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ABSTRACT: 
 
Airborne videos are gaining increasing importance. Video cameras are taking huge amounts of measurements for low costs. Their 
low weight and low requirement for energy makes them particularly attractive for small airborne carriers with low payload. Such 
carriers are discussed for military as well as for civil applications, e.g. traffic-surveillance. Often video cameras are used for 
documentation and reference in connection with other sensor systems. In addition to panchromatic or ordinary colour videos, 
nowadays also cameras operating in the thermal spectral domain gain attention. For the utilization of any stream of measurements 
taken from a moving platform the pose of the sensor in orientation and position has to be constantly determined. For airborne 
platforms often GPS and INS are used to acquire this information. However, the video stream itself provides also possibilities to 
estimate pose parameters. In this contribution we restrict our investigation to almost flat scenes but we allow oblique views both 
forward looking and side looking. The optical flow of the scene fixed structure on the world plane is estimated by a planar projective 
homography. This requires at least four point or line correspondences that can be traced over an appropriate number of frames. If the 
focal length is not changed and the camera has not been rotated, the proper transform will be restricted to a central collineation with 
five degrees of freedom. Two of these - giving the vertex or epipole - can be inferred directly from image correspondences. The 
remaining three are then estimated from the homography by solving a homogenous linear system. They give the axis or horizon, 
from which we obtain the rotational part of the pose, and a scale parameter for the speed to height ratio. Common level keeping 
flight manoeuvres where the epipole is close to the horizon lead to elations. Other manoeuvres - like e.g. landing - lead to 
homologies. The rotation-free calculations will also be appropriate if the camera rotation is known from another sensor. If the 
rotation between the frames is unknown the homography will be decomposed into a central collineation and an orthogonal rotation 
matrix. The five degrees of freedom of the collineation and the three degrees of freedom of the orthogonal rotation matrix sum up to 
eight, which is exactly the same number of degrees of freedom that a planar homography has. There is a set of analytic solutions to 
this equation system, of which the correct solution can be picked by heuristic considerations. We investigate the propagation of 
measurement errors through these calculations. Examples for such estimations are shown for thermal videos. Long focal lengths are 
unfavourable. The rotation-free decomposition gives more stability compared to the decomposition with rotation.  
 
 

1. INTRODUCTION 

1.1 Unmanned Aircraft and Airborne Video 

New possibilities for a variety of tasks including traffic 
monitoring, disaster management, surveillance and military 
applications come with the increasing utilization of unmanned 
aircraft. These crafts can be built quite small and at low cost. 
The payload and power resources are limited, but almost always 
they will feature one or several digital video cameras. This 
contribution investigates a possible utilization of this sensor 
type for the pose estimation and thus navigation of the craft. 
Automatic control of unmanned aircraft by vision alone may be 
one goal while another one may be the combination of this 
information source with other sensors like inertial systems, laser 
range finders, altimeters, speed sensors or GPS. Here we only 
treat central perspective cameras that take the whole picture 
through one aperture at one time instance. Devices using analog 
video standard with two half-frames are included but need 

special care. Push-broom cameras and CCD-line scanners are 
excluded. 
 
1.2 Properties of the Thermal Spectral Domain 

For many tasks operability at any time of the day and also 
under bad weather conditions is desired. Electromagnetic waves 
in the thermal bands between 3µm and 5µm or between 8µm 
and 12µm give the opportunity to measure the black-body 
temperature radiation of the objects on the ground. The energy 
that is measured comes from emission rather than reflection. No 
external light source is needed. The transparency of the 
atmosphere in these two thermal bands is equal or better than in 
the visual band between 0.4µm and 0.8µm. For tasks like 
vehicle recognition or traffic surveillance thermal 
measurements give the unique opportunity to determine the 
operational status of objects. Running engines emit thermal 
radiation. Today, the radiometric resolution and dynamic range 



