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7.1 Introduction

The crucial question to be answered during the assessment of a com-
puter vision algorithm is to what extent is the algorithm performance
useful? The utility of an algorithm can only be stated with respect to
an application, hence the assessment of computer vision algorithms
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is only possible if the application of the computer vision algorithm is
given.

The assessment of a computer vision algorithm falls into two parts,
namely, algorithm performance characterization, and the decision as to
whether the attained performance is sufficient for the given application.
For an application-oriented assessment of computer vision algorithms
both questions must be addressed.

Section 7.2 presents an overview of approaches to characterize the
performance of computer vision algorithms. Section 7.3 describes our
concept for the application-oriented assessment of computer vision al-
gorithms. The concept covers both the performance characterization
and the assessment of algorithm performance. Our assessment system
is described in Section 7.4. Section 7.5 describes the assessment of a
detection algorithm for two different applications.

7.2 Analytical versus empirical performance analysis

Models to explain and to predict the performance of a computer vision
system have gained increasing attention among the computer vision
community during the last few years [1, 2, 3, 4, 5, 6]. Although there ex-
ist a considerable number of approaches in computer vision, the design
of systems that are able to work accurately over a broad range of im-
ages is still difficult. Two mainstream approaches have been developed
by researchers to characterize the performance of image processing
algorithms. The first approach has concentrated on analytical inves-
tigation and sophisticated concepts of error propagation. The second
approach has focused on the quantitative, empirical and experimental
performance characterization.

7.2.1 Analytical performance characterization

In nearly all disciplines of image processing ideas have been proposed
concerning algorithmic behavior under perturbation influence. In lin-
ear estimation a complete theory about error propagation in terms of
covariance calculus exists [7]. Haralick [8] and Bar-Shalom and Li [9]
generalized such approaches to nonlinear problems. Also, numerous
analytical approaches have been proposed to investigate edge detectors
[10, 11, 12, 13], which are a general front-end tool of image analysis sys-
tems. Texture recognition and image segmentation approaches have
been evaluated analytically since the beginning of the 1980s [14, 15, 16].

Another major topic addressed by researchers is the control of ran-
dom perturbations and the influence of clutter. They have attempted
to relate the results of a vision system to image characteristics and
to investigate the main influence factors on algorithm performance.
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There are many reasons why the image processing methodology may
fail [17, 18]: misinterpretations of data features caused by noise; in-
consistent description of object features; missing contrast of the ob-
jects; imprecise edge detection; or background clutter. Therefore, the
object hypotheses usually are not consistent with all data, not even
with a subset for which an algorithm is trained. Thus, the characteris-
tics of objects to be detected have been analyzed under different noise
and clutter conditions and have been compared with the capacity of
human observers. Several papers discuss the features of objects and
background concerning the visibility to human observers. Conners and
Ng [19] modeled the human preattentive vision system on the basis of
gray-value co-occurrence matrices. Shirvaikar and Trivedi [20] used
these matrices to describe the background clutter with a texture-based
image clutter (TIC) measure and discussed the influence of this clutter
measure on the detection performance and false alarm rates. Waldman
et al. [21] suggested that spatial extent, contrast, clutter, movement,
shape, number of targets and color play the main roles in performance
prediction. Schmieder and Weathersby [22] first noticed the relevance
of the relation between target and background in determining detection
probability. They defined a signal-to-clutter ratio (SCR) and compared
the detection capacity of human observers versus the SCR and several
target resolutions. Ratches et al. [23] stated that the signal-to-noise-
ratio (SNR) defined by the average contrast difference between target
and background normalized by the average background intensity has
a basic influence on the detection performance.

The main problem with analytical descriptions is that most vision
systems consist of a combination of multitudinous steps. Each layer
includes highly adapted parameters for a specific application task. The
complexity of the computational procedure can make a complete ana-
lytical analysis infeasible. Additionally, both the applications as well as
the different methodologies are hardly comparable and the disadvan-
tage of one method is the main strength of another. Heuristic parts of
the algorithm are specifically adapted to special situations and are sel-
dom valid in a more general context. For this reason empirical perfor-
mance characterization is to date a common way to answer the earlier-
stated question, although an analytical answer would be highly desir-
able. Suggestions of how to treat the evaluation problem are discussed
in the following.

