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Abstract: This paper presents a model-based method for the automatic 3D-analysis of man-
made structures in aerial images. Objects to be recognized like buildings are modeled by
productions and depicted by a production net. Different types of models and productions are
distinguished. A parametric model of a simple gabled roof is used to give an example for
a production net and to illustrate the processing steps of the image analysis. Also gemeric
models are discussed. In order to automatically test and evaluate implemented production

nets of parametric models a test bed is proposed.
1 Introduction

Automatic extraction of buildings from aerial images can be viewed as a problem of image
understanding, pattern recognition and computer vision. In these fields a certain standard
repertoire of methods has been developed in the past decades. Some parts of the proposed
solutions are by now commercialy available, but the situation remains unsatisfying when it
comes to image understanding tasks with the structural complexity usually found in aerial

photography.

At the FIM laboratory a special view on such tasks has evolved, presenting the problems
of vision as a search process in the Al manner [22] and trying to attack them in the tra-
dition of blackboard theory [11]. Other authors applied elements of the theory of formal
languages in the field as well [13,4]. These views are combined and result in a perspective

on vision that emphasises the problem’s inherent difficulties.

Structures like graphical rewriting systems [10], picture description languages [15,4] and co-
ordinate grammars [13] seem to be restricted to 2D image spaces at first glance, but in fact
they generalize quite easily to 3D scene analysis. They provide a suitable theoretical frame-

work for discussing production systems based on relations and functions in a 3D scene.

229



STILLA, MICHAELSEN & LUTJEN (1996) IAPR TC-7, Graz

2 Recognition Approach

Regarding a recognition approach as an information processing task, a description can be
given on different abstraction levels. Marr [9] distinguishes the three levels of (i) compu-
tational theory, (ii) representation and algorithm, and (iii) hardware implementation. An
additional level of stability analysis was inserted by Aloimonos [2]. Our proposed approach

can be briefly characterized on similar levels of abstraction:

Strategic level: Images are analyzed by a model-based method. The model is structured in
a part-of hierarchy. So the objects are described in modular semantics. Recognition is

understood as a construction of a symbolic scene description.

Representation level: The semantic relations are formulated by productions. The part-of
hierarchy of the object model can be represented by a production net. Intermediate

results of the construction process are stored as partial objects.

Algorithmic level: The productions are implemented as knowledge sources in a blackboard
architecture [11,8,18]. The recognition is done by a data-driven bottom-up search [21].
Under certain conditions it is sufficient to accumulate the database. Thus no back-

tracking is necessary in the search process.

Stability level: For the evaluation of semantic correctness and algorithmic complexity a test
bed is proposed (Chapter 9).

Hardware level: The database of the blackboard system is stored in an associative memory
[19]. For this purpose special hardware or simulations on commercial hardware are

used.

This paper’s focus lies on the representation level. But our choice for the proposed rep-
resentations can not be explained without touching at least the algorithmic level. Partic-
ularly the complexity in calculation time and storage capacity of the search process dis-
cussed in Chapter 4 play a major role in the choice of the representations proposed. The
search process can not be discussed without a slightly more precise definition and differen-

tiation of the term model. The next Chapter is dedicated to this topic.
3 Object Model

In Pattern Recognition and Computer Vision the term model is often used in different con-
texts and meanings. Referring to the recognition task (verification, detection, classification)
and different degrees of freedom within the models we distinguish between the following

object models:
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e Specific Models describe objects using a fixed topological structure. These models are

further discriminated with respect to geometric constrains.

— Fixed Models are ideal geometric representations for physical objects. They are

fixed in position and orientation in reference space. Typical examples are maps.

— Fixed Shape Models have a fixed set of geometrical relations but the global posi-

tion and orientation is variable. An Example is shown in Fig. 1.

— Parametric Models permit more transformations as fized shape models with the
overall structural complexity of the model remaining fixed. The geometrical vari-
ation of the model is given by a set of parameters. A class of fized shape models

can be described by defining parameter intervals. An example is shown in Fig. 4.

e Generic Models are more general and describe objects without using a fixed topolog-
ical structure. Objects described by the model can consist of an arbitrary number of
parts. An example is shown in Fig. 10. Further examples are models which describe

the general structure of a road network [18] or an urban area [17,5].