 

is usually quite good, contemporary cameras often give 16 bit 
data with twelve bit information. 
There are also disadvantages for such cameras: Usually they are 
much more expensive than standard digital CCD video cameras. 
If we take diffraction at the aperture as limit for the angular 
resolution a lens for a thermal camera may have to be ten times 
bigger than the equivalent lens for the visual camera. Also often 
the detector has to be cooled down to very low temperatures. 
Therefore thermal cameras are usually bigger and need more 
energy than visual cameras. They also do not give any spectral 
measurements like a colour CCD camera does. Some modern 
thermal cameras have a focal plane array sensor but some 
systems still have only a small number of sensors. These 
cameras compose the image using moving mirror systems, 
which gives special distortions in the image geometry.  
Because of the lack of colour and because of frequent 
appearance of non-structured homogenous regions with no 
temperature differences thermal videos pose a more difficult 
challenge to geometric estimation procedures. Therefore all our 
examples are picked from this domain. The algorithms also 
work for aerial videos of the visual spectral domain with colour 
being an important feature for correspondence assessment.    
 
 

2. ESTIMATING POSE FROM HOMOGRAPHIES 

2.1 Interest Point Locations 

It is not possible to localize correspondence between different 
frames if the object is homogenous in that location. If an edge 
or line structure is present at a location in the 2-d image array 
there may still be an aperture problem. Secure point 
correspondence can only be obtained at locations where a 
corner, crossing or spot is present. It is proposed to use the 
averaged tensor product of the gradient of the grey-values 
(Förstner, 1994). Interest locations are given where both eigen-
values of this matrix are non-zero.   
 
2.2 Assessment of Correspondence  

Correspondence between locations in different frames of a 
video can be assessed using grey value correlation. Still there 
may be problems with repetitive structures. However, there will 
usually be a prior estimate for a location correspondence. Then 
this might be used to assign regions of interest in one image to 
interest locations in the other image or to form the overall 
assessment as product of correlation and prior probability. 
Regions of interest or the variance of priors will be quite narrow 
for immediately successive frames of the video.      
 
2.3 Planar Homographies 

Given a perspective projection and a rigid planar scene the 
movement of locations in the image is determined by a planar 
homography x´≈Hx, where the image location correspondence 
(x,x´) is written in homogenous coordinates, H is a 3x3-matrix 
and ≈ means equality up to an unknown scale factor. Given a 
set of at least four correspondences H can be estimated using 
direct linear transformation (DLT) (Hartley; Zisserman, 2000). 
We assume the inner camera parameters to be known and the 2-
d coordinates to be normalized such that the focal length equals 
one and the origin is at the principal point. Shifting the principal 
point has no major impact on the precision of the estimations. 
But the influence of the focal length is considerable: Either we 
may do the estimation first and transform to normalized 
coordinates afterwards using  
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Then we will enlarge errors on the projective elements h31 and 
h32 respectively by factor f and diminish errors on the 
translation elements h13 and h23 with the same factor.  
Or we may do the transform on the image coordinates x and x’ 
dividing the first two components of them through f and go into 
the DLT system with these smaller entries. This has a similar 
effect: The equation system will not be balanced. Entrances 
responsible for unknown variables h11 h12 h21 h22 in the affine 
section will be smaller than the entries for the unknown 
translation elements h12 and h13 with approximately the same 
factor f and for the unknown projective elements h31 and h32 
respectively there will be very small entrances (factor f2).  
 
2.4 Decomposition of Homographies 

Given an estimate for the normalized planar homography H we 
can reconstruct the pose parameters using the decomposition 
  
         TtnRH −= ,      (2) 

 
where R is an orthogonal rotation matrix, t is the translation of 
the camera and n is the surface normal (Faugeras, 1995). This 
representation sets the origin of the 3-d system into the centre 
of the second camera. R contains three degrees of freedom that 
may be extracted as successive rotation angles or as normalized 
axis in 3-d and turning angle around it. The vectors n and t 
together contain five degrees of freedom because n will be 
normalized setting the distance of the second camera to the 
plane to one, while t is a 3-d translation.  
The absolute scale cannot be determined from the image 
sequence alone. This requires additional information e.g. from 
an altimeter or from a speed sensor.  
In rural areas the plane will be a good approximation for the 
ground plane. In urban areas most visible structure will result 
from the roofs. So the plane will be at average roof height over 
ground. The vector n will still be a good approximation to 
zenith direction. We will not get information on the north-
direction from the images unless we rely on shadow and 
daytime analysis. There will be no geo-reference from the 
images as long as we have not recognized or matched objects 
from the images to map objects.   
We assume sufficient movement of the air-craft. This is 
important, because the decomposition of homographies needs to 
distinguish the translation-free case from mappings with 
translated cameras.  
 
