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Map°aided structural analysis of aerial images 

A syntax-oriented method for a map-aided analysis of structures in aerial images is proposed. First the map must 
be analysed in order to obt.in a suitable representation of its knowledge content. A special kind of graph, a so-called 
image-description graph, is the result of this map analysis. The knowledge of the map, represented on different description 
levels, is used to control the search process during the image analysis. Based on this knowledge, expectations for attribute 
values of image objects are defined. Generated objects are assessed relative to the expectations of the map and the object 
model. A set-oriented selection method is applied to deduce the processh'~g priority using these two assessments. Expected 
objects are preferably processed for building up more complex objects. Thus the map-aided analysis can be used to reduce 
the processing time for a verification task. 

1. Introduction 

The presented work is part of the research 
project '~na!ysis of aerial and satellite images for 
automatic determination of the ground sealing of 
urban areas"'. The aim of this project is to attain 
a context-oriented automatic image analysis, which 
comprises in addition to multispectral and tex- 
ture classification, an image structure recognition 
by using two- and three-dimensional models. For 
context information we use cartographic represen- 
tations of the image area (Fig. 1). 

In the first step of the project the objects al- 
ready known from the map are being verified in 
the aerial image. In a second step it is intended to 
classify those structures which could not be verified 
by usi,ag the map. 

In the field of pattern recognition, knowledge- 
based methods are[ increasingly used for the anal- 
ysis and description of aerial imagery (Nagao and 
Matsuyama, 1980; McKeown et al., 1985; Nicolin 
and Gabler, 1987). A special group are structure- 
oriented hierarchical methods, which build up 
structure hierarchies by composing complex struc- 
tures from less complex structures. Using this ap- 
proach the analysis proceeds step by step, with 
constant reference to the patterns being analysed, 
producing intermediate results of increasing de- 
grees of abstraction. 

1 Research Institute for Image Processing and Pattern Recog- 
nition (FGAN/FIM), Eisenstockstr. 12, 76275 Ettlingen, 
Germany. 

This paper describes the procedure of verifying 
objects with the aid of structure analysis and the 
way the content of the map corresponding to the 
aerial image is used. 

Initially, the map must be analysed in order to 
obtain a suitable representation of its knowledge 
content. The result of the map analysis is then 
used to control the following aerial image analysis. 
For the automatic analysis of complex structures as 
they occur in aerial images, we propose a syntax- 
oriented structural image analysis. 

2. Blackboard-based production system BPI 

For structure analysis of complex scenes the 
blackboard-based production system for image un- 
derstanding (BPI) (Ltitjen, 1986) is suitable. 

2.1. Production .~ystem 

A production system consists of three basic 
components: a database, a set of production rules 
and a control unit. A production rule, or produc- 
tion, is a statement in the form: IF this condition 
holds, THEN this action is appropriate. Execution 
of the action will result in a change of the data 
contained in the data base. A control unit controls 
the system's activity and has the special task of 
deciding which production with satisfied condition 
part to fire next. 

The process of building up more complex struc- 
tures from less complex structures using such pro- 
ductions can be described by a rewriting system. 
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Figure 1. Town section. (a) Mapsheet  DGKS. (b) Digitized map. (c) Aerial image. [(a) and (b) Permission granted by Landesver-  
messungsamt, Baden-W0rt temberg ,  Aussenstelle Karlsruhe. (c) Permission granted by Stadtverwaltung Karlsruhe.] 

With reference to formal languages the rewriting 
system may be determined by a Grammar G. A 
formal grammar is defined by a 4-tuple: 

for the actual objects (instances) are recorded with 
the aid of pointers and can be illustrated by a 
derivation graph (e.g. Fig. 6). 

G = (S. V.. V,. P)  

where S is a set of start symbols (target objects), Vn 
is a set of non-terminal symbols (partial objects), 
Vt is a set of terminal symbols (primitive objects) 
and P is a set of rewriting rules (productions). 
The objects are attributed and represent certain 
structures. The productions determine how a given 
set of objects is transferred into a set of more 
complex objects. 