4 Search
4.1 Searching the Transformation Space

On the algorithmic level the models lead to different solutions. Fized models allow a di-
rect correlation analysis between the model and measurement data, resulting in a single
confidence value for this match. For fized shape models the canonical method lies in sys-
tematically listing the transformation space, computing the confidence value for each trans-
formation. With every degree of freedom in the model transformation the computational
complexity in time and space is multiplied by the number of permitted values. For para-
metric models this may lead to overheads, doing too many sensless computations not based
on actual data and wasting memory. Marr’s principal of least commitment [9] is violated.
For generic models such procedures are strictly impossible, because infinite sets cannot be
listed. One possible solution is to search the correspondence space instead of the transfor-
mation space. The next Section discusses the nature and complexity of this combinatorial

search processes in more detail.
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4.2 Searching the Correspondence Space

Instead of enumerating the transformation space of a model one can proceed in the follow-

ing way [6]:

1. Define a function that compresses the image data into a set or list of primitives.
These are symbols (e.g. lines, segments, vertices, ...) with numerical attributes at-

tached.
2. Partition the model into primitives of comparable description.

3. Search the space of correspondences between image primitives and model primitives

for consistent solutions.

2 A 1
_> ‘A=
L Jo
Model Model primitives Image primitives Image

Fig. 1: Example for a search

Fig. 1 gives an idea of this procedure. The combinatorial search is usually done in a
treewise manner starting with the empty correspondence and adding additional correspon-
dences stepwise until all image primitives are matched to a model primitive. Since in full
consequence this would lead to exponential complexity in the size of the image primitive
set (m™ match calculations) the tree has to be pruned, which can easily be achieved using

topological or geometric constraints defined on single primitives and pairs of primitives [6].

Often generic models are designed in the style of generic transformation systems. The nat-
ural way to match them against measured data is using their productions (see Chapter 5)
in the other direction (reducing instead of generating), i.e. building parsers for images or
scenes. As generic models are the most general form considered here, such parsing methods
can also be used in the simpler cases of parametric or fized shape models. We conjecture
that they might give some advantages over correspondence search methods without worsen-
ing the computational complexity. We give examples of a 3D parametric model and a 3D

generic model in the Chapter 7.
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5 Productions and Production Nets

The model of the object is partioned into model primitives. Different subsets of the model
primitives are grouped to model parts. Parts of the same structure are summarized by one
object concept. The topologic or geometric relations between object concepts are described
by productions. In general a production, or production rule, is a statement in the form:

IF condition holds, THEN action is appropriate.

In our approach the condition part of a production tests an input configuration. A config-
uration is a set of objects represented by a tuple. The configuration is called compatible
if a certain relation ® between the objects is fulfilled. In this case the condition part is
TRUE and a generating function %, is carried out. The function produces a new output

configuration.

Production Pi: | Input configuration ® -L» Output configuration

— A _/
Condition part Action part

Generally productions in our sense feature tuples of arbitrary length on either side. We
consider only productions containing a single object in the output configuration. Differ-
ent types of these productions are shown in Fig. 2 together with a graphic representation.
They differ in type of objects (concepts) in the input and output configuration and in the
number of objects in the input configuration. The input configuration contains one object

in Fig. 2a, two in Fig. 2b-e, and more than two (e.g. 3) objects in Fig. 2f.

X AY @l’Z X/\Zl@l’zz X1"X2(D_i>X3 Xl"x2"x3®L>Z

X @17z
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Fig. 2: Different types of productions and graphic representations

These types have the following properties:

a) The production only transforms one instance of object X into one instance of object
Z if the given unary constraint holds.

b) The production contains a symmetric pair in the input configuration.

¢) The production contains an assymmetric pair in the input configuration.
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d) The recursive production contains in the input configuration an object of same type

as in the output configuration.

e) The recursive production contains in the input and output configuration the same

type of object.

f) The production contains in the input configuration n, > 2 objects. Such productions

can be transformed to a set of productions (a-e) using additional object concepts.

Productions determine how a given set of objects is transferred into a set of more complex
objects (Fig. 3a). The hierarchical organisation of object concepts and productions can be

depicted by a production net. Each object concept occurs only once. An example is given

in Fig. 3b.