7.2.2 Empirical performance characterization

An early comparative study of image processing algorithms is that re-
ported by Weszka et al. [24]. They analyzed three feature-based texture-
measure approaches and evaluated their performance using a fixed
data set. Nowadays, it is still a common method to consider differ-
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ent sets of input images and to relate the performance of the algo-
rithm to the variation of image and algorithm parameters. This topic
is addressed by Kanungo et al. [25]. They started with a set of noise-
free images and generated a large number of images from this base
set by adding different realizations of noise and perturbations. They
then developed operating characteristic curves of the algorithm errors
as functions of signal-to-noise ratios and studied the perturbation in-
fluence on the algorithm performance. Haralick [26] provided some
reference operating curves of false alarm rates versus the nondetec-
tion rate as a function of the number of samples and a prespecified
error rate of the vision system. To formulate the evaluation problem in
terms of empirical statistics, similar approaches have been employed
by Bradley [27], Haralick [28], Liu et al. [29], Takeshita and Toriwaki
[30], and Nyssen [31]. They reviewed the theory about receiver oper-
ating characteristics, hypothesis testing procedures and significance
measures, providing additional background for statistical software val-
idation. To treat procedures of considerable computational complexity
modern resampling methods such as bootstrap have been used by Cho
et al. [32], Jain et al. [33] and Chernick et al. [34]. To evaluate complex
algorithms, Courtney et al. [35] suggested that each layer be modeled
separately as probability density functions and then combined to pre-
dict detection and nondetection rates.

7.3 Application-oriented empirical algorithm assessment

The assessment concept presented in this section eventually yields a
qualitative or quantitative statement of algorithm utility for a given ap-
plication, or a ranking of several algorithms based on that statement of
utility. The concept clearly distinguishes between the measurement of
algorithm performance and the assessment of measured algorithm per-
formance for a given application. Due to the lack of analytical models
when predicting algorithm performance, care must be taken during the
acquisition of test data in order to obtain relevant data that reflect the
particular difficulties encountered during the prospective application.
Another consequence of the stated lack of analytical models is that rel-
evant data have to be provided to the developers so that they can adapt
their algorithms to the particular difficulties of the application.

The subsequent assessment of the measured performance is based
on a description of the requirements of the application, the requirement
profile. The algorithm performance is compared to the requirement
profile by means of the assessment function that is used to derive an
application-specific figure of merit (FOM). This FOM can be used in two
ways: first, to derive a statement as to whether or not the assessed al-
gorithm is useful for the prospective application; and second, it may be
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used for ranking several algorithms according to their figure of merit.
The last step of the assessment concept is to collect all of the infor-
mation produced during the measurement and assessment procedure
(e.g., performance profile, the assessment function, the analysis of sin-
gle algorithm results, etc.) in an assessment profile that is presented
to the prospective algorithm user as well as to the developer.

7.3.1 Task, performance criteria and requirement profile

A computer vision algorithm always performs its task in the context
of an application [36]. Hence, the assessment of a computer vision
algorithm can only be done with respect to the application. Further, it
requires an agreement based on general criteria of engineering. This
agreement must contain an explicit description of the algorithm task
and has to define:

• parameters of the scene;

• objects of interest and their parameters;

• sensor type and sensor parameters;

• the expected computer vision results; and

• the prospective use of the computer vision results.

From the task definition performance criteria are derived. We distin-
guish between general criteria and criteria that are specific to the algo-
rithm class. Examples for algorithm classes are detection, classification
or parameter estimation. Typical performance measures for detection
algorithms are, for example, detection rate and the false alarm rate.
The performance of classification algorithms is usually described by
confusion matrices, and parameter estimation algorithms can be char-
acterized by estimation errors and standard deviations.

General criteria important for the user could be availability, reliabil-
ity, sensitivity with respect to parameter variation, hardware require-
ments of the algorithm as well as resource consumption and execution
time.

The intended use of the computer vision algorithm determines which
criteria are of importance, and allows assigning required values to each
of the selected criteria. Also, weighting factors (costs) for the selected
criteria according to their importance for the application could be es-
tablished.

The forementioned criteria and weights are fixed in the requirement
profile. Together with a rule for combining the weighted criteria to ob-
tain the figure of merit they define the so-called assessment function.
The investigation of additional algorithm features (hardware require-
ments, etc.) would be described in the requirement profile as well.
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7.3.2 Assessment data

This section describes assessment data, that is, all data that are neces-
sary to perform the assessment of a computer vision algorithm: image
data; collateral data; and truth data.