On the analogy of string grammars we may say 
that an image content is parsed (bottom up) by 
the process of image analysis. Instead of examin- 
ing the concatenation as done by parsers for string 
grammars, we examine the topologic or geometric 
relation of objects in the condition part of a pro- 
duction. Therefore, a production rule is written in 
the form: 

. x ^ y o z 

This means that, if an object of type X and an 
object of type Y fulfil the predicate ®, then an 
object specific generative function i> is carried 
out which produces an object of type Z. 

Starting with primitive objects, a target object 
can be composed step by step using the produc- 
tions repeatedly. The general interaction of produc- 
tions and the stepwise transfer of objects into ob- 
jects with a higher abstraction level can be depicted 
by a production net (e.g. Fig. 5). The compositions 

2.2. Blackboard architecture; 

The blackboard architecture was first suggested 
by Newell (1962) and the basic idea can be demon- 
strated by a metaphor (Velthuijsen, 1992): "Imag- 
ine several specialists with different expertise re- 
quired to solve a problem cooperatively. The spe- 
cialists are gathered around a blackboard for com- 
municating intermediate results and hypotheses. 
As soon as data has been written on the black- 
board by one of the specialists, other specialists 
may decide that they can use that information to 
contribute to the problem-solving process. These 
specialists in turn write their own findings on 
the blackboard, thus providing possibly interesting 
information for other specialists to continue the 
problem-solving process. The process so continues 
until either a solution to the problem is found or 
no specialist is able to proceed on any of the data 
present on the blackboard." 

The basic components of a blackboard system 
are displayed in Fig. 2. In the blackboard system 
so-called knowledge sources are given the role of 
specialists and a global database is used as black- 
board. A control unit given the role of a discussion 
leader is added to the system. 

In the BPI system the global database is re- 
alized in the form of an associative memory and 
the control unit contains a priority-ordered queue. 
The knowledge sources are implemented by inde- 
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pendent processing modules (PMs) which commu- 
nicate exclusively via the blackboard. All ~nterme- 
diate results (partial objects) remain stored in the 
blackboard during the analysis. 

2.3. Assoc ia t ive  m e m o r y  

An assocmtive memory, realized by special 
hardware, is used to get fast access to object sets. 
The memory concept which provides the database 
in an inverted manner is demonstrated in Fig. 3. 

A bit matrix is used to assign attribute values 
to the objects. The objects (marked by an object 
index) are registered in the columns and the at- 
tribute values (e.g. length = 31, length = 32, length 
= 33) are registered in the rows. The bitstring 
(row) attached to an attribute value indicates to 
which objects this attribute value is assigned. A 
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new object is written into a free column, setting bits 
corresponding to the attribute values (e.g. objects 
of type LINE with length = 31, orientation = 45 °, 
and assessment = average). Object sets with certain 
features are selected with attribute values, attribute 
intervals and set operations. Thus all objects may 
be read in a very efficient way and be available 
in an index set (e.g. all otjects of type LINE with 
length >31 and with an assessment of good (+) or 
very good (+ +)). 

2.4. Data flow in the BFI system 

The data flow in the BPI system is illustrated in 
Fig. 4. Initially the primitive objects (X) are stored 

i . . . . . . . . .  ~ . . . . . .  ; O OBJECT X ( PRIMITIVE ) 
i ~ i  ~ )  OBJECT X 
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in the blackboard together with their attribute val- 
ues (1). Furthermore they are entered as assessed 
elements in the priority-ordered queue (2). Then 
the data-driven analysis starts with the processing 
of elements, which are ordered according to their 
assessment in the queue. 

The first element of the queue is removed and 
it is tested whether a hypothesis Z is attached to 
this element. If this is not the case (3) one or more 
hypotheses are attached to this element and these 
pairs of element hypotheses (processing elements) 
are inserted in the queue again (4). For exam- 
ple, for an object LINE which gets the hypotheses 
part_of_LONOLINE and part_of_STRIPE two pro- 
cessing elements will be queued. 