The rotation free case:  Often the camera will be mounted on a 
stabilized platform or the camera rotation will be measured by 
an inertial device giving much more precision than the 
estimation from the camera may yield. This known rotation 
may be applied as homography to the coordinates of the first 
image and then we may assume R to be the identity. Then the 
homography is restricted to be a central collineation with real 
eigenvalues, which is either a planar homology or elation 
(Beutelsbacher; Rosenbaum, 1998). Considering the homology 
case first we may scale H such that the double eigenvalue 
equals one. The corresponding 2-d eigenspace is the horizon 
line. This is a straight line of fixed-points (the image of the 
intersection of the plane n with the plane at infinity) and n also 
gives its Hessian normal form. The other eigenspace is 1-d and 
gives the epipole and translation t. The eigenvalue 



 

corresponding to this eigenvector is 1-tTn. And since n is 
normalized we get the proper length of t from this equation. 
This solution is unique up to change of sign of n and t.  
The eigenvalue calculation of a homography estimated from 
correspondences may also result in a pair of conjugated 
complex eigenvalues and a single real eigenvalue. In the 
rotation free case such result cannot be used for pose 
estimation. A homology has to be searched for that is closest to 
the estimated homography.    
 
The elation case: The rotation free homography becomes an 
elation if the epipole lies on the horizon line i.e. tTn=0. This is 
not an exception but common for many standard flight 
manoeuvres (keeping level). Such mappings have a triple eigen-
value with a corresponding eigen-space of rank two (the 
horizon line). The epipole cannot be stably estimated from the 
eigen-spaces of the homography. Instead it can be estimated 
from pairs of correspondences directly by intersecting the 
correspondence straight lines. We used the correspondence-
pairs that are part of the best solution for homography 
estimation (see Sect. 3) and iterative re-weighting to minimize 
the influence of outliers in this estimation. Given an epipole 
estimation t and setting the Rotation R to identity I equation (2) 
becomes linear in the plane parameters n. To cope for the 
unknown scaling of t we set a forth scalar parameter µ and get 
 
         TtnIH µ−= .      (3) 

 
 Dividing this equation by µ we get a set of nine homogenous 
equations in the four unknowns n and 1/µ. It is solved by 
singular value decomposition. In fact this method is applicable 
for all central colineations, i.e. not only for elations but also for 
homologies. It may replace the eigen-space construction as 
well. 
 
With rotation:  Taking non-trivial rotations R into account the 
homography is transformed into diagonal form using singular 
value decomposition H=UH’V with orthogonal rotations U and 
V. Equation (2) is transformed to H’=R’–t’n’T where R=UR’VT, 
t=Ut’ and n=Vn’. This new equation can be solved analytically. 
Assuming the singular values h1, h2 and h3 in the diagonal 
matrix H’ to be sorted and h2 scaled to one the rotation may be 
restricted to the Y-axis and the Y-components of t and n set to 
zero: 
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This leads to   
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where all four combinations of signs s1=±1 and s2=±1 are 
permitted. Transforming these solutions back to equation (2) we 
obtain four solution sets for R, t and n.  
A critical situation occurs where the solutions branch, i.e. where 
the value in one of the roots becomes small or two of the 
singular values are nearly equal. This is the case if t and n are 
parallel i.e. the craft is directly going nadir – an unusual flight-

manoeuvre. The method will completely break down for three 
equal singular values i.e. t=0. We exclude this case because it is 
physically impossible for aircrafts.  
 