Type of image data. In order to verify an algorithm we distinguish
between: (i) synthetic image data; (ii) image data of modeled objects;
and (iii) image data of real objects [37].

Synthetic image data can be computed from scene descriptions by
algorithms for computer graphics and virtual reality. There are many
tools available to produce images by using a sensor model, an illumina-
tion model and an object or scene model. The advantage of using syn-
thetic objects is the inherent knowledge about the truth of the modeled
scene. This allows for a testbed structure for fully automatic testing
[38].

With the growing demand for the photorealistic appearance of syn-
thetic objects there has been a considerable increase in efforts to model
and generate images. For some examinations image data of model ob-
jects offer an alternative [39]. The image can be taken regardless of the
weather, at low cost and under reproducible conditions.

Working under changing conditions or using outdoor scenes the vi-
sion system has to cope with data that contain distortions and other
perturbations from various sources. To date, it is not possible to real-
istically model all sources of perturbations that have an impact on the
imaging process. For this reason the use of image data of real objects
is a must for the assessment of a computer vision algorithm.

Collateral data. Besides the information given by the test images sup-
plementary information may be available to the algorithm during op-
eration. Such information includes geometric resolution, radiometric
resolution, sensor geometry, and operational conditions. This informa-
tion is called collateral data.

Truth data. The previous sections described the data available to the
algorithm. For assessment purposes, there has to be a description of
the scene represented by the image data as well. Figure 7.1 illustrates
the data acquisition for the assessment of an algorithm that analyzes
images of natural scenes. The scene description is referred to as ground
truth.

It is important to mention here that the ground truth is application-
dependent in the sense that it must contain that information that is
relevant for the given application. In the case illustrated by Fig. 7.1, the
relevant information consists of descriptions of the vehicles present in
the scene.
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Figure 7.1: Illustration of ground truth, sensed truth and algorithm assessment.

Note that ground truth data may also describe objects that are invis-
ible in the sensor images. One reason for this is occlusion, for example,
cars occluded by trees. Another reason for objects missing in sensor
images is illustrated in Fig. 7.1: the scene is captured by one or sev-
eral sensors with different fields of view represented by three ellipses
of different size. The sensor field of view depicted by a solid ellipse
contains all objects present in the scene, while the two dashed ellipses
contain only two objects each.

A problem that is not illustrated in Fig. 7.1 is due to perturbations
that may cause algorithm failures. Knowledge about these perturba-
tions is required for a detailed analysis of algorithm performance.

Because of the cited problems we assign a sensor-specific descrip-
tion to each image. This sensor-specific description is referred to as
sensed truth in Fig. 7.1.

The sensed truth contains only those objects that are actually cap-
tured by the sensors, along with a list of potential sources of misin-
terpretations. The sensed truth represents the ideal result of a com-
puter vision algorithm. In the philosophy of the assessment concept
presented in this contribution, sensed truth has to be generated inter-
actively by a human interpreter. In order to establish the list of po-
tential sources of misinterpretations, a verification in the scene may be
required after a check of the acquired images.
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7.3.3 Image data acquisition

The algorithm performance in general is not independent of scene pa-
rameters and parameters of the image acquisition process. For this
reason the images used for performance characterization must be rep-
resentative for the application if the measured performance is required
to be representative. The problem that arises involves the number of
parameters of the imaging process. Relevant parameters are, for ex-
ample, scene and object parameters, parameters of sensor and sensor
carrier, time of day, time of year and weather conditions. Generally, the
space spanned by the relevant parameters is too large to be covered en-
tirely by the test images. In practice a compromise must be made to
concentrate on the most important parameters regarding the intended
application and to acquire a subset of all possible images.

The data acquisition may be expensive and the generation of truth
is time consuming. As empirical tests are expensive joint tests are nec-
essary. They allow the exploitation of the resources of several institu-
tions, academia and industry, in order to define and perform the tests,
including the preparation of truth, the necessary calibration of the sys-
tem, the huge amount of repeated measurements, and the proper analy-
sis [2]. These are some of the advantages of establishing an assessment
center.