If a processing element ( X I Z )  is removed 
from the queue (5) a hypothesis test will be started 
by triggering a specific verification program (pro- 
cessing module). This module tries to confirm the 
hypothesis by searching objects (Y) in the black- 
board which fulfil a specific predicate E) (6). if the 
hypothesis is confirmed (7) a new object (Z) will be 
created and its attribute values will be calculated. 
Then this object is stored in the blackboard (8) and 
additionally an element is entered in the queue (9) 
according to the assessment. 

Thus, in different regions of the image, com- 
patible objects grow to more complex objects. The 
production of partial objects proceeds until the 
set of nonprocessed elements is empty, or the tar- 
get objects are constructed. This problem-solving 
technique is similar to assembling a jigsaw puzzle 
(Nii, 1986). The image analysis can be understood 
as a search process which looks for a compatible 
configuration of objects. 

3. Map analysis 

The source of context information is a digital 
map (DGK5) with different map coverages (object 
classes) available in a GIS. A section of the map- 
sheet DGK5 is shown in Fig. la and the manually 
digitized coverages street and building are shown 
in Fig. lb. The base of the map analysis is rep- 
resented by a set of straight lines (Fig. lb). The 
structure of the digital map is analysed in order 
to appropriately provide the context knowledge for 
the aerial image analysis. 

A simple production system with eight produc- 
tions (Pt-/ '8) (Table 1) is given as an example of 
the analysis of the object class street. 

TABLE 1 

Set of productions 

i Object  Z Pi Objects X, Y E) - - ~  

PI L A  L l ~ ~ L 
2 P2 L A L  - / -  ~ SL 

P3 SL A SL I I ~ S 
/)4 S A S  4 

5 /'5 S A S  / ~ C 
6 P6 C A S  - - +  - - - .  C 
7 F7 C A  C ~ ~ NC 
8 P8 NC A NC ~ ~ NC 

- -  collinear, prolongable  
- - / -  collinear, not  prolongable~ length > L 
I I parallel to each o ther  
Z a certain angle to eacit o ther  
- + ends in 

consistent, comprises the same objects 

NETOF CROS=N S common :~ i: i: i :  :..: i i crossing 

/ ~ o m r n o n  streets 
• | 

) 

r ~ a r a l l e l  

UNE ( ~ :  • ; = :. . ) 

AnCOlllnear, length > L 
ot prolongablej _r~__ . 

prolongable 

Figure 5. Product ion net. 

Starting with the object primitives LINE (L), the 
objects S_LINE (SL), STREET (S), CROSSING (C) 
and finally the object NET_OF_CRossINGS (NC) 
can be built up in the map by applying the produc- 
tions (/)1-/'8) repeatedly. 

The connection between the used object con- 
cepts and the productions of Table I is visualized in 
a production net (Fig. 5). With the design of a pro- 
duction net for pattern recognition the selection of 
suitable object concepts and predicates shall cause 
that the number of generated instances decreases 
with increasing complexity of concepts. Assuming 
that, the production net acts as a filter for struc- 
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Figure 6. Derivation graph of CROSSING 472, 

tures. An unfavourable choice of object concepts 
and predicates may lead to a combinatorial e.xplo- 
sion in the search space (Ledermann and Vajda, 
1985). 

The results of the map analysis are one or more 
target objects with their corresponding derivation 
graphs. A portion of a derivation graph is displayed 
in Fig. 6 for the instance CROSSING 472 in form 
of the derivation tree with the objects CROSSING, 
STREET and S_LINE, Objects LINE are not dis- 
played for reasons of clarity. The generation order 
of the instances is indicated by the consecutively 
numbered index. 

As all intermediate results (partial objects) are 
recorded, the actual process of the analysis is re- 
flected in the derivation graph. This graph, how- 
ever, is of no interest for a general description of the 
map. 

The following analysis of the derivation graph 
results in a reduced graph for the image descrip- 
tion, the so-called image description graph (Fig. 7). 
This graph describes the contents of the map on 
different levels (image description levels) with the 
aid of attributed objects and relations among the 
objects. Figure 9A shows the objects of the image 
description graph using the image description lev- 
els CROSSING (Fig. 9Aa), STREET (Fig. 9Ab) and 
S_LINE (Fig 9At). 