E @ RECTANGLE )
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Fig. 3: a) Production and object sets, b) Example of a production net

6 Analysis System

Starting with object primitives, a target object is composed step by step by using the
productions repeatedly. The applied compositions for the concrete objects (instances) are
recorded with pointers and can be illustrated by a derivation graph. As all intermediate
results (partial objects) are stored in the derivation graph, the concrete process of the anal-
ysis or the synthesis is being reflected. This derivation graph allows one to backtrack and

visualize the generated objects.

In a classic rewriting system a production replaces the input configuration by the output
configuration. This leads to parsing algorithms with backtracking search trees. Instances
deleted from the database have to be reinserted if the branch below did not succeed. Gen-
erally this leads to exponential complexity or a vast overhead in demands for memory. We
use the productions in an accumulating manner instead, i.e. the input configuration will

not be deleted®. It should be mentioned that we use in a production no condition which

1this methode resembles CYK-parsers [1] in some way
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demands the absense of an instance with certain properties. Then there is no need to keep
the database consistent for all objects (global consistency). Only the objects of one deriva-

tion graph are consistent (local consistency).
7 Building Extraction by 3D-Reconstruction

For the 3D-reconstruction of buildings at least two images of the scene taken from different
camera viewpoints are necessary. It is presupposed that the formulas of projection of points
in the scene into the images are known. This is necessary for the stereo triangulation. But

there is no need of epipolar geometry as in other approaches.

A simple model of a house (Chapter 7.1) is chosen to give an example for a production net
(Chapter 7.2). Guided by an image subarea the preprocessing steps (Chapter 7.3) and re-
sults of the analysis (Chapter 7.4) are illustrated.

7.1 Object Model ROOF

In many aerial images containing low houses, only the roofs are recognizable. Thus the
houses are actually described by their roofs. In this paper we only take detached houses
with simple gabled roofs (ROOF) into account. It is assumed that significant parts of a roof

are given as rectangles in the scene and parallelograms in the image.

Sroor = {R (l,w,h,7) |

-
Y &

lmin < l < lmaz:a
Wmin < W < Wmage,
hmin < h < hmaz:a
TYmin < v < Ymaz }

Fig. 4: Parametric model ROOF Fig. 5: Fized shape models RooF differing in length, width,
height and roof angle
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The parametric model of a house containg four parameters (1,w,h,y) is shown in Fig. 4. Us-
ing a parametric model a fized shape model is defined by unique parameter values. Given
parameter intervals instead of parameter values a model class Spoor is defined. The vari-

ety of the used model class Spoor is depicted in Fig. 5 by some fized shape models.

7.2 Production Net RooF

A production net for the model ROOF is depicted in Fig. 6. Starting with the object prim-
itives LINE (@), the 2D-objects ANGLE @), U_STRUCTURE ©) and PARALLELOGRAM (P can
be composed applying the productions (P;-P;). Objects ANGLE are constructed of pairs
of objects LINE (P;). If two objects ANGLE form a structure like an open parallelogram
they are combined to an object U_STRUCTURE (P2). An object PARALLELOGRAM can be
assembled if objects U_STRUCTURE and LINE are compatible (Ps).

C. ROOF )

@ ROOF_AREA )

iz 2.1
6
& 4 \ 9/ /11 /13
@ LINE ) -5 5 0
left image right image
Fig. 6: Production net RooF Fig. 7: Construction of an instance RooF (R)

The 3D-analysis attempts to find in two different images pairs of 2D-objects
(U_STRUCTURE or PARALLELOGRAM) which are projections of the same 3D surface. This
is done by selecting pairs and examining rays originating at the centre of the projection
and passing through the vertices of the 2D-objects. On ideal conditions rays through corre-
sponding object vertices of two images will intersect in the 3D-space. Due to image noise,
processing errors and inaccurate camera parameters the rays generally do not intersect.
Hence, the minimal distance between the rays is calculated. The 2D-objects will be called
not corresponding if this distance between the rays of pairs of vertices is greater than a

given threshold.
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If 2D-objects of different images correspond, the object ROOF_AREA (¥) is generated (Fy).
IF objects ROOF_AREA are oriented in such a way that the surface normals enclose an
angle v that lies within a certain angle interval [Yiuin,Ymaz] and if they are located in a
way that the vertices are neighbouring, then a target object ROOF ®) is generated (FPs).

A possible structure of a derivation graph constructed by the production net is shown in

Fig. 7.