7.3.4 Provision of training data for development

The stated lack of formal models for the imaging process implies that
the specification of a computer vision algorithm cannot be done for-
mally, but must be completed by real images of application-relevant
scenes. For this reason the relevant data set is split into a test data set
and a training data set. The training data set must be representative
of the entire data set. Using this data set, the software developer may
adapt his or her algorithm in order to obtain an optimal result for the
given application.

7.3.5 Algorithm performance characterization

The steps preceding performance characterization are shown in Fig. 7.1.
The algorithm is run on the images (sensor data) whereas for each image
the collateral data are made available to the algorithm as well.

The succeeding step is the comparison between algorithm results
and sensed truth descriptions. For this comparison, a similarity met-
ric has to be defined. Depending on the type of information that the
algorithm has to extract from the image (algorithm class), different sim-
ilarity measures may be appropriate:

• result point inside/outside truth polygon;
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Figure 7.2: Example of a performance profile.

• correlation coefficient;

• sum of squared differences;

• contour difference; or

• structural matching distances, etc.

The computed differences and distances between algorithm results and
sensed truth are then processed to obtain the actual algorithm perfor-
mance criteria.

For a detailed insight we represent the algorithm performance over
the space that is spanned by the image acquisition parameters and
scene parameters such as background, object type, and movement, etc.
This representation is called the performance profile of the algorithm.
An example for the performance profile of a detection algorithm is the
representation of its detection probability (performance criterion) over
object background (scene parameter) (see Fig. 7.2).

The performance profile is an important piece of information for
the user of the computer vision algorithm because it contains detailed
information about the expected algorithm performance under different
operational conditions.

7.3.6 The assessment function

This section describes how an application-specific figure of merit can
be obtained from the performance profile consisting of the measured
performance criteria k1, k2, . . . , kn. The computation is done by means
of the assessment function described in the requirement profile. As
the requirement profile also defines some required values for the per-
formance criteria, the FOM could be regarded as a measure of how well
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the algorithm performance satisfies the requirements of a given appli-
cation.

Formally, the FOM is the result of applying the assessment function
using the measured performance criteria as parameters

FOM = f(k1, k2, ..., kn) (7.1)

In a simple approach, an assessment function could weigh each crite-
rion ki according to its costs Ci defined in the requirement profile and
the FOM would be defined by summing the weighted criteria

FOM =
n∑

i=1

Ci ki (7.2)

Note that the FOM may also be represented as a function of the algo-
rithm parameters that have an impact on the algorithm performance.
As the assessment function is part of the requirement profile and as
the obtained FOM is crucial for the decision regarding algorithm util-
ity, it has to be stressed again that the requirement profile needs an
agreement among user, developer and assessing institution.

7.3.7 Overview of the assessment procedure

Algorithm developers and users together with the assessing institution
specify the application task from which an assessment task has to be
derived. Figure 7.3 outlines the information flow involved in the as-
sessment of a computer vision algorithm.

First, the application is analyzed to obtain relevant scene and ac-
quisition parameters, and to define the performance criteria together
with their weightings that determine the assessment function. A com-
prehensive assessment requires a complete acquisition of the scene
parameters and their variation. However, the specific combinatorial
relationships usually do not demand the processing of all variations.
Rather, the strategy must be to restrict the assessment to the most rel-
evant cases. The set of scene and acquisition parameters specifies the
procedure of data acquisition. The resulting assessment data consist
of the images taken by the sensor(s), the corresponding collateral data,
and the sensed truth that has to be generated application-specific.

The training data (a small but representative subset of the assess-
ment data) are delivered to the developer for algorithm training. After
training the algorithms they are run on the remaining assessment data,
called the test data. It is worth mentioning that during the algorithm
test the algorithms have access only to image and collateral data but
not, of course, to the truth data (truth data extraction).

Afterwards, the algorithm result is compared to the ideal result (the
truth) by performing a distance measurement. A subsequent statisti-
cal analysis yields the performance profile of the algorithm. During
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Figure 7.3: Overview of steps involved in the assessment procedure. Boxes
represent data, circles represent processes. The assessment of an algorithm
begins with the application analysis and results in the figure of merit (FOM).
These three major elements in the assessment procedure are highlighted.

the performance assessment the application-specific FOM is computed
from the algorithm performance profile by means of the assessment
function. In the frame of an assessment strategy several competing
algorithms may be evaluated and the best one is chosen for the appli-
cation on the basis of the FOM.