To use the geometric information of the map, a 
registration between digital map and aerial image 
is accomplished by determining matching points 
manually and estimating the parameters of the 
affine transformation. 

469 

I ",1_4'.9 _ ] 
/ 

/ j~48._ ! 
._  / . 

I ~ . . . . . .  ~ _ 4 _ 5 _ 2 _ _ _  ~ ~ ~ - - - i  

\ \  ",,,.139~t I 

\ _ _  

~ s u ~  
",,,J_372 i 

Pig. 9A~ Pig. 9&b Pig. 9 A c  

Figure 7. Image description graph of CROSSING 472. 

4. Image analysis 

The analysis of the aerial image is carried 
out similarly to that of the map, e.g. an object 
CROSSING iS built up by the objects LONGSTRIPE, 
STRIPE, LONGLINE and LINE. The primitive ob- 
jects LINE are generated in a preprocessing stage. 

4.1. Preprocessing 

In the preprocessing stage the scanned image 
data is transferred into a sequence of binary im- 
ages, applying a multiple thresholding method. In 
each binary image the contour lines of the seg- 
ments are detected and approximated by straight 
lines using a dynamic split algorithm (Ramer, 
1972). These straight lines are stored as primi- 
tive objects LINE (Fig. 8) with an assessment/z in 

Figure 8. Primitive objects LINE (see Fig. lc) 
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Aa Bb 

Be 

Figure 9. (A) Objects of the image description graph on description levels: (a) CROSSING, (b) STREET, (c) LINE. (B) Derived 
expectation ranges (expectation areas). 

the blackboard. This assessment is deduced from 
the approximation quality. 

4.2. Object models 

The object model defines the object concept 
and may incorporate a set of model parameters, 
tolerance parameters and assessment parameters. 
When a hypothesis is tested, objects are searched 
which fulfil the model conception with a given tol- 
erance. For this reason search ranges are marked 
in the attribute space. E.g. a processing element 
LINE carries the hypothesis part_of_LONOLINE. 
For the examination of the hypothesis search areas 
are constructed around the endpoints of triggering 
LINE and a search interval for orientation is de- 
fined. Associatively those objects LINE are selected 
(see Fig. 3) which have a similar orientation, and 
one endpoint close to an endpoint of the trigger- 
ing object LINE. Accordingly, for the hypothesis 
"part_of_STRIPE" objects LINE with similar orien- 
tation are searched in a given distance (Stilla and 
Jurkiewicz, 1991; Fiiger et al., 1992). 

4.3. Assessment 

A newly generated object receives an assess- 
ment ~ (model similarity) by comparing attribute 
values to the model concept. For example, an ob- 

~w i ~'~./..,,,w 
- . , o  

+ [ 47 
! 

Figure 10. Assessment of a newly generated object STRIPE. 

ject STRIPE is assessed with respect to the length 
l and the angle deviation A F to a parallel edge 
structure (Fig. 10). 

By developing new productions we generally 
attempt to create object-specific assessment func- 
tions without inheritance. That is, for a newly gen- 
erated object only the match of the ideal model 
concept is being assessed, without considering the 
assessment of the object parts. For example, an 
object STRIPE can be constructed of objects LINE 
assessed very bad ( - - ) .  If these objects match 
perfectly in parallel formation with a given dis- 
tance the object receives the assessment very good 
(++) .  
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4. 4. Control by expectation 

The knowledge of the map is used as a sup- 
portive aid for the following aerial image analysis. 
Applying map knowledge in general does not in- 
fluence the results of the analysis (the target obiect 
generated) but merely the processing sequence, 
namely structures in the aecial image cor':espond- 
ing to map structures are given higher queuing 
priority. 

