis of control parameters 

The important Ncutthres value controls the subdivision of the 
segments in step 4 of the segmentation procedure. The larger 
the value is set the higher is the similarity between the resulting 
segments. The figures 4 and 5 show in an example how the 
value 0.16 splits the upper right (yellow) segment into two 
correct tree segments.  

 
Figure 6. Influence of control parameter Ncutthres on detection 
rate and false positives 
  
3.4 Normalized cut segmentation 

In general, the normalized cut segmentation was able to cope 
with even complex situations as shown for instance in figure 7. 
Small trees below the crown of a tall tree or even tree groups in 
close neighbourhood could be clearly separated. 

  
 

Figure 4. Tree segments resulting from an NCut value of 0.11
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Figure 9. Examples for false segments Figure 7. Examples for excellent segmentation results 
  
 Of course, there are still critical situations the segmentation 

procedure could not sufficiently solve – for instance – if trees 
grow in fairly close neighbourhood like in figure 8. In the left 
plot the normalized cut segmentation could only segment two 
trees instead of seven trees. The right plot shows a group of five 
trees which are merged to one segment. The trees are standing 
close together and are forming a homogeneous indivisible point 
cloud. But remarkably, at least the small groups of trees in the 
left plot of figure 8 could be detected. This seemed to be 
impossible so far in segmentation methods that are solely using 
the CHM. The reasons for false tree segments are manifold. The 
left plot in figure 9 shows that the segmentation wrongly 
assigns branches of the tall tree to the smaller tree beneath this 
tree. Thus, the smaller segment is completely inaccurate and the 
segment of the tall tree is falsified. The right plot shows two 
broad trees whose crowns are partly merged to a third segment 
for which a reference tree does not exist. An increase of the 
control parameter σ

Number of reference trees in lower layer 417
Number of reference trees in intermediate layer 356
Number of reference trees in upper layer 891
Percentage of deciduous [%] 54

D

xy might solve this problem. However, the 
drawback of this parameter change would be that smaller trees 
are merged to one tree, hence increasing the number of non 
detected trees. 
 

  
 

Figure 8. Examples for non detected reference trees 
 

3.5 Results 

The accuracy and reliability of the presented single tree 
segmentation is evaluated in the following. Table 1 contains the 
percentage of “detected” trees for all reference areas. The trees 
are subdivided into 3 layers with respect to the mean height 
hmean of the highest hundred trees per ha. The lower layer 
contains all trees below 50% of hmean, the intermediate layer 
refers to all trees between 50% of hmean and 80% of hmean, and, 
finally, the upper layer contains the rest of the trees. 

etected trees lower layer [%] 4 
Detected trees intermediate layer [%] 22

2D Watershed 
segmentation 

Detected trees upper layer [%] 78
Total number of detected trees [%] 47
False detected trees [%] 5 
Detected trees lower layer [%] 20
Detected trees intermediate layer [%] 36
Detected trees upper layer [%] 81

3D Normalized 
cut 
segmentation 

Total number of detected trees [%] 56
False detected trees [%] 8 

 
Table 1: Detection of single trees in the reference plots 

 
First, we compare in table 1 the detection rate of single trees 
that are only derived from a CHM using a watershed-based 
segmentation approach (Reitberger et al. 2007) with the 
detection rate of the normalized cut segmentation. As expected, 
the detection rate is in the order of 80% in the upper layer. In 
this layer, there is almost no difference between the two 
approaches. The normalized cut segmentation is slightly better 
by 3%. However, if we compare the detection rates for the other 
layers the normalized cut segmentation is significantly superior 
to the watershed-based approach. In detail, the improvement is 
12% for the intermediate layer and 16% for the lower layer. 
The overall improvement for all layers and all plots is 9%. 
Finally, the figures 10 and 11 graphically show the detection 
rates in dependence on the DBH and the tree species. 
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 5. CONCLUSIONS 
Figure 10. Results of single tree detection for deciduous trees 

The study reports on a novel approach to a 3D segmentation of 
single trees using the normalized cut segmentation. The results 
show clearly that small trees in the intermediate and lower layer 
can be detected more accurately than with conventional 
segmentation procedures. The method can utilize different types 
of information derived from LIDAR data. Future research 
should be focused on an improved estimation of timber volume 
and tree species classification. 
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Figure 11. Results of single tree detection for coniferous trees 
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