7.4 The assessment system

Some, but not all steps of algorithm assessment can be executed auto-
matically by means of a software tool collection [40, 41]. For example,
the application of an algorithm to the test data would be a tideous task
without the help of such a software. Likewise, managing large test data
sets can essentially be simplified by a tool that provides management
functionality in combination with a database. Hence, a toolbox was de-
veloped to support algorithm analysis and assessment, an overview of
which will be given in this section.
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Figure 7.4: The graphical user interface of the assessment system with menues
pulled down.

Revising the concept described in the foregoing sections one may
identify five main topics that have to be addressed by the assessment
system:

• control and configuration of the assessment task;

• management of test data;

• management of tested algorithms;

• performance measurement (test bed); and

• performance assessment.

It was a major goal of the design stage to reflect these steps on the
top of the assessment system, which resulted in the graphical user in-
terface shown in Fig. 7.4. The underlying functionality that is accessible
through the menu entries will be outlined in the following.

Assessment Task. As stated in the foregoing, the main viewpoint for
the assessment of computer vision algorithms is the intended use of
an algorithm. The application essentially determines the parameters
of the assessment, for example, which algorithms are available for the
given application, which images are available and how the algorithm
performance is to be assessed. Together with the requirement profile
the application has to be formalized as an assessment task and com-
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mitted to the system. This is accomplished by means of an input sheet
where all of the relevant parameters are to be stated.

Data management. An essential part of a software system for algo-
rithm testing is the management of data. There are two aspects to
mention: first, the large number of images necessary to yield statisti-
cally significant performance measures; and second, the variety of the
images concerning their content and formation (sensor, scene, mapped
objects, etc.) required for differerent applications. Especially the latter
is crucial for data management: Every image should be stored together
with a description that allows a selection of images according to some
properties relevant for a given application. Finally, sensed truth has to
be provided for every image as well.

The following three functions of the assessment system are avail-
able for data management: import of newly acquired data, selection
of data to accomplish a given assessment task; and statistical analysis
(view) of test data in order to check for statistically significant occur-
rences of application-relevant image content.

Algorithm management. For the management of algorithms a func-
tion comparable to that of data management is provided. First, an im-
port tool provides for the gathering of an algorithm together with its
specification and parameters. Next, the selection of algorithm(s) to be
tested is carried out according to a given application. A tool to view
the specification of a stored algorithm provides detailed information
about the algorithm properties.

Test bed. The steps that are supported by the test bed of the assess-
ment system are drafted in Fig. 7.3: execution of the algorithm using the
available test data; comparison between algorithm results and truth,
using an appropriate distance measure; computation and analysis of
algorithm performance profiles.

Assessment. The crucial step of the assessment concept described
in this contribution is the assessment of the algorithm performance re-
garding the underlying application. Two tools are provided for editing
an assessment function and to perform the assessment and to display
the results.

7.5 Example: Assessment of a detection algorithm

This section shows how to assess a vehicle-detection algorithm in the
context of two different applications. For both applications the algo-
rithm task consists in detecting vehicles in infrared imagery.
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The considered algorithm returns the image coordinates of the cen-
troid of detected vehicles. Additionally, for each centroid the algorithm
calculates a number indicating its own confidence into the produced re-
sult. This number is called the score of the algorithm result.

The truth for each vehicle is given by a surrounding polygon in im-
age coordinates. The comparison between algorithm results and truth
polygons consists in checking if the result centroids are inside the cor-
responding truth polygons. The following cases may occur:

• One and only one result centroid is in a truth polygon (detection);

• More than one result centroid is in a truth polygon (multiple detec-
tion);

• A truth polygon exists without a corresponding result centroid (miss,
nondetection);

• A result centroid is outside of all truth polygons (false alarm); and

• No result centroid is generated by the algorithm given an image
without any truth polygon (background).

For each case the corresponding rate is calculated by normalizing the
number of occurrences. In this example, the detection rate, nondetec-
tion rate and the multiple detection rate were calculated by normalizing
the corresponding numbers by the number of objects. The background
rate is calculated by normalization to the number of images and the
false alarm rate by normalization to the number of events, which is
the sum of all detections, multiple detections, misses, false alarms and
backgrounds.