After the 3D-analysis is complete local clusters of objects ROOF are examined. Only the
best object of each cluster is selected (global consistency of the target objects) and stored
as object HOUSE.

7.3 Preprocessing

In the preprocessing stage symbolic descriptions of scanned aerial images are created. For a
description of man-made objects short line segments are often used as primitive symbols. A
lot of low-level procedures creating image descriptions with lines are available. The chosen
procedure operates in several steps and has a parallel processing structure. A convolution
for edge detection is not necessary. The intermediate results of the processing steps are
displayed in Fig. 8 for a small subarea of a stereo image pair (left and right). The following

steps are carried out:

Level Slicing: The image is transferred into a sequence of n; binary images by n; thresh-
olds. In general the n; thresholds are distributed equidistantly between the minimal

and maximal grey value in the image.

Contour Detection: In the binary image of each level the contour lines are detected by a

contour tracking algorithm.

Contour Approximation: The received contour lines are approximated by straight lines.

For that task a dynamic split algorithm is used [20].

Collection: From all levels the short lines are stored in the global database as a set, i.e.

topological relations between the short lines are not considered.

Prolongation: Short lines are prolongated to long lines by a grouping process. These pro-
longated lines are stored as primitive objects LINE () in the database. Prolongation

can be formulated as a recursive production (Fig. 10c) as well.
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left

right

Fig. 8: Preprocessing Fig. 9: Intermediate results [21]
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7.4 Analysis

In order to test the approach and evaluate the results images are taken from a database
which is the basis of an image understanding test. The ISPRS working group I11/3 pro-
vides this test database which can be accessed commonly via FTP. For the available stereo
image pairs camera parameters and projection formulas are given. The task is to detect
man-made structures like buildings, measure their geometry and represent them in a suit-

able way.

The dataset FLAT was analysed by the production net shown in Fig. 6. In order to demon-
strate the recognition of a single house all objects generated within the subarea of the scene
(Fig. 8 bottom) are shown in Fig. 9. Starting with the objects LINE (Fig. 9 © ) in both
the left and the right channel the stepwise composition of compatible configurations can
be traced up to the objects RooF (Fig. 9 ®). On each stage the image structures are
subjected to additional geometrical constraints by applying productions. The chaining of
productions in a production net results in logical AND-operations of constraints. Tracing
the subimages Fig. 9 @ to Fig. 9 (®) we realize that parallelogram-shaped image structures
are filtered out of the sets LINE. The structures ROOF displayed in Fig. 9 ® meet the geo-
metrical relations of the stated parametric model. The displayed objects ROOF ® cumulate
in a small region of the scene and are a significant indication of a house. The object ROOF

with the best assessment stands representatively for the house’s roof of the scene.

The results of the whole scene are displayed and discussed in [21]. Contrary to a descrip-
tion of the reality (ground truth) the result of an image analysis can only represent a per-
ceived reality (perceived truth). To evaluate the results a comparison of perceived truth
and ground truth is necessary. This was carried out by ISPRS Working group III/3. We
obtained mean values of differences (RMS) in the coordinates of the roofs: oz[m] = 0.41,
oy[m] = 0.37, 0,[m] = 0.99. The comparison was listed together with results of other re-

search groups and has been published in [16].

7.5 Production net HOUSE_ROW

As an example for a recursive production net resulting from a generic model in this Section
a proposal is made for the grouping of buildings into rows. A post parse spatial consistency
process has chosen the best objects ROOF consistent with each other (Chapter 7.2). These
are transfered to a new set as objects HOUSE, which is input to a production net that con-

tains the two productions P and P; depicted in Fig. 10c.

Production Fj is of the type of Fig. 2b. It’s condition part demands similar values for the

model parameters of both objects HOUSE, similar rotation in the scene and a certain mini-
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Fig. 10: Construction of objects HOUSE_ROW

mal and maximal distance. It’s action part calculates the shift vector between the houses,
sets the number of houses in the row to two and constructs an object HOUSE_ROW with
these attributes. Production P; is of the recursive type of Fig. 2d. It’s condition part de-
mands consistence of the object HOUSE to be added to an object HOUSE_ROW with the
value of the shift vector and the parameter values for the model HOUSE associated with
this object HOUSE_ROW. It’s action part then actualizes these values according to the new

mean and increments the house number.