Special forms: The different applications lead to different 
structures of the homography matrices. Equation (6) lists some 
important cases. A camera looking directly nadir down to the 
surface and the craft moving in X-direction will produce 
something close to the form Hn. Side-looking obliquely 
mounted cameras will give almost Hs. A forward-looking 
geometry will result in something close to Hf. 
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u is a velocity parameter and v is a parameter for the tilt of the 
plane. Note that  Hs is an example for the elation case discussed 
above. 
  
Error Propagation: These frequent special forms are used to 
propagate small displacement errors in the correspondences into 
the estimated pose parameters. For this purpose we use the 
following set of four correspondences 
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We set motion to u=0.01 for the matrix Hs and Hn (Hs for a 
angle of 45°) and computed corresponding points from this. 
Then we put an error ε to the last point computed the disordered 
homography and decomposed it again. Displacement results for 
the vector t are listed in Table 1. 
 

 ε1=0.0005 ε2=0.001 ε3=0.0025 
Rotation-included    

f=10 11% 23% 61% 
f=100 166% 281% 665% 

Rotation-free    
f=10 1.7% 3.2% 7.4% 
f=100 1.3% 2.5% 12% 

 
Table 1.  Sensitivity of translation t to errors at different focal 
lengths. Deviations are given in ratio to the length of t. 
 
These are fairly small errors (ε3 being some half pixel). They 
can only be reached by using more than four correspondences 
and a robust estimation method. Also a ratio of 10 or 100 of the 
focal length to half of the image size is common for IR-
cameras. 
 
2.5 Non-projective and projective Distortions 

Particularly thermal IR cameras of older construction type often 
show strong non-projective distortions. They only have a small 
number of sensors that are used to scan the image successively. 
The rotating mirrors that are used to map the image to the 
sensors cause a non projective mapping. Examples for such data 
are Videos I and II from Sect. 4. If the construction details of 
camera are not known the non-projective part of the distortion 



 

may be estimated by a non-linear function xe=q(xn) where xn is 
the distorted location in the image and xe the location used for 
estimation of the homography He. We used a cubic 2D-
polynome for q and estimated the parameters by forcing 
locations that are known to be collinear in the scene to be also 
collinear in the images. The effect of this function q is 
visualized in Figure 1. 
 

 
 
Figure 1.  Example for the cubic distortion correction applied to 

video VideoII; these images are usually not 
calculated, only the positions of the interest points 
are corrected. 

 
Calculating pose from such homographies He estimated from 
correspondences (xe, x’e) directly may lead to systematic errors 
because the camera distortion (and its non-linear correction) 
may also contain an unknown projective part Hd. For such 
distortions collinearity is an invariant. Hd applies to both 
positions of each correspondence: Hd x’e =H Hd xe . If there is a 
ground-truth homography G for some images of the scene the 
equation He=H-1

d G Hd may be transformed to Hd He -G Hd =0, 
and used to estimate Hd. But care has to be taken that Hd is 
chosen with a sufficient determinant. It should be chosen from a 
particular family of mappings like shearing-mapping, rotation 
or projective distortions. Systematic errors for a particular set-
up can be measured if ground truth is given with a calibration 
run.  
Many contemporary thermal cameras feature focal plane array 
sensors and can thus be handled like ordinary CCD TV-
cameras: For normal or long focal lengths pin-hole camera 
models will usually be precise enough and the distortion of 
wide angel lens may sufficiently well be treated by a single 
quadratic term. An example for data from such a modern device 
is Video III in Sect. 4.  

 
3. SEARCHING FOR PROPER CORRESPONDENCE 

SETS WITH PRODUCTION SYSTEMS 

A planar homography h(p)=Hp can be linearly calculated from 
four correspondences c=(p´,p) by direct linear transformation 
(DLT) (Hartley; Zisserman, 2000), but they must not be in 
special configurations (like if three of the four points are 
collinear). If there are more than four correspondences available 
a squared residual error sum R is minimized.  