To gain insight into the algorithm behavior with respect to the score
threshold, one can calculate the mentioned rates while ignoring events
whose scores are smaller than a given score threshold . By varying the
score threshold, one obtains a plot similar to the one in Fig. 7.5, which
shows the detection rate vs the score threshold.

One major problem is how to build from these simple performance
measures a FOM indicating the utility of the algorithm with regard to
the application. This was done by the construction of an assessment
function R working as a criterion that has to be optimized by variation
of the score threshold s

R (d, f ,n,b,m; s) = Cd d(s)+ Cf f(s)+ Cnn(s)+ Cb b(s)+ Cmm(s)
(7.3)

where Ci ∈ [−1,1], i ∈ {d,f ,n,b,m}, and d(s) is the detection rate,
f(s) is the false alarm rate, n(s) is the nondetection rate, b(s) is the
background rate, and m(s) is the multiple detection rate.

The constants Ci are application-dependent cost factors, which are
used to address the relative importance of each event-type. A negative
cost factor indicates a benefit, and a positive cost factor indicates a
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Figure 7.5: Detection rate over the score threshold s.

penalty. In respect thereof, R (d,f ,n,b,m; s) can be interpreted as
the risk of applying the algorithm while rejecting results with score
values smaller than s. In the underlying example, the FOM is defined
as follows:

FOM =min
s
R(d, f ,n,b,m; s) (7.4)

It takes into account the weighted contribution of each performance
criteria over the range of the score threshold s (see Fig. 7.6) and seeks
the result with the lowest risk.

Using qualitative cost factors one can illustrate the assessment prin-
ciple. The two applications considered here are:

• an information gathering system (IGS)), in which the algorithm re-
sults are further processed by human operators; and

• an autonomous system (AS), in which decisions of the algorithm are
directly taken without human interaction.

The cost factors are determined by applying the following considera-
tions:

• detections/background: correct decisions that are rewarded in both
applications (negative costs, cost factor -1.0);

• definitely, nondetections are counterproductive to the algorithm
task. Therefore, they are penalized by a cost factor of 1.0 for both
applications;

• multiple detections may lead to an incorrect evaluation of the ob-
served situation in the IGS. Therefore the multiple detection rate
is weighted with a cost factor of 0.7; for an AS the crucial informa-
tion, for example, for obstacle avoidance, is the position of detected
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Figure 7.6: Assessment function of the information gathering system (IGS, solid
line) and the autonomous system (AS, dotted line). The minimum indicates the
FOM and the task-specific operation point.

objects. Multiple detection hypotheses are less critical for this ap-
plication because they do not lead to incorrect decisions. The cost
factor is therefore chosen to be 0.1;

• false alarms may lead to incorrect decisions in the AS and are there-
fore penalized by a factor of 1.0. In the interactive application a
false alarm can be rejected by a human operator and thus is less
problematic. The cost factor is chosen to be 0.5.

As already mentioned in the foregoing, the threshold applied to the
scores of the detection hypotheses is used to reject weak algorithm
results. The impact thereof on the risk depends on whether the rejected
result is a detection, a multiple detection, a miss, a false alarm, or a
background. For instance, the rejection of multiple detections and false
alarms reduces the risk, whereas rejected detections and backgrounds
increase the overall risk of the detection algorithm.

Figure 7.6 shows a plot of the risk R (d,f ,n,b,m, s) for both appli-
cations over the variation of the corresponding score threshold. The
IGS has a minimum risk at a threshold of 60 indicating the optimal
operation point. By contrast, the optimal operation point for the au-
tonomous system is achieved at a score threshold of 70.

Further, the minimum risk of using the algorithm in the interactive
application less than the minimum risk of using it in the autonomous
application, which means that the algorithm has a higher utility for the
IGS than for the autonomous system.
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7.6 Conclusion

The assessment of computer vision algorithms is more than just a ques-
tion of statistical analysis of algorithm results. Rather, the algorithm
field of application has to be taken into account as well. Assessment
as understood in this contribution quantifies the utility of image anal-
ysis algorithms with respect to given applications. A clear distinction
between performance analysis and performance assessment has to be
made. The underlying algorithm performance is determined experi-
mentally. The final statement, how much an algorithm fulfills its re-
quirements, demands basic knowledge about its application-dependent
context. The connection between algorithm performance and this con-
text is modeled by an application-dependent assessment function.
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