Based on the knowledge of the image descrip- 
tion graph, expec~-fions are defined for attribute 
values of the o~ec~s to be generated in the aerial 
image. For example, using the presence of ob- 
jects STREET in the map information, the objects 
LONGSTRIPE or STRIPE with a special width, orien- 
tation, and position are to be expected in the aerial 
image. Deviations between the attribute values ex- 
pected from the map and those calculated from 
the aerial image may occur due to noise. Similar 
to the model concept an assessment E (expectation 
similarity) concerning the expectation (attribute 
values) is derived for a newly generated object. 
Thus, for an object STRIPE ~,~e ,~ssessment E is 
calculated on the basis of the difference Aw to the 
expected width w and the difference A 9 to the 
expected orientation 9 (Fig. 10). If the registration 
is sufficiently exact, the difference to the expected 
position p may also be considered. 

For the determination of the assessment E, tol- 
erance classes are imposed and corresponding in- 
tervals of the attribute values (expectation ranges) 
are defined. Different expectations (from very high 
(+ +) to very low ( - - ) )  are assigned to the in- 
tervals in order to place a value. An expectation 
range for the attribute position may be depicted 
graphically with an area (expectation area). 

If a crossing is expected, the attribute position is 
evaluated to nested expectation areas by means of 
tolerance classes (+ +, +, 0, - ,  - - ) .  Given equal 
probabilities of deviation towards any direction, the 
borders of the expectation areas form concentric 
circles. (Fig. 9Ba). Expectations are assigned in as- 
cending order, where the inner circle area gets a 
very high (+ +)  expectation and the outer ring gets 
a very low ( - - )  expectation. The borders of ex- 
pectation areas with very high (+ +) expectation for 
the positions of middle endpoints of objects STRIPE 
(STREET) are displayed in Fig. 9Bb and for the end- 
points of objects LONGLINE (S_LINE) in Fig. 9Be. 
The expectation ranges are marked in a context 

space, which exists beside the object space (Fig. 3) 
and contains the same attributes° This permits an 
associative access to sets of elements which possess 
an expected attribute value. 

The priority of the processing will be deduced 
from the assessment ~ and ~ by means of a set- 
oriente~ selection procedure (L~tjen et al., 1987). 
The control unit selects from the Frobably large 
number of nonprocessed elements those elements, 
which have the best assessment with respect to as 
many criteria as possible. Depending on the confi- 
dence in the map and in the image the assessments 
/z and E can be weighted differently and the scales 
can also be shifted against each other. If the con- 
fidence in the map is very low or a map is not 
available the analysis may run only with knowledge 
of the object models. 

The image analysis can be stopped for a verifi- 
cation task, if the objects to be examined have been 
found in the aerial image with sufficient corre- 
spondence. Termination criteria are to be defined 
depending on task and requirement. 

5. Results 

As image data aerial photographs (scale 
1:6300) of an urban men (city of Karlsruhe) were 
used. The transparencies are scanned (RGB and 
B/W) with a resolution of 25/~m per pixel. For this 
analysis only the B/W-images were examined. 

The preprocessing was done with 16 thresholds, 
where for image sections of dimension 1024 x 
1024 pixel approximately 100,000 area segments 
and approximately 70,000 primitive objects were 
generated. 

The aim of the analysis was to verify a road 
network with intersections. Figure 11 shows a par- 
tial result of the aerial image analysis. A verified 
crossing is displayed by the object CROSSXNG (Fig. 
l la), or using lower description levels, by the ob- 
jects STRIPE (Fig. l l b )  and LONGLINE (Fig. l l c )  
with which the CROSSING was generated. 

The comparison of an image analysis with or 
without map shows that using the map knowledge 
for the verification reduces the processing time 
significantly. 

6. Outlook 

In the presented procedure, the map knowl- 
edge is only used to accelerate the process of 
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la 

Figure 11. Result of image analysis on description levels: (a) CROSSING, (b) STRIPE, (c) LONGLINE. 

verification. Using map knowledge to adjust model 
parameters specific to every expected object is the 
subject of further research. 

The determination of tolerance parameters, 
which defines the search ranges, is usually done 
intuitively by the programmer. In related work 
with structural image analysis using BPI, the auto- 
matic adaptation of these parameters is examined. 
Therefore a closed loop system applying evolution 
strategies is proposed (Fiiger et al., 1994). 
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