2),( HppR ∑ ′= ε  

 There is again a DLT solution to this, where ε is an algebraic 
error that approximates the inhomogeneous 2-d error provided 
the point coordinates are given in proper normalization 
(Hartley; Zisserman, 2000). However, this process being a least 
squares method is very sensitive to the inclusion of outliers in 
the calculation. Therefore a robust estimation method is 
required that can detect and eliminate the false 
correspondences.  
 
3.1 Robust Estimation 

Several proposals have been made to minimize the influence of 
such gross errors. One example is the iterative re-weighting 
approach (Holland; Welsch, 1977). This method avoids hard 
decisions on the set of measurements. However, the most 
popular approach today is the well known random sample 
consensus (RANSAC) approach (Fischler; Bolles, 1981).  
 
The Random Sample Consensus Method: Let C={c1,…,cn} be 
the set of correspondence cues obtained from the images. It is 
expected that C is the disjoint union of a set of correct 
correspondences Cc and outliers Co. The goal is to identify these 
sets by automatic means and to minimize the goal function  

)),((minarg c
H

opt CHRH =  

This minimization varying the homogenous matrix H while 
keeping Cc fixed is a straight forward linear computation using 
DLT. However, searching C for the proper subset Cc poses an 
exponential challenge (in n). The RANSAC-proposal 
recommends probing the power-set of C by drawing random 
minimal subsets. Here these are quadruples s={i1,…,i4} from 
{1,…,n}. Each of these samples leads to a hypothesis for Hs (at 
least if the calculation succeeds). And for every such hypothesis 
the residual error for all elements in C is determined.  

2
, ),´( isiis pHpr ε= . 

Using a global threshold δ the consensus set of the sample is 
defined as {ci in C: rs,i < δ }. The largest consensus set is 
supposed to be a good approximation for Cc. Usually it is too 
time consuming to check all (n

4) samples. There are decision 
theoretic considerations that give hints on how many samples 
should be drawn given an expected outlier-rate, a variance for 
the positioning of correct correspondences and a significance 
level [Hartley]. It is also possible to continue probing until a 
predefined minimal consensus is reached, or – in an any-time 
manner – until a solution is demanded by exterior time 
constraints. 
 If the set C is not equally distributed in the image the method 
will adapt the transform with more weight on densely populated 
regions. An isolated important correct correspondence in an 
otherwise homogenous image region may either end up as 
“outlier” or it will have equal weight like any other single 
correspondence in the calculation.  
  



 

Good Sample Consensus: Already in (Fischler; Bolles, 1972) 
an improvement of the RANSAC paradigm by replacing the 
random samples by samples that are drawn according to an 
assessment criterion is sketched. Following this idea we 
implemented the following approach: 
1. Locations are picked from each image which contain enough 
structure to allow a correspondence test with high significance 
(Foerstner, 1994). More significant locations gain higher 
priority.  
2. Each sample ci is evaluated according to its correlation. 
Samples with high evaluation gain high priority. 
3. Pairs of correspondences (c1,c2) are formed and assessed 
according to their Euclidian distance. Correspondences that are 
far apart gain high priority. 
4. Two pairs form a quadruple (s1,…,s4) of correspondences. It 
is assessed according to the area covered by the smallest of the 
four triangles formed by the points in one of the images. This 
property will be zero if three of the points are collinear. A quad 
with large minimal area gets high priority. 
5. Each quadruple defines a homography using DLT. In the 
space of homographies a metric is defined and quadruples that 
vote for close transforms are merged. The parameters of such a 
cluster of homographies are recalculated using the version of 
DLT that minimizes the residual error R for all correspondences 
preceding it. We call this correspondence set the consensus of 
the cluster. It is assessed according to the size of the consensus 
and also to the assessments of its members and according to 
geometric properties like the size of its convex hull.   
Good Sample Consensus method has been motivated and 
discussed in (Michaelsen; Stilla, 2003). The constructions and 
assessments are coded as productions and entered into a 
production system. The production system is run on the data 
using a data-driven bottom-up control that has any-time 
capabilities (Stilla, 95). 
 