The underlying generic model is that of an arbitrary number of similar houses placed in a
row with equidistant gaps in between as is commonly found in urban areas. Fig. 10a shows
a subarea on the ISPRS dataset FLAT. Fig. 10b presents all objects HOUSE in that area.
Fig. 10d-10f depict the successive reduction of an object HOUSE_ROW first using Ps and
then repeatedly using P; on this dataset.

Theoreticaly it is possible to leave out the spatial consistancy choice procedure between the
two production systems described in this and the previous Section and regard them as one
production system. But practically, since the objects ROOF usually are found in several
versions at each location, this leads to a combinatorial growth in the number of objects

HoUSE_ROW, overloading any possible hardware.
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8 Test Bed

For testing the discriminate features of production nets as a whole and it’s individual pro-
ductions a huge ammount of aerial imagery with corresponding ground truth is necessary.
This would lead to great efforts and costs. For that purpose we propose a test bed for

system development and evaluation.

For example: How can we verify whether the objects of a desired object class with the
selected parameter intervals will indeed be extracted? For the verification a sample of 2D-
representations which are projected from fized models of one class is generated and serves
as an input to the analysis system. An exact analysis has to deliver reconstructed 3D-
objects with the same geometry as the fized models. The generation of the 2D-examples
from a parametric model as well as the comparison of models and reconstructed objects

and the evaluation can be done automatically by a test bed.

Test bed

4444444444444 C Parametric model )
| :

I Model generation ﬂ Evaluation

s I
C:
== R E ........ C Fixed models )_t 4_—( Tqrget objects ) .
S IN: A,
= E l l ‘s
= - 3D ‘c
- G ‘ Rendering || Projection 2D B
; v Symbolic N
— 33 processing E:
’\/\\ d _\ 3:3 Model parts (Production net) »
K A
= \ (JX A 4 N
\A//./ RN W 7 R R C Primifive objects ) B
o 4 L
2 symbolic - v
" o ’ Preprocessing -
iconic '8
v [} o
. 'S
Synthetic > Images L
images 9

Fig. 11: Test bed for an implemented production net of a parametric model

Fig. 11 shows the structure of the test bed for a parametric 3D-model. Beginning with
the parametric model some fized shape models are generated automatically by randomly se-
lected parameter values within the specified parameter interval (e.g. 90° < v < 170°). With
a random selection of position and orientation values of fized shape models a scene model
is built up of fized models. Instead of a random selection of parameters, a systematic se-

lection can also be carried out. For instance, a combination of extreme values of specified
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parameter intervals can be chosen (e.g. lmin, Wmin, Amin, Ymaz) and the position and ori-
entaton can be chosen in certain structures (e.g. houses with the same gable orientation in

rows as in Fig. 10).

Using the specific image parameters (camera orientation, image size and resolution, etc.)
the scene model can be projected into a symbolic or iconic representation in the 2D image

space:

o A symbolic representation is suitable for checking the production without preprocess-
ing (inner loop in Fig. 11). The model surfaces are projected into 2D-model parts and
postprocessed by a hidden line algorithm. Splitting the contours of the model parts
(e.g. PARALLELOGRAM) we obtain a set of model primitives (e.g. LINE) which can be
analysed by the implemented production net.

e An iconic representation is suitable for checking the analysis system including the
preprocessing stage (outer loop in Fig. 11). Synthetic images are generated by a
rendering process using additional scene information like illumination and reflection.

These images represent the input data for the analysis system.

Additional parts, geometric distortions or noise make the generated synthetic images more
realistic. As shown in Fig. 11 in addition to the required roof structure, structures of house
walls and shadow appear. Results of the analysis (target objects) will be compared to the
generated fixed models and differences are evaluated. This test bed helps us on the other
hand to create critical situations for a 3D-reconstruction (e.g. a small triangulation basis)

and to point out the limits of the analysis system.

9 Conclusions

A production net for the extraction of buildings by 3D-recognition has been presented. It
was demonstrated that such nets are also usable for generic models. Particularly the mod-
ular semantics of production systems and representation of object concepts as part-of hier-
archies that hide unnessary detail in higher complexity levels give a promising perspective
on the solution of tasks to come in near future. A test bed has been proposed that helps
evaluate implemented production nets. With rising complexity and structure of the images

these things become important for the development of solutions for new applications.
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