 

4. EXPERIMENTS AND CONCLUSION 

4.1 Experiments with Aerial Thermal Videos  

Three video sequences taken from helicopters or aircrafts have 
been used to verify the error behaviour of homography 
estimation and pose estimation using decompositions of such 
homographies. All are taken in the thermal spectral domain. 
Fig. 2 shows example frames for each video. 
 
Video I: Oblique side-looking sequence on urban region in the 
city of Karlsruhe (buildings on flat terrain) taken with a TICAM 
camera from an airplane flying at approximately 3000m height. 
Such cameras give strong non-projective distortions. The 
camera was zoomed to 540mm focal length. Detector spacing in 
x- and y-direction is 50µm. So this is an extreme tele-lens 
perspective.   
 
Video II: Oblique side-looking sequence on the same urban 
region (including a lot of homogenous park area) taken with the 
same TICAM camera from an airplane flying at approximately 
3000m height. The camera was zoomed to 212mm focal length 
still giving a small field of view.    
 
Video III: Forward-looking sequence from a rural region with a 
little creek (trees, bushes, etc.) taken with a focal plane array 
camera from a helicopter flying at very low altitude. Such 
cameras give almost no non-projective distortions. The camera 
has fixed standard field of view. The focal length to detector 
spacing ratio is approximately the same as for Video II. 

 
a) 

 

 
b) 



 

 
c) 

Figure 2.  Example frames from thermal image videos with 
homography estimation overlaid: a) Video I, oblique 
with very small field of view; b) Video II, oblique 
with still small field of view; c) Video III, forward 
looking, low flying and strong rotations. 

 
For Video I there was a ground-truth file containing pose 
estimates obtained by a priori GIS/INS recordings and posterior  
back-section with geo-referenced building models. This enabled 
the estimation of the projective distortion matrix and systematic 
offset like outlined in Sect. 2.5. The same distortion parameters 
were used for Video II. Video III was regarded as distortion-
free (but with camera rotations). The outlier-rate and the 
standard deviations for inliers where estimated. Deviations are 
given in relation to the length of the measured vectors. Outliers 
are usually defined as having more than 100% deviation (except 
Video II with rotation, were 500% were used for t). 
 

 Video I Video II Video III 
Outlier-rate 
Rotation-included 

 
100% 

 
71% 

 
32% 

Deviation t ------- 385% 43% 
Deviation n ------- 64% 41% 
Deviation R ------- 5% 10% 
Outlier-rate 
Rotation-free 

 
58% 

 
16% 

 
31% 

Deviation t 78% 38% 56% 
Deviation n 69% 39% 48% 

      
Table 2.  Deviations and outlier-rates 
 
4.2 Conclusion  

Particularly, if long focal lengths are used the estimation 
accuracy for the camera pose that can be achieved through full 
homography decomposition may be rather poor. With Video I it 
turned out a complete random number generator. Often INS-
sensors are mounted on the same platform anyway that will 
give high precision. In these cases a rotation-free decomposition 
is favoured with the homography being a homology or an 
elation. The elation case is not exception because aircrafts are 
often operated at level that means with the epipole on the 
horizon. Therefore the eigen-space decomposition is not 
recommended. Instead the rotation free case allows estimating 
the epipole directly from the best sub-set of correspondences.  
Subsequently the plane parameters can be inferred linearly and 
unambiguously from the decomposition. Pose estimation by 

decomposing the homography of the image flow measures 
velocities over ground in relation to flight altitude and the 
absolute nadir direction (at least if the scene plane is levelled).  
It may complete other sensors like INS giving accelerations and 
rotations, GPS giving absolute locations, speed sensors giving 
speed in air, altimeters giving absolute height and magnetic 
compasses giving geographic direction. Special care has to be 
taken for non-projective distortions of the camera and lens, 
particularly with thermal cameras of the non-focal-plane-array 
type. Such distortions may well be misunderstood by the 
decomposition as rotations. It is desirable to calibrate a 
systematic offset from comparing the system to ground-truth